
TouchWave: Kinetic Multi-touch Manipulation
for Hierarchical Stacked Graphs

Dominikus Baur1, Bongshin Lee2, Sheelagh Carpendale1
1Innovis Group, University of Calgary

2500 University Dr NW, Calgary, AB, Canada
dominikus.baur@gmail.com, sheelagh@ucalgary.ca

2Microsoft Research
One Microsoft Way, Redmond, WA, USA

bongshin@microsoft.com

Figure 1: TouchWave: (a) reading specific values with the vertical ruler, (b) extracting a layer from its parent by dragging, (c)
showing sublayers by pinching, (d) extracting a layer containing atomic items, and (e) pinching to show the underlying items.

ABSTRACT
The increasing popularity of touch-based devices is driving
us to rethink existing interfaces. Within this opportunity,
the complexity of information visualizations offers
particular challenges. We explore these challenges to bring
multi-touch interactions to a specific visualization
technique, stacked graphs. Stacked graphs are a visually
appealing and popular method for presenting time series
data, however, they come with associated problems—issues
with legibility, difficulties with comparisons, and
restrictions in scalability. We present TouchWave, a
rethinking and extension of stacked graphs for multi-touch
capable devices that provides a variety of flexible layout
adjustments, interactive options for querying data values,
and seamlessly switching between different visualizations.
In addition to ameliorating the main issues of stacked
graphs, TouchWave also integrates hierarchical data within
stacked graphs. We demonstrate TouchWave capabilities
with two datasets—a music listening history and movie box
office revenues—and discuss the implications for weaning
other visualizations off mouse and keyboard.

Author Keywords
Stacked graphs; Visualization; Multi-touch; tablets.

ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

INTRODUCTION
In the last few years, multi-touch has become the default
mode of interaction not only for portable devices such as
smartphones and tablets, but also for interactive tabletops
and wall displays. Changes are also expected to happen
with desktops as touch-enabled monitors become more
affordable and readily available. Controlling everything
with fingers instead of a single, indirect mouse cursor
drastically changes the requirements and capabilities of
interfaces. These changes present both opportunities and
challenges for information visualization, where interactions
are still predominately mouse and keyboard; we need to
rethink those interfaces. Given the wide variety and
complexity of existing visualization techniques, it is
probably not feasible to create a single set of multi-touch
interactions that can cover all visualizations. To consider
generalizing touch interactions across visualizations, we
therefore need more concrete practical examples. In this
paper, we add to the small set of multi-touch enabled
visualizations [6,8,13,18,22,23] by extending one specific
visualization technique, stacked graphs, which is
commonly used and yet could significantly benefit from
multi-touch interactions.

Despite their popularity, stacked graphs suffer from issues
with legibility, enabling comparisons, and scalability. With
the design and development of TouchWave (Figure 1), we
show how bringing stacked graphs to multi-touch capable
tablet computers to address their inherent issues requires a
complete rethinking of the visualization, in both
representation and interaction. In addition, we demonstrate
how we address stacked graph issues with a simple yet
comprehensive set of touch-based interactions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITS’12, November 11–14, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1209-7/12/11...$15.00.

255

The main contributions of this paper are: TouchWave,
which extends capabilities of stacked graphs by introducing
a set of consistent multi-touch interactions that mitigate
several basic stacked graph problems; a collection of touch
interaction design goals, which consider particularly the
issues of creating a hands-on-data visualization experience;
and the concept of kinetic manipulation, which encourages
combining the active physical finger, hand, and body
motions with the animated responses of the visualization to
enhance an experience of virtual tangibility.

STACKED GRAPHS AND THEIR PROBLEMS
Stacked graphs are a popular method for visualizing
socially relevant time-changing data mostly due to their
organic and flowing visual qualities. Examples include
news stories [11], music listening histories and movie box
office rates [1], email messages [10], twitter postings [5],
and names people give their babies [24]. Stacked graphs are
composed of several layers of time series data on one
common timeline (Figure 2). Each layer stands for one
specific attribute of the data (e.g., the number of tweets for
a given keyword or the stock price of one specific share),
providing its value at a given point in time. Values are
encoded as the height of a layer at a given horizontal point.
Compared to other types of time series visualization such
as line charts or small multiples [20], stacked graphs form
one cohesive chart: all layers are stacked on top of each
other without intermediary whitespace. The outer hull of a
stacked graph therefore depicts the sum of the values of all
contained layers. The layout of a stacked graph depends on
the form of its baseline: a straight baseline leads to a
regular stacked graph, but its shape can also be adjusted to
the data at each position. This leads to layouts such as
symmetrical Themerivers or Streamgraphs that optimize
the variation in slope based on a layer's thickness [1].
Stacked graphs are popular, but their approach to
representing the data faces three types of problems: (1)
legibility, (2) comparisons, and (3) scalability (Figure 3).

The legibility of a graph describes the ease with which the
human visual system is able to extract values from it and
whether the graphical representation exceeds a human
perceptual threshold [16]. Visualizations are based on
turning numerical data into visual shapes and legibility
issues can arise in the process when choosing a problematic
or unsuitable chart type [20]. Stacked graphs in their non-
interactive form suffer from the fact that human perception
makes reading and comparing curved slopes difficult [2]
(Figure 3a). Also, stacked graphs are usually based on
discrete data samples, but their representation suggests that
the data was continuous. Finally, stacked graphs often lack
explicit scales; they might show a horizontal time axis but
the vertical axis is usually missing. The reason is that
explicit scales would have to be visible at every point of the
graph, which would lead to overlap and visual clutter.

Comparing values is common in information visualization
scenarios but problematic with stacked graphs. While they

provide a good overall "feeling" for the growing and
shrinking of layers over time, explicitly comparing layers is
difficult (Figure 3b) and practically impossible if all layers
have roughly the same size. Common comparison tasks that
are difficult with stacked graphs include comparisons
between layers overall, between different parts of one layer,
between different parts of different layers and even
between all layers at one point in time.

In common with many visualizations, stacked graphs also
have scalability issues. Simply stacking all layers means
that only a certain number of them can be visible and stay
interactive at one time for a given screen resolution. Tens

Figure 2: The structure of a stacked graph (here: a

streamgraph). Each graph is made up of the sum of the
values of its sublayers.

Figure 3: Three main issues of stacked graphs.

256

or hundreds of layers quickly lead to visual clutter and
makes interacting with layers nearly impossible (Figure
3c). Current solutions rely on simple panning and zooming,
or hiding some layers; filtering by text query (hiding layers
based on their attributes in NameVoyager [24]) or filtering
by additional control widgets (BookVoyager’s separate
tree-control can show and hide specific layers [25]).

Only a few projects (e.g., BookVoyager [25], ManyEyes
[21]) incorporate hierarchical data into a stacked graph to
address scalability. Those that do support hierarchical data
rely on separate (e.g., tree) views to show the hierarchy.
This use of two views not only uses additional screen space
but also requires the viewer to make the cognitive links
between the two representations of the same data.

RELATED WORK

Interaction in Stacked Graphs and Streamgraphs
The challenges of stacked graphs caused even early
projects to incorporate interaction with the visualization.
ThemeRiver [11] shows the flow of document themes on a
timeline and enables displaying and hiding labels, scales,
and underlying numbers, and navigating the stream by
zooming and panning. NameVoyager [24], an interactive
stacked graph showing the popularity of baby names,
enables rapid exploration of more than 6,000 time series
based on prefix text search. Its filtering capability
combined with smooth animations and aesthetically
pleasing visual representations led to a popular response
from the general public. BookVoyager extends
NameVoyager to handle hierarchical time series by
integrating it with an additional standard tree control used
to navigate the hierarchy of the data [25]. Muse [10]
provides similar filtering capabilities through additional on-
screen elements for navigating email archives. Color-
coding was used to make the hierarchical structure more
visible in the stacked graph of ManyEyes [21]. Cui et al.
merge time-series visualization with topic analysis in
TextFlow [4] and create interactive and animated ways to
explore this information. However, they emphasize topic
development over time and relax some of the constraints of
stacked graphs (e.g., having no whitespace between layers).
ColourVis [15] provides considerable functionality but
does not consider interaction. Finally, while sense.us [12]
does not suggest new ways to directly improve on stacked
graphs, it supports the social aspects of asynchronous
collaborative visualizations.

Looking at the types of tasks supported by interaction with
stacked graphs, they clearly focus on details-on-demand
and filtering: based on Yi et al.'s taxonomy of seven high-
level interaction goals in information visualization [26], all
visualizations support such abstraction/elaboration (mostly
by hovering over an item [4,11,12,21,24,25] or clicking
[10]) and filtering (through text input [12,24,25] or clicking
[4,12,21]). Yet, other tasks such as exploration (i.e.,
showing different subsets of the data, e.g., through pan &
zoom [11]) or reconfiguration (i.e., showing the same data

in a different layout [25]) are only rarely supported.
Enabling similarly complex manipulations in one consistent
widget-less set of simple touch-based interactions requires
a different approach with a stronger focus on
reconfiguration to keep the visualization object consistent.

Multi-touch Interactions for Information Visualization
With the rapid advances in technologies, some research
projects are specifically exploring multi-touch interactions
for information visualization. For example, Voida et al.
present two interaction techniques, i-Loupe and iPodLoupe,
and a set of design considerations to address the challenges
of designing interaction techniques for information
visualizations on tabletops [23]. Valming et al. explore
tabletop touch interaction for 3D information visualization
[22]. Spindler et al. explore the implications of a secondary,
passive display device above a tabletop surface for
information visualization [19] without extending touch-
based manipulations.

There also have been several efforts to provide more fluid
interactions for node-link graph visualizations. For example,
Schmidt et al. focus on multi-touch interactions for link
manipulation [18]. They broaden interaction possibilities
by presenting a set of multi-touch interaction techniques
(e.g., plucking, pinning, strumming, and bundling) that can
be effectively combined. Frisch et al. discuss a rich set of
individually-elicited pen and touch gestures for editing
node-link diagrams, and provide insights into the suitability
of gestures and bimanual interactions on tabletops [8].
Dwyer et al. investigate interaction techniques people use
while they are optimizing node-link graph layouts [6].
Multi-touch interactions are also used to provide high
freedom of expression when entering queries. For example,
Facet-Streams harness the expressive power of facets and
Boolean logic with tangible and multi-touch interactions
without requiring people to use complex formal notations
[14]. More generally, Isenberg et al. discuss how multi-
touch interactions could be applied to visualizations [13].

We extend this research direction by demonstrating with
TouchWave how bringing multi-touch to a visualization
can go beyond mapping touches to cursor input, and start to
reveal how touch interactions can improve the visualization.

TOUCHWAVE
TouchWave provides touchable stacked graphs that offer a
set of integrated interaction techniques and the ability to
display hierarchical data within streams. In this section, we
first describe the underlying design considerations,
followed by TouchWave’s interaction techniques and then
explain its hierarchical capabilities.

Design Goals
This section contains our main design goals for
TouchWave: creating a full interaction set with kinetic
manipulations and integrated interaction but without
complex gestures and on-screen widgets.

257

Support Kinetic Manipulation
Touch-based interaction invites people to interact directly
with the on-screen visuals. The idea behind kinetic
manipulation is that a person’s fingers, hands, and perhaps
arms and body together with the visualization form a
coherent kinetic whole. Kinetic manipulation suggests that
a visualization reacts in a consistent, learnable manner to
touch interaction. This consistency is usually arrived at via
physically-based metaphors, but could also use a type of
virtual consistency as in the concept of alternate interface
physics [17]. In any case, kinetic manipulation enables
exploration and learning the "rules" to which a
visualization obeys by touching and dragging parts of it.
The visualization becomes a tangible, virtual object that
enables data exploration through its manipulation.

Kinetic manipulation also works with the concept of
momentum, harmoniously linking physical touch
movement to visualization movement. In this regard,
kinetic manipulation follows similar ideas as the
increasingly popular concept of fluid interaction [7] by
avoiding abrupt switches between states and developing
animated transitions. Kinetic manipulation goes further,
however, in that it more strongly emphasizes the stability
and existence of virtual objects. The intention here is to
have consistent and active behavior and predictable
malleability in touch-based adjustments.

Create Integrated Interactions
Integrated interactions mean that interactions are triggered
directly on the visualization itself instead of a control panel,
etc. Visualizations have had a long history of being
manipulated in software where the visual representations
and the interaction controls are spatially separate. Mapping
these touch interactions directly to parts of the
visualizations and creating a visual response that is
expected is non-trivial. The intention with integrated
interactions is to keep the interactions located within the
visualization's screen space.

Another way interactions have been developed for
visualizations is through the use of additional on-screen
widgets. While this can be a powerful idea, the use of
additional widgets can pull cognitive attention away from
the visualization. In supporting the idea of integrated
interactions, we work towards both limiting the use of
additional widgets and making those that are used adhere
with the kinetic manipulation concept. That is, they should
be spatially situated appropriately within the visualization
and their actions and reactions should be kinetically in
harmony with those of the visualization.

Avoid Complex Gestures
One possible approach to creating touch-based interactions
is to develop touch-traced patterns, which can then be
recognized and used to trigger specific system responses.
These touch-gestures can quickly become complex and can
be hard to learn and remember. Instead, our goal is to keep
the touch interactions simple, to when possible use

established touch interactions (touch-and-drag, tap, double
tap, long press, swipe, and pinch).

Consider the Viability of the Interaction Set
Creating a set of touch interactions that work together is
harder than creating individual interactions. Performing the
same touch interactions on the same on-screen element
should lead to the same result. As a touch usually produces
a reaction of the visuals even before the gesture itself is
finished, interactions have to be able to handle
ambiguity (touching an object can lead to touch-and-drag,
swipe, or two-finger pinch gesture, etc.).

Interacting with TouchWave
In this section, we present interaction techniques available
in TouchWave. For each technique we discuss the extent to
which it mitigates particular aspects of the stacked graph
problems. We address the legibility issues by introducing
vertical rulers, supporting comparisons through adjustable
layouts and temporarily extracting layers from their
original positions, and provide navigation techniques for
overcoming the scalability problems.

Vertical Rulers On Demand
The legibility problems of stacked graphs come on the one
hand from the visual, curve-based data mapping but also
from the lack of suitable scales. This is mostly due to the
visual clutter that can be introduced by permanent scales.
Offering scales on-demand for horizontal points allows
reading explicit values while not overburdening the
visualization. Our vertical rulers (Figure 4a) are an aid for
these legibility issues. Touching the background behind a
stacked graph in TouchWave creates a ruler that is bound to
the position of the finger. Each ruler shows the size of all
layers that it crosses at its current position by providing the
numerical values. Moving the finger horizontally updates
the labels correspondingly. Vertical rulers can be generated
for more than one finger supporting both reading and
comparing. This detail-on-demand technique can also be
used to show additional information for each layer (e.g.,
movie names, see the box office case study).

Automatic Sorting and Adjustable Layouts
Vertical rulers allow reading absolute values, but
sometimes only the relative order of layers is important
(e.g., Which layer has the highest or lowest value for a
given horizontal position? At which point is the layer no
longer the largest?, see the box office case study). With
automatic sorting (Figure 4b) TouchWave solves this
comparison problem interactively. Press-and-hold a stacked
graph in TouchWave sorts its layers based on their values
at that horizontal position. This quickly shows the most
influential layer for the position. Once the sorting is
invoked, the finger can also be moved along the horizontal
axis to continue sorting the layers based on the values at
other horizontal positions.

In their discussion on stacked graphs [1], Byron and
Wattenberg present several approaches that rely on
changing a stacked graph's baseline to create a new layout.

258

Different layout approaches enable different comparisons;
ThemeRivers help in comparing layers above and below
the central timeline, while a basic stacked graph avoids the
problems of curvature at least for the lowest layer. In order
to quickly change between different layouts for a stacked
graph, TouchWave enables adjustable layouts (Figure 4c)
triggered by double tapping (the default layout is a
streamgraph). As a transition between different layouts
only changes the baseline, TouchWave uses an animated
transition to help people keep track of points and layers.

Extracting Layers
Comparing two layers for different horizontal positions
(e.g., if layer A's value at a certain point in time is
larger/smaller than layer B's at a different point) can still be
difficult even after adjusting the layout and using vertical
rulers. TouchWave therefore makes it possible to extract
layers from a stacked graph by dragging (Figure 4d).
Touching a single layer and moving it far enough removes
it from its parent. The parent stacked graph in TouchWave
then adjusts the layout so that the remaining layers fill the
gap. Since this works for multiple layers simultaneously
and both fingers automatically create vertical rulers,
rearranging and holding the layers against each other
supports comparison of different sections. This interaction
would be cumbersome to perform using a mouse in
conjunction with keyboard modifiers which might be the
reason why such deconstructions have not been done
before. When a layer is dropped on the background canvas
by lifting the finger, it creates a new single-layer. If a layer
is dropped on an existing stacked graph it lands right above
the layer it is currently over. This allows manual sorting
and grouping of stacked graph, if automatic approaches
such as sorting do not bring the expected results.

Navigation through Focus+Context
The main interaction technique that current stacked graphs
provide to overcome the scalability problem is zooming &
panning. Using this navigation for something as uniform as
a stacked graph can, however, become disorienting. Also,
losing the context makes it hard to perform comparisons.
The concept of focus+context displays [9] addresses some
of the problems of zooming & panning and works well in
TouchWave through the availability of multiple input
points. TouchWave bases its navigation on two-finger
pinching gestures that are by now commonly used for
scaling objects on multi-touch devices.

Horizontally pinching a stacked graph in TouchWave
activates horizontal scaling (Figure 4e). The two vertical
slices that the two fingers touch at the beginning of the
gesture can be freely dragged towards the left or the right
while the ends of the stacked graph stay fixed at the screen
borders. The rest is distorted accordingly. So if, for
example, the left vertical slice is dragged towards the left
side of the screen, all horizontal values left of it are
compressed, while all positions to its right are expanded.
Similarly, moving the left vertical slice towards the right

Figure 4: Interaction techniques for stacked graphs in

TouchWave.

259

Figure 6: Resolving

collisions between items
in item layers.

screen border compresses all values to the right of it, while
expanding the ones to its left. The ends of a stacked graph
in TouchWave are pinned to the left and right borders of
the screen, preserving visibility of all parts at all times even
though certain regions may be distorted. Thus two fingers
can quickly adjust the size of a horizontal section while
keeping the context intact. The view remains distorted until
it is reset. All other interactions (e.g., changing the stacked
graph's layout) preserve the distortion. The horizontal
pinching gesture can be repeatedly applied to focus on even
smaller horizontal regions.

Vertically pinching a stacked graph in TouchWave enables
vertical scaling (Figure 4f). While using the same pinching
gesture, there is one major difference between vertical and
horizontal scaling. In horizontal scaling, the context is
compressed but kept intact while the focus region is
expanded. Using the same notion for vertical scaling would
make the height of some layers bigger, while other layers
would be shrunk. This would introduce a distortion of the
layers' values and aggravate legibility by distorting the data
representation. TouchWave therefore scales the vertical
axis uniformly for vertical pinching to keep the relative
sizes of the layers intact. As with horizontal scaling, other
operations still work (changing the layout and reading
values with the vertical rulers) and the vertical pinching
gesture can be repeated multiple times to increase the
scaling. This vertical scaling partially overcomes problems
with too many layers and interacting with layers that would
otherwise be too small because of the fat finger problem.

Both horizontal and vertical scaling introduce distortions to
the graph that are non-trivial to revert using these
techniques themselves. TouchWave therefore introduces a
two-finger horizontal swiping gesture to reset the scales
(Figure 4g). This removes all horizontal and vertical
transformations and resets a stacked graph.

Introducing Hierarchy to TouchWave
Our set of interaction techniques addresses legibility and
comparison issues of stacked graphs. However, our
approach to scalability with focus+context only ameliorates
some of the scalability issues. Once the number of layers
crosses a certain threshold it is still difficult to see them all.

Extracting and re-organizing the layers in TouchWave
helps with scalability. To take this further, introducing a
hierarchy allows hiding unnecessary details; layers of
interest can be expanded into sub-layers while other, less
interesting layers can hide their sub-layers. Introducing a
hierarchy also makes the underlying elements in
TouchWave accessible, such as individual songs or tweets.

In this section, we present interaction techniques that
enable conveniently working with hierarchical stacked
graphs and reorganizing their layers. While BookVoyager
[25] used an additional on-screen tree control for the
hierarchical data structure, we build on integrated
interactions with the stacked graph itself for our techniques.

Hierarchical and Item-based Stacked Graphs in TouchWave
Hierarchical stacked graphs contain multiple nested layers
instead of a list of coequal layers. The underlying data
structure is therefore a tree, with a single main stacked
graph acting as root node and containing all other layers,
each of which may in turn contain sub-layers and so on. At
the lowest level, simple layers do not contain other layers
but only values (leaf nodes). A layer's value at a given
horizontal position is therefore either a specific numerical
value (for a leaf node) or the sum of all its sub-layers'
values at that position.

Previously, stacked graphs contained abstract numerical
values, even if the underlying data is based on discrete
items. For example, popular stacked graphs such as music
listening histories or twitter data are based on atomic units
(e.g., songs, tweets) but converted to numerical
representations that allow displaying them in such a graph.
Hierarchical stacked graphs in TouchWave, however, can
display the numerical overview data and the atomic units: a
leaf node can either contain discrete numerical values (e.g.,
stock prices) or atomic items (Figure 5). These items are
bound to their horizontal position (e.g., their timestamp)
but can move vertically and also have a range of influence
depending on how much a single song is "worth." This
influence is
expressed
through a radius
for the item.
Items have to be
rearranged
vertically to
prevent overlap,
which
establishes a
height value for
the layout at that
horizontal
position.
Listening to two
songs in quick
succession, for
example, would lead to an overlap between the items.
Moving one of them one item radius up prevents the
overlap and creates a correct height reading (the layer is
twice as high at that position as at positions with single
songs, Figure 6). Displaying
atomic units therefore does not
introduce distortion to the graph
and with the right range of
influence, atomic unit and
numerical value layers can be
combined in the same stacked
graph.

Data Organization
Working with hierarchical stacked graphs in TouchWave
requires adjustments to our existing techniques and the

Figure 5: Hierarchical stacked graphs in
TouchWave can contain regular layers,

other stacked graphs or item layers
consisting of atomic items (songs, tweets).

260

introduction of new ones for managing the information.
These new techniques allow showing/hiding sublayers,
panning the background for more space and
creating/removing copies of layers and sublayers.

Vertical scaling of a stacked graph now does not only
adjust its size but also shows its sublayers, once a certain
amount of scaling is reached (Figure 7a). Similarly,
shrinking a layer's vertical size through pinching hides
visible layers and reduces visual clutter. The lowest layers
not only show single values but can also contain items
which are represented as small, semi-transparent circles.

Panning the background (Figure 7b) by dragging it moves
all stacked graphs in TouchWave up or down. Panning only
works vertically, as all stacked graphs are fixed to the left
and right borders of the screen. The background also starts
to pan while dragging a layer if the dragged layer gets too
close to the lower or upper screen borders. This allows
finding an empty spot for dropping the layer without
having to pan the background first. This gesture is identical
to triggering a vertical ruler, which means that while
panning a ruler is displayed as well. We decided to put up

with the ambiguity instead of introducing a more complex
gesture, as rulers are not too distracting.

Extracting a layer from a stacked graph in TouchWave by
dragging and dropping is still possible and now also affects
all contained sublayers; removing a layer from its parent
and dropping it in another stacked graph moves it and all of
its sublayers to that new position. This allows building new
stacked graphs on-the-fly, simply by dropping and
combining layers of interest on the background.

All layer re-organization changes the original order of a
stacked graph. Therefore, a two-finger vertical swipe
allows copying a stacked graph and all its sublayers
(Figure 7c). In a fluid transition, the newly created copy is
hurled in the direction of the swipe and stops at the lower
or upper screen border. The way to delete a copy is to drag
it to the vertical screen border and let it go (Figure 7d).

Implementation
TouchWave was written in Objective-C for iOS 5. We
deployed TouchWave on a 3rd generation iPad with a
resolution of 2048 x 1536 pixels on a 9.7 inch display. For
this configuration, TouchWave supports up to 1,000
horizontal sampling points and 100 parallel layers at
interactive frame rates. Reducing the number of sample
points allows showing more layers and vice versa. The
actual number of layers can be far greater, as non-visible
layers do not have any impact on the performance.

The basic layout algorithms for our Objective-C code were
derived from Byron and Wattenberg’s 2008 paper [1] and
their Processing drawing code (available as open-source on
Github1). Fluid transitions between different states and
layouts were enabled through the use of Apple's
CoreAnimation framework, and graphical output was built
using CoreGraphics. One TouchWave-specific
implementation issue was creating a suitable layout for
items within an item layer. A single item is defined by its
horizontal position posx, its radius r, and a vertical position
posy. Both posx and r are fixed and only posy can be
adjusted to prevent overlaps (Figure 6). As we wanted to
have this layout working on a portable device, we went for
a non-optimal, but simple solution to solving collisions.
Our algorithm works as follows. Each round the item with
the largest radius is picked and dropped on the horizontal
axis (y=0). Afterwards the item "bubbles up" (y is
increased in steps whose length determines the accuracy of
the layout) until it no longer collides with any other
existing item. The algorithm finishes after placing all items.

CASE STUDIES
Stacked graphs are popular for various datasets, so we
decided to demonstrate the possibilities of TouchWave
with existing use cases from literature [1]. Two exemplary
datasets we used are music listening histories and movie
box office results.

1 https://github.com/leebyron/streamgraph_generator

 Figure 7: Extended interaction techniques for hierarchical
stacked graphs in TouchWave.

261

Music Listening Histories
One of the first widespread examples of a stacked graph is
Byron's music listening history visualization. Discussions
about layout approaches and implications for stacked
graphs were published by Byron and Wattenberg [1]. The
listening history stacked graph is based on creating a layer
for each artist in the history. The values for each horizontal
sampling point for one layer corresponds with the number
of times a song by that specific artist has been listened to in
one week. The result represents the changes in musical
taste over time, but makes it difficult to read clear values
and is completely static.

A music listening history in
TouchWave provides multiple
ways to interact with the data.
Figure 8 shows a screenshot of two
months of listening history data as
interactive stacked graphs.
Compared to the original, the data
is hierarchical, with genres as the
top level (visible at the top). Each
genre layer consists of layers for
artists that are in turn based on
single songs. When enlarging an
artist layer far enough, the single
underlying songs become visible.
In this example they appear as oval
shapes, due to the non-uniform
scaling (middle layer). The two
most popular genres have been
extracted from the overarching
stacked graph and placed below it
for further analysis (indie and
electronic as blue and green layer,
respectively in Figure 8). We work
with 1,000 horizontal sample points in this example which
means that each sample corresponds to roughly 80 minutes
of the two months. The average song length of four minutes
leads to much overlap between the song items and explains
the stacked look of the middle layer. Pinching horizontally
allows focusing on certain periods in time and pinching
vertically controls the visible level of the hierarchy (genre,
artists, songs). More detailed exploration is enabled
through the possibility to deconstruct the stacked graph and
drag interesting layers out. Additionally, the TouchWave
version clearly shows the "burstiness" of music listening
behavior: people listen to several songs before stopping
again. This is apparent in the visualization as empty spots
between stacked sets of songs. The free-flowing layout of
the original Listening History visualization hinted at these
gaps but brushed over them. The more realistic
representation in TouchWave leads to worse results for the
streamgraph layout however (there is no clear horizontal
axis). Double tapping on the stacked graph allows
switching to a different layout - ThemeRiver, for example,

makes sure that all layers above and below the time axis
form a symmetrical shape. Another aspect that is enabled
through the hierarchical view is the comparison between
different genres. It is interesting to see that the listening
history is dominated by several main genres (indie,
electronic, alternative (red color)) while other genres are
more niche with only few songs.

Movie Box Office Revenues
Another popular example of a stacked graph is the New
York Times' 'The Ebb & Flow of Movies' [3], a
visualization of box office results from 1986 to 2008 (also

in Byron and Wattenberg [1]). Each film is depicted as one
layer and the stacked graph shows the development over
time. Movies typically make the most money in the first
few weeks and then start to slowly lose drive until they
disappear from the theatres. The elongated shapes of single
films fold into an overarching stream whose shape depicts
the overall box office. The outer stacked graph shows
seasonal shifts (summer blockbusters).

We used a similar dataset in TouchWave, showing the box
office results for 52 films over 80 weeks (Figure 9). We
applied a similar color coding to Byron and Wattenberg
where more saturated red colors depict higher grossing
films [1]. This allows a rough estimate of which films were
the most successful. Interaction in the web version of the
New York Times' graph2 allows clicking on a layer to see a
story synopsis and horizontal panning for navigation. While
we did not integrate detail information about a movie into

2 http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REV
ENUE_GRAPHIC.html

Figure 8: Two months of a listening history with genres and single artist layers.

262

the TouchWave version, our two finger horizontal scaling
enables focusing on specific regions of the graph while
keeping the context. This allows comparing the current
section to the top-grossing films of the whole dataset.
Visually comparing a film's performance to others is
difficult if they were not released at the same time. Relying
on the color coding allows comparing the overall gross
revenue, but even finding the number of weeks that both
films were in the theaters is difficult. In TouchWave, two
films can be compared by extracting their layers from the
stacked graph with two fingers. Even if they were released
at different times, both layers can be aligned to compare the
films' shapes and their time at the box office. Focusing on a
certain couple of weeks is possible through horizontal
pinching. Additionally, while the color coding only depicts
a rough estimate for the overall revenue, the vertical rulers
show the specific box office results for a given week.
Moving a ruler along the time axis or creating a second one
with a second finger enables explicit comparisons. Finally,
resorting the stacked graph at one specific horizontal
position sorts all film layers by their revenue in that week.

DISCUSSION AND CONCLUSIONS
TouchWave is an example of rethinking an existing
visualization technique to make a suitable, multi-touch
based interaction. Our design goals can be valuable for
extending other visualization techniques from the desktop:

• Support kinetic manipulation: endeavour to respond to
a person’s physical motions during interaction with
harmonious interactive animation and responses.

• Create integrated interactions: look to spatially locate
one’s fingers and hands in contact with the visual
representation whenever possible. The notion is to
develop a hands-on data experience. Also, to leverage

the full potential of touch interactions, avoid simply
copying an interface with existing on-screen widgets.
Instead, minimize widgets and integrate the widgets
within the visual representation whenever possible.

• Avoid complex gestures: while the temptation might be
to replace complex widget and menu systems with
complex gestures, the challenge is to enable the same
rich interaction with simple touch interaction.

• Consider the viability of the interaction set: when
working towards simple, kinetic, integrated
interactions it is important to pay attention to the
creation of unambiguous interactions that where
possible can be provided in a modeless interface.

TouchWave’s kinetic interaction with the visualization uses
fluid, animated transitions [7], to convey a natural, pseudo-
physical feeling for the data. All interactions are integrated
where touches are placed directly on the visualization. Our
only additional widget, touch-based vertical rulers are also
placed in situ. We adhere to simple touch actions, such as
those that are becoming commonly accepted. Within the
immediacy of integrated interaction TouchWave supports a
mode-less approach to working with the data. Every type of
manipulation and measurement can be triggered at any
point without locking people into modes. This general
approach has the advantage of maximizing the usage of
available screen space for representing the data instead of
filling some of it with buttons and other widgets. The
downside is discoverability; figuring out what the system
supports for the first time may not be easy as functions
cannot be discovered by trying all the buttons. Suitable help
mechanisms such as tutorials and in-place help would
alleviate this problem and once learned, re-discovering
interactions options might not be too difficult because
everything is based only on simple touch gestures.

A main challenge while designing TouchWave was coming
up with a consistent interaction set: a mapping between
elementary touches, on-screen visuals and changes to the
visualization that would lead to consistent and expected
results. Ad-hoc mappings between touches and visuals
usually lead to conflicts and ambiguities in the results. We
found that creating a suitable combination of all these
factors is a challenging problem in itself. Our approach was
to first decide on a list of manipulations that we would
make available. We then made two lists of all available
visual categories (single layers, stacked graphs,
background) and all available elementary interactions (tap,
pinch, etc.). Finally, we determined what manipulation
would happen for each combination of a visual category
and an elementary interaction (e.g., background + touch 
vertical ruler and panning). This allowed us to pick suitable
interactions for each manipulation without (unwanted)
collisions. This process may prove useful to apply to other
visualization techniques for multi-touch interactions.

We addressed the fat finger problem by initially scaling
stacked graphs in TouchWave to the maximum available

Figure 9: Section of box office results for movies. A vertical
ruler allows reading the numerical values.

263

screen size. Also, sublayers in each stacked graph in
TouchWave are only shown for a certain size of stream.
Vertical scaling allows increasing the size of a stacked
graph and its layers to make reaching them easier. Still, for
some cases, a single layer can just be too small and for
these cases, having an on-screen widget such as a type of
virtual magnifying glass [21,22] could help.

As multi-touch capable devices such as interactive
tabletops, walls and tablet computers become more and
more popular the demand for more complex applications
such as visualization tools for those devices will also rise.
With TouchWave we have demonstrated that multi-touch
can provide a more fluid and modeless interaction with data
that extends the existing technique. For example,
TouchWave offers an integrated representation for
hierarchical data in stacked graphs. Enabling interactive
exploration through multi-touch gestures can ameliorate
some of the issues arising from legibility, comparisons, and
scalability. Even though TouchWave was developed for
tablets, the proposed interaction techniques are applicable
to all larger multi-touch devices (tabletops, wall displays).

With touch-capable devices available everywhere the
formerly fringe case of touch-based visualization will
continue to become more generally relevant. Other
visualization techniques can equally benefit from the
advantages of having a more immediate interaction with the
data representations. Kinetic manipulation, integrated
interaction and a consistent set of interactions based on
simple gestures can improve the overall experience of a
multi-touch visualization.

ACKNOWLEDGEMENTS
This research was supported in part by NSERC, AITF, CFI
and SurfNet.

REFERENCES
1. Byron, L. and Wattenberg, M. Stacked Graphs - Geometry &

Aesthetics, IEEE TVCG (InfoVis 2008), vol. 14, no. 6, 2008,
pp. 1245–1252.

2. Cleveland, W.S. and McGill, R. Graphical Perception:
Theory, Experimentation, and Application to the Development
of Graphical Methods, Journal of the American Statistical
Association, vol. 79, 1984, pp. 531–554.

3. Cox, A. and Byron, L. The Ebb and Flow of Box Office Sales,
The New York Times, February 23, 2008.

4. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Tong, X.,
and Qu, H. TextFlow: Towards Better Understanding of
Evolving Topics in Text, IEEE TVCG, vol. 17, no. 12, 2011,
pp. 2412–2421.

5. Dörk, M., Gruen, D., Williamson, C., and Carpendale, S. A
Visual Backchannel for Large-Scale Events. IEEE TVCG
(InfoVis 2010), vol. 16, no. 6, 2010, pp. 1129–1138.

6. Dwyer, T., Lee, B., Fisher, D., Inkpen, K., Isenberg, P.,
Robertson, G., and North, C. Understanding Multi-touch
Manipulation for Surface Computing, IEEE TVCG (InfoVis
2009), vol. 25, no. 19, 2009, pp. 961–968.

7. Elmqvist, N., Vande Moere, A., Jetter, H.-C., Cernea, D.,
Reiterer, H., and Jankun-Kelly, T.J. Fluid interaction for

information visualization, Information Visualization, vol. 10,
2011, pp. 327–340.

8. Frisch, M., Heydekorn, J., and Dachselt, R. Investigating
multi-touch and pen gestures for diagram editing on
interactive surfaces, Proc. ITS 2009, 2009, pp. 149–156.

9. Furnas, G.W. Generalized fisheye views, Proc. CHI 1986,
1986, pp. 16–23.

10. Hangal, S., Lam, H., and Heer, J. Muse: Reviving memories
using email archives, Proc. UIST 2011, 2011, pp. 75–84.

11. Havre, S., Hetzler, B., Whitney, P., and Nowell, L.
Themeriver: visualizing thematic changes in large document
collections, IEEE TVCG, vol. 8, no. 1, 1999, pp. 9–20.

12. Heer, J., Viégas, F., and Wattenberg, M. Voyagers and
voyeurs: supporting asynchronous collaborative information
visualization, Proc. CHI 2007, 2007, pp. 1029–1038.

13. Isenberg, P., Hinrichs, U., Hancock, M., and Carpendale, S.
Digital Tables for Collaborative Information Exploration,
Tabletops - Horizontal Interactive Displays, C. Müller-
Tomfelde, ed., Springer-Verlag, 2010, pp. 387–405.

14. Jetter, H.-C., Gerken, J., Zöllner, M., Reiterer, H., and Milic-
Frayling, N. Materializing the Query with Facet-Streams – A
Hybrid Surface for Collaborative Search on Tabletops, Proc.
CHI 2011, 2011, pp. 3013–3022.

15. Lynch, S., Haber, J., Carpendale, S. ColourVis: Exploring
Colour in Digital Images. Computers & Graphics, vol 36, no.
6, 2012, pp. 696-707.

16. Pentland, A. Maximum likelihood estimation: The best PEST,
Attention, Perception & Psychophysics, vol. 28, no. 4, 1980,
pp. 377–379.

17. Perlin, K. and Fox, D. Pad: An Alternative Approach to the
Computer Interface, Proc. SIGGRAPH 1993, 1993, pp. 57–64.

18. Schmidt, S., Nacenta, M., Dachselt, R., and Carpendale, S. A
Set of Multitouch Graph Interaction Techniques, Proc. ITS
2011, 2011, pp. 113–116.

19. Spindler, M., Tominski, C., Schumann, H., and Dachselt, R.
Tangible Views for Information Visualization, Proc. ITS
2010, 2010, pp. 157–166.

20. Tufte, E. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, USA 1983.

21. Viégas, F., Wattenberg, M., van Ham, F., Kriss, J., and
McKeon, M. ManyEyes: a Site for Visualization at Internet
Scale, Proc. InfoVis 2007, 2007, pp. 1121–1128.

22. Vlaming, L., Collins, C., Hancock, M., Nacenta, M., Isenberg,
T., Carpendale, S. Integrating 2D mouse emulation with 3D
manipulation for visualizations on a multi-touch table. Proc.
ITS 2010. 2012 221-230.

23. Voida, S., Tobiasz, M., Stromer, J., Isenberg, P., and
Carpendale, S. Getting Practical with Interactive Tabletop
Displays: Designing for Dense Data, “Fat Fingers,” Diverse
Interactions, and Face-to-Face Collaboration, Proc. ITS 2009,
2009, pp. 109–116.

24. Wattenberg, M. Baby Names, Visualization, and Social Data
Analysis, Proc. InfoVis 2005, 2005, pp. 1–7.

25. Wattenberg, M. and Kriss, J. Designing for Social Data
Analysis, IEEE TVCG, vol. 12, no. 4, 2006, pp. 549–557.

26. Yi, J., Kang, Y.A., Stasko, J.T., Jacko, J.A. Toward a Deeper
Understanding of the Role of Interaction in Information
Visualization, IEEE TVCG (InfoVis 2007), vol. 13, no. 6,
2007, pp. 1224–1231.

264

