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Figure 1: TouchWave: (a) reading specific values with the vertical ruler, (b) extracting a layer from its parent by dragging, (c) 
showing sublayers by pinching, (d) extracting a layer containing atomic items, and (e) pinching to show the underlying items. 

ABSTRACT 
The increasing popularity of touch-based devices is driving 
us to rethink existing interfaces. Within this opportunity, 
the complexity of information visualizations offers 
particular challenges. We explore these challenges to bring 
multi-touch interactions to a specific visualization 
technique, stacked graphs. Stacked graphs are a visually 
appealing and popular method for presenting time series 
data, however, they come with associated problems—issues 
with legibility, difficulties with comparisons, and 
restrictions in scalability. We present TouchWave, a 
rethinking and extension of stacked graphs for multi-touch 
capable devices that provides a variety of flexible layout 
adjustments, interactive options for querying data values, 
and seamlessly switching between different visualizations. 
In addition to ameliorating the main issues of stacked 
graphs, TouchWave also integrates hierarchical data within 
stacked graphs. We demonstrate TouchWave capabilities 
with two datasets—a music listening history and movie box 
office revenues—and discuss the implications for weaning 
other visualizations off mouse and keyboard. 
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INTRODUCTION 
In the last few years, multi-touch has become the default 
mode of interaction not only for portable devices such as 
smartphones and tablets, but also for interactive tabletops 
and wall displays. Changes are also expected to happen 
with desktops as touch-enabled monitors become more 
affordable and readily available. Controlling everything 
with fingers instead of a single, indirect mouse cursor 
drastically changes the requirements and capabilities of 
interfaces. These changes present both opportunities and 
challenges for information visualization, where interactions 
are still predominately mouse and keyboard; we need to 
rethink those interfaces. Given the wide variety and 
complexity of existing visualization techniques, it is 
probably not feasible to create a single set of multi-touch 
interactions that can cover all visualizations. To consider 
generalizing touch interactions across visualizations, we 
therefore need more concrete practical examples. In this 
paper, we add to the small set of multi-touch enabled 
visualizations [6,8,13,18,22,23] by extending one specific 
visualization technique, stacked graphs, which is 
commonly used and yet could significantly benefit from 
multi-touch interactions.  

Despite their popularity, stacked graphs suffer from issues 
with legibility, enabling comparisons, and scalability. With 
the design and development of TouchWave (Figure 1), we 
show how bringing stacked graphs to multi-touch capable 
tablet computers to address their inherent issues requires a 
complete rethinking of the visualization, in both 
representation and interaction. In addition, we demonstrate 
how we address stacked graph issues with a simple yet 
comprehensive set of touch-based interactions.  
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The main contributions of this paper are: TouchWave, 
which extends capabilities of stacked graphs by introducing 
a set of consistent multi-touch interactions that mitigate 
several basic stacked graph problems; a collection of touch 
interaction design goals, which consider particularly the 
issues of creating a hands-on-data visualization experience; 
and the concept of kinetic manipulation, which encourages 
combining the active physical finger, hand, and body 
motions with the animated responses of the visualization to 
enhance an experience of virtual tangibility.  

STACKED GRAPHS AND THEIR PROBLEMS 
Stacked graphs are a popular method for visualizing 
socially relevant time-changing data mostly due to their 
organic and flowing visual qualities. Examples include 
news stories [11], music listening histories and movie box 
office rates [1], email messages [10], twitter postings [5], 
and names people give their babies [24]. Stacked graphs are 
composed of several layers of time series data on one 
common timeline (Figure 2). Each layer stands for one 
specific attribute of the data (e.g., the number of tweets for 
a given keyword or the stock price of one specific share), 
providing its value at a given point in time. Values are 
encoded as the height of a layer at a given horizontal point. 
Compared to other types of time series visualization such 
as line charts or small multiples [20], stacked graphs form 
one cohesive chart: all layers are stacked on top of each 
other without intermediary whitespace. The outer hull of a 
stacked graph therefore depicts the sum of the values of all 
contained layers. The layout of a stacked graph depends on 
the form of its baseline: a straight baseline leads to a 
regular stacked graph, but its shape can also be adjusted to 
the data at each position. This leads to layouts such as 
symmetrical Themerivers or Streamgraphs that optimize 
the variation in slope based on a layer's thickness [1]. 
Stacked graphs are popular, but their approach to 
representing the data faces three types of problems: (1) 
legibility, (2) comparisons, and (3) scalability (Figure 3). 

The legibility of a graph describes the ease with which the 
human visual system is able to extract values from it and 
whether the graphical representation exceeds a human 
perceptual threshold [16]. Visualizations are based on 
turning numerical data into visual shapes and legibility 
issues can arise in the process when choosing a problematic 
or unsuitable chart type [20]. Stacked graphs in their non-
interactive form suffer from the fact that human perception 
makes reading and comparing curved slopes difficult [2] 
(Figure 3a). Also, stacked graphs are usually based on 
discrete data samples, but their representation suggests that 
the data was continuous. Finally, stacked graphs often lack 
explicit scales; they might show a horizontal time axis but 
the vertical axis is usually missing. The reason is that 
explicit scales would have to be visible at every point of the 
graph, which would lead to overlap and visual clutter.  

Comparing values is common in information visualization 
scenarios but problematic with stacked graphs. While they 

provide a good overall "feeling" for the growing and 
shrinking of layers over time, explicitly comparing layers is 
difficult (Figure 3b) and practically impossible if all layers 
have roughly the same size. Common comparison tasks that 
are difficult with stacked graphs include comparisons 
between layers overall, between different parts of one layer, 
between different parts of different layers and even 
between all layers at one point in time.  

In common with many visualizations, stacked graphs also 
have scalability issues. Simply stacking all layers means 
that only a certain number of them can be visible and stay 
interactive at one time for a given screen resolution. Tens 

 
Figure 2: The structure of a stacked graph (here: a 

streamgraph). Each graph is made up of the sum of the 
values of its sublayers.  

 

 
Figure 3: Three main issues of stacked graphs.  
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or hundreds of layers quickly lead to visual clutter and 
makes interacting with layers nearly impossible (Figure 
3c). Current solutions rely on simple panning and zooming, 
or hiding some layers; filtering by text query (hiding layers 
based on their attributes in NameVoyager [24]) or filtering 
by additional control widgets (BookVoyager’s separate 
tree-control can show and hide specific layers [25]). 

Only a few projects (e.g., BookVoyager [25], ManyEyes 
[21]) incorporate hierarchical data into a stacked graph to 
address scalability. Those that do support hierarchical data 
rely on separate (e.g., tree) views to show the hierarchy. 
This use of two views not only uses additional screen space 
but also requires the viewer to make the cognitive links 
between the two representations of the same data. 

RELATED WORK 

Interaction in Stacked Graphs and Streamgraphs 
The challenges of stacked graphs caused even early 
projects to incorporate interaction with the visualization. 
ThemeRiver [11] shows the flow of document themes on a 
timeline and enables displaying and hiding labels, scales, 
and underlying numbers, and navigating the stream by 
zooming and panning. NameVoyager [24], an interactive 
stacked graph showing the popularity of baby names, 
enables rapid exploration of more than 6,000 time series 
based on prefix text search. Its filtering capability 
combined with smooth animations and aesthetically 
pleasing visual representations led to a popular response 
from the general public. BookVoyager extends 
NameVoyager to handle hierarchical time series by 
integrating it with an additional standard tree control used 
to navigate the hierarchy of the data [25]. Muse [10] 
provides similar filtering capabilities through additional on-
screen elements for navigating email archives. Color-
coding was used to make the hierarchical structure more 
visible in the stacked graph of ManyEyes [21]. Cui et al. 
merge time-series visualization with topic analysis in 
TextFlow [4] and create interactive and animated ways to 
explore this information. However, they emphasize topic 
development over time and relax some of the constraints of 
stacked graphs (e.g., having no whitespace between layers). 
ColourVis [15] provides considerable functionality but 
does not consider interaction. Finally, while sense.us [12] 
does not suggest new ways to directly improve on stacked 
graphs, it supports the social aspects of asynchronous 
collaborative visualizations.  

Looking at the types of tasks supported by interaction with 
stacked graphs, they clearly focus on details-on-demand 
and filtering: based on Yi et al.'s taxonomy of seven high-
level interaction goals in information visualization [26], all 
visualizations support such abstraction/elaboration (mostly 
by hovering over an item [4,11,12,21,24,25] or clicking 
[10]) and filtering (through text input [12,24,25] or clicking 
[4,12,21]). Yet, other tasks such as exploration (i.e., 
showing different subsets of the data, e.g., through pan & 
zoom [11]) or reconfiguration (i.e., showing the same data 

in a different layout [25]) are only rarely supported. 
Enabling similarly complex manipulations in one consistent 
widget-less set of simple touch-based interactions requires 
a different approach with a stronger focus on 
reconfiguration to keep the visualization object consistent. 

Multi-touch Interactions for Information Visualization 
With the rapid advances in technologies, some research 
projects are specifically exploring multi-touch interactions 
for information visualization. For example, Voida et al. 
present two interaction techniques, i-Loupe and iPodLoupe, 
and a set of design considerations to address the challenges 
of designing interaction techniques for information 
visualizations on tabletops [23]. Valming et al. explore 
tabletop touch interaction for 3D information visualization 
[22]. Spindler et al. explore the implications of a secondary, 
passive display device above a tabletop surface for 
information visualization [19] without extending touch-
based manipulations. 

There also have been several efforts to provide more fluid 
interactions for node-link graph visualizations. For example, 
Schmidt et al. focus on multi-touch interactions for link 
manipulation [18]. They broaden interaction possibilities 
by presenting a set of multi-touch interaction techniques 
(e.g., plucking, pinning, strumming, and bundling) that can 
be effectively combined. Frisch et al. discuss a rich set of 
individually-elicited pen and touch gestures for editing 
node-link diagrams, and provide insights into the suitability 
of gestures and bimanual interactions on tabletops [8]. 
Dwyer et al. investigate interaction techniques people use 
while they are optimizing node-link graph layouts [6]. 
Multi-touch interactions are also used to provide high 
freedom of expression when entering queries. For example, 
Facet-Streams harness the expressive power of facets and 
Boolean logic with tangible and multi-touch interactions 
without requiring people to use complex formal notations 
[14]. More generally, Isenberg et al. discuss how multi-
touch interactions could be applied to visualizations [13].  

We extend this research direction by demonstrating with 
TouchWave how bringing multi-touch to a visualization 
can go beyond mapping touches to cursor input, and start to 
reveal how touch interactions can improve the visualization.  

TOUCHWAVE 
TouchWave provides touchable stacked graphs that offer a 
set of integrated interaction techniques and the ability to 
display hierarchical data within streams. In this section, we 
first describe the underlying design considerations, 
followed by TouchWave’s interaction techniques and then 
explain its hierarchical capabilities.  

Design Goals 
This section contains our main design goals for 
TouchWave: creating a full interaction set with kinetic 
manipulations and integrated interaction but without 
complex gestures and on-screen widgets.  

257



 

Support Kinetic Manipulation 
Touch-based interaction invites people to interact directly 
with the on-screen visuals. The idea behind kinetic 
manipulation is that a person’s fingers, hands, and perhaps 
arms and body together with the visualization form a 
coherent kinetic whole. Kinetic manipulation suggests that 
a visualization reacts in a consistent, learnable manner to 
touch interaction. This consistency is usually arrived at via 
physically-based metaphors, but could also use a type of 
virtual consistency as in the concept of alternate interface 
physics [17]. In any case, kinetic manipulation enables 
exploration and learning the "rules" to which a 
visualization obeys by touching and dragging parts of it. 
The visualization becomes a tangible, virtual object that 
enables data exploration through its manipulation. 

Kinetic manipulation also works with the concept of 
momentum, harmoniously linking physical touch 
movement to visualization movement. In this regard, 
kinetic manipulation follows similar ideas as the 
increasingly popular concept of fluid interaction [7] by 
avoiding abrupt switches between states and developing 
animated transitions. Kinetic manipulation goes further, 
however, in that it more strongly emphasizes the stability 
and existence of virtual objects. The intention here is to 
have consistent and active behavior and predictable 
malleability in touch-based adjustments. 

Create Integrated Interactions 
Integrated interactions mean that interactions are triggered 
directly on the visualization itself instead of a control panel, 
etc. Visualizations have had a long history of being 
manipulated in software where the visual representations 
and the interaction controls are spatially separate. Mapping 
these touch interactions directly to parts of the 
visualizations and creating a visual response that is 
expected is non-trivial. The intention with integrated 
interactions is to keep the interactions located within the 
visualization's screen space. 

Another way interactions have been developed for 
visualizations is through the use of additional on-screen 
widgets. While this can be a powerful idea, the use of 
additional widgets can pull cognitive attention away from 
the visualization. In supporting the idea of integrated 
interactions, we work towards both limiting the use of 
additional widgets and making those that are used adhere 
with the kinetic manipulation concept. That is, they should 
be spatially situated appropriately within the visualization 
and their actions and reactions should be kinetically in 
harmony with those of the visualization.  

Avoid Complex Gestures 
One possible approach to creating touch-based interactions 
is to develop touch-traced patterns, which can then be 
recognized and used to trigger specific system responses. 
These touch-gestures can quickly become complex and can 
be hard to learn and remember. Instead, our goal is to keep 
the touch interactions simple, to when possible use 

established touch interactions (touch-and-drag, tap, double 
tap, long press, swipe, and pinch). 

Consider the Viability of the Interaction Set 
Creating a set of touch interactions that work together is 
harder than creating individual interactions. Performing the 
same touch interactions on the same on-screen element 
should lead to the same result. As a touch usually produces 
a reaction of the visuals even before the gesture itself is 
finished, interactions have to be able  to handle 
ambiguity (touching an object can lead to touch-and-drag, 
swipe, or two-finger pinch gesture, etc.).  

Interacting with TouchWave  
In this section, we present interaction techniques available 
in TouchWave. For each technique we discuss the extent to 
which it mitigates particular aspects of the stacked graph 
problems. We address the legibility issues by introducing 
vertical rulers, supporting comparisons through adjustable 
layouts and temporarily extracting layers from their 
original positions, and provide navigation techniques for 
overcoming the scalability problems.  

Vertical Rulers On Demand 
The legibility problems of stacked graphs come on the one 
hand from the visual, curve-based data mapping but also 
from the lack of suitable scales. This is mostly due to the 
visual clutter that can be introduced by permanent scales. 
Offering scales on-demand for horizontal points allows 
reading explicit values while not overburdening the 
visualization. Our vertical rulers (Figure 4a) are an aid for 
these legibility issues. Touching the background behind a 
stacked graph in TouchWave creates a ruler that is bound to 
the position of the finger. Each ruler shows the size of all 
layers that it crosses at its current position by providing the 
numerical values. Moving the finger horizontally updates 
the labels correspondingly. Vertical rulers can be generated 
for more than one finger supporting both reading and 
comparing. This detail-on-demand technique can also be 
used to show additional information for each layer (e.g., 
movie names, see the box office case study). 

Automatic Sorting and Adjustable Layouts 
Vertical rulers allow reading absolute values, but 
sometimes only the relative order of layers is important 
(e.g., Which layer has the highest or lowest value for a 
given horizontal position? At which point is the layer no 
longer the largest?, see the box office case study). With 
automatic sorting (Figure 4b) TouchWave solves this 
comparison problem interactively. Press-and-hold a stacked 
graph in TouchWave sorts its layers based on their values 
at that horizontal position. This quickly shows the most 
influential layer for the position. Once the sorting is 
invoked, the finger can also be moved along the horizontal 
axis to continue sorting the layers based on the values at 
other horizontal positions. 

In their discussion on stacked graphs [1], Byron and 
Wattenberg present several approaches that rely on 
changing a stacked graph's baseline to create a new layout. 
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Different layout approaches enable different comparisons; 
ThemeRivers help in comparing layers above and below 
the central timeline, while a basic stacked graph avoids the 
problems of curvature at least for the lowest layer. In order 
to quickly change between different layouts for a stacked 
graph, TouchWave enables adjustable layouts (Figure 4c) 
triggered by double tapping (the default layout is a 
streamgraph). As a transition between different layouts 
only changes the baseline, TouchWave uses an animated 
transition to help people keep track of points and layers.  

Extracting Layers 
Comparing two layers for different horizontal positions 
(e.g., if layer A's value at a certain point in time is 
larger/smaller than layer B's at a different point) can still be 
difficult even after adjusting the layout and using vertical 
rulers. TouchWave therefore makes it possible to extract 
layers from a stacked graph by dragging (Figure 4d). 
Touching a single layer and moving it far enough removes 
it from its parent. The parent stacked graph in TouchWave 
then adjusts the layout so that the remaining layers fill the 
gap. Since this works for multiple layers simultaneously 
and both fingers automatically create vertical rulers, 
rearranging and holding the layers against each other 
supports comparison of different sections. This interaction 
would be cumbersome to perform using a mouse in 
conjunction with keyboard modifiers which might be the 
reason why such deconstructions have not been done 
before. When a layer is dropped on the background canvas 
by lifting the finger, it creates a new single-layer. If a layer 
is dropped on an existing stacked graph it lands right above 
the layer it is currently over. This allows manual sorting 
and grouping of stacked graph, if automatic approaches 
such as sorting do not bring the expected results.  

Navigation through Focus+Context 
The main interaction technique that current stacked graphs 
provide to overcome the scalability problem is zooming & 
panning. Using this navigation for something as uniform as 
a stacked graph can, however, become disorienting. Also, 
losing the context makes it hard to perform comparisons. 
The concept of focus+context displays [9] addresses some 
of the problems of zooming & panning and works well in 
TouchWave through the availability of multiple input 
points. TouchWave bases its navigation on two-finger 
pinching gestures that are by now commonly used for 
scaling objects on multi-touch devices.  

Horizontally pinching a stacked graph in TouchWave 
activates horizontal scaling (Figure 4e). The two vertical 
slices that the two fingers touch at the beginning of the 
gesture can be freely dragged towards the left or the right 
while the ends of the stacked graph stay fixed at the screen 
borders. The rest is distorted accordingly. So if, for 
example, the left vertical slice is dragged towards the left 
side of the screen, all horizontal values left of it are 
compressed, while all positions to its right are expanded. 
Similarly, moving the left vertical slice towards the right 

 
Figure 4: Interaction techniques for stacked graphs in 

TouchWave. 
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Figure 6: Resolving 

collisions between items 
in item layers. 

screen border compresses all values to the right of it, while 
expanding the ones to its left. The ends of a stacked graph 
in TouchWave are pinned to the left and right borders of 
the screen, preserving visibility of all parts at all times even 
though certain regions may be distorted. Thus two fingers 
can quickly adjust the size of a horizontal section while 
keeping the context intact. The view remains distorted until 
it is reset. All other interactions (e.g., changing the stacked 
graph's layout) preserve the distortion. The horizontal 
pinching gesture can be repeatedly applied to focus on even 
smaller horizontal regions.  

Vertically pinching a stacked graph in TouchWave enables 
vertical scaling (Figure 4f). While using the same pinching 
gesture, there is one major difference between vertical and 
horizontal scaling. In horizontal scaling, the context is 
compressed but kept intact while the focus region is 
expanded. Using the same notion for vertical scaling would 
make the height of some layers bigger, while other layers 
would be shrunk. This would introduce a distortion of the 
layers' values and aggravate legibility by distorting the data 
representation. TouchWave therefore scales the vertical 
axis uniformly for vertical pinching to keep the relative 
sizes of the layers intact. As with horizontal scaling, other 
operations still work (changing the layout and reading 
values with the vertical rulers) and the vertical pinching 
gesture can be repeated multiple times to increase the 
scaling. This vertical scaling partially overcomes problems 
with too many layers and interacting with layers that would 
otherwise be too small because of the fat finger problem. 

Both horizontal and vertical scaling introduce distortions to 
the graph that are non-trivial to revert using these 
techniques themselves. TouchWave therefore introduces a 
two-finger horizontal swiping gesture to reset the scales 
(Figure 4g). This removes all horizontal and vertical 
transformations and resets a stacked graph. 

Introducing Hierarchy to TouchWave 
Our set of interaction techniques addresses legibility and 
comparison issues of stacked graphs. However, our 
approach to scalability with focus+context only ameliorates 
some of the scalability issues. Once the number of layers 
crosses a certain threshold it is still difficult to see them all. 

Extracting and re-organizing the layers in TouchWave 
helps with scalability. To take this further, introducing a 
hierarchy allows hiding unnecessary details; layers of 
interest can be expanded into sub-layers while other, less 
interesting layers can hide their sub-layers. Introducing a 
hierarchy also makes the underlying elements in 
TouchWave accessible, such as individual songs or tweets. 

In this section, we present interaction techniques that 
enable conveniently working with hierarchical stacked 
graphs and reorganizing their layers. While BookVoyager 
[25] used an additional on-screen tree control for the 
hierarchical data structure, we build on integrated 
interactions with the stacked graph itself for our techniques. 

Hierarchical and Item-based Stacked Graphs in TouchWave 
Hierarchical stacked graphs contain multiple nested layers 
instead of a list of coequal layers. The underlying data 
structure is therefore a tree, with a single main stacked 
graph acting as root node and containing all other layers, 
each of which may in turn contain sub-layers and so on. At 
the lowest level, simple layers do not contain other layers 
but only values (leaf nodes). A layer's value at a given 
horizontal position is therefore either a specific numerical 
value (for a leaf node) or the sum of all its sub-layers' 
values at that position.  

Previously, stacked graphs contained abstract numerical 
values, even if the underlying data is based on discrete 
items. For example, popular stacked graphs such as music 
listening histories or twitter data are based on atomic units 
(e.g., songs, tweets) but converted to numerical 
representations that allow displaying them in such a graph. 
Hierarchical stacked graphs in TouchWave, however, can 
display the numerical overview data and the atomic units: a 
leaf node can either contain discrete numerical values (e.g., 
stock prices) or atomic items (Figure 5). These items are 
bound to their horizontal position (e.g., their timestamp) 
but can move vertically and also have a range of influence 
depending on how much a single song is "worth." This 
influence is 
expressed 
through a radius 
for the item. 
Items have to be 
rearranged 
vertically to 
prevent overlap, 
which 
establishes a 
height value for 
the layout at that 
horizontal 
position. 
Listening to two 
songs in quick 
succession, for 
example, would lead to an overlap between the items. 
Moving one of them one item radius up prevents the 
overlap and creates a correct height reading (the layer is 
twice as high at that position as at positions with single 
songs, Figure 6). Displaying 
atomic units therefore does not 
introduce distortion to the graph 
and with the right range of 
influence, atomic unit and 
numerical value layers can be 
combined in the same stacked 
graph. 

Data Organization 
Working with hierarchical stacked graphs in TouchWave 
requires adjustments to our existing techniques and the 

 
Figure 5: Hierarchical stacked graphs in 
TouchWave can contain regular layers, 

other stacked graphs or item layers 
consisting of atomic items (songs, tweets). 
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introduction of new ones for managing the information. 
These new techniques allow showing/hiding sublayers, 
panning the background for more space and 
creating/removing copies of layers and sublayers. 

Vertical scaling of a stacked graph now does not only 
adjust its size but also shows its sublayers, once a certain 
amount of scaling is reached (Figure 7a). Similarly, 
shrinking a layer's vertical size through pinching hides 
visible layers and reduces visual clutter. The lowest layers 
not only show single values but can also contain items 
which are represented as small, semi-transparent circles.  

Panning the background (Figure 7b) by dragging it moves 
all stacked graphs in TouchWave up or down. Panning only 
works vertically, as all stacked graphs are fixed to the left 
and right borders of the screen. The background also starts 
to pan while dragging a layer if the dragged layer gets too 
close to the lower or upper screen borders. This allows 
finding an empty spot for dropping the layer without 
having to pan the background first. This gesture is identical 
to triggering a vertical ruler, which means that while 
panning a ruler is displayed as well. We decided to put up 

with the ambiguity instead of introducing a more complex 
gesture, as rulers are not too distracting. 

Extracting a layer from a stacked graph in TouchWave by 
dragging and dropping is still possible and now also affects 
all contained sublayers; removing a layer from its parent 
and dropping it in another stacked graph moves it and all of 
its sublayers to that new position. This allows building new 
stacked graphs on-the-fly, simply by dropping and 
combining layers of interest on the background. 

All layer re-organization changes the original order of a 
stacked graph. Therefore, a two-finger vertical swipe 
allows copying a stacked graph and all its sublayers 
(Figure 7c). In a fluid transition, the newly created copy is 
hurled in the direction of the swipe and stops at the lower 
or upper screen border. The way to delete a copy is to drag 
it to the vertical screen border and let it go (Figure 7d). 

Implementation 
TouchWave was written in Objective-C for iOS 5. We 
deployed TouchWave on a 3rd generation iPad with a 
resolution of 2048 x 1536 pixels on a 9.7 inch display. For 
this configuration, TouchWave supports up to 1,000 
horizontal sampling points and 100 parallel layers at 
interactive frame rates. Reducing the number of sample 
points allows showing more layers and vice versa. The 
actual number of layers can be far greater, as non-visible 
layers do not have any impact on the performance.  

The basic layout algorithms for our Objective-C code were 
derived from Byron and Wattenberg’s 2008 paper [1] and 
their Processing drawing code (available as open-source on 
Github1). Fluid transitions between different states and 
layouts were enabled through the use of Apple's 
CoreAnimation framework, and graphical output was built 
using CoreGraphics. One TouchWave-specific 
implementation issue was creating a suitable layout for 
items within an item layer. A single item is defined by its 
horizontal position posx, its radius r, and a vertical position 
posy. Both posx and r are fixed and only posy can be 
adjusted to prevent overlaps (Figure 6). As we wanted to 
have this layout working on a portable device, we went for 
a non-optimal, but simple solution to solving collisions. 
Our algorithm works as follows. Each round the item with 
the largest radius is picked and dropped on the horizontal 
axis (y=0). Afterwards the item "bubbles up" (y is 
increased in steps whose length determines the accuracy of 
the layout) until it no longer collides with any other 
existing item. The algorithm finishes after placing all items.  

CASE STUDIES 
Stacked graphs are popular for various datasets, so we 
decided to demonstrate the possibilities of TouchWave 
with existing use cases from literature [1]. Two exemplary 
datasets we used are music listening histories and movie 
box office results. 

                                                             
1 https://github.com/leebyron/streamgraph_generator 

 Figure 7: Extended interaction techniques for hierarchical 
stacked graphs in TouchWave. 
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Music Listening Histories 
One of the first widespread examples of a stacked graph is 
Byron's music listening history visualization. Discussions 
about layout approaches and implications for stacked 
graphs were published by Byron and Wattenberg [1]. The 
listening history stacked graph is based on creating a layer 
for each artist in the history. The values for each horizontal 
sampling point for one layer corresponds with the number 
of times a song by that specific artist has been listened to in 
one week. The result represents the changes in musical 
taste over time, but makes it difficult to read clear values 
and is completely static.  

A music listening history in 
TouchWave provides multiple 
ways to interact with the data. 
Figure 8 shows a screenshot of two 
months of listening history data as 
interactive stacked graphs. 
Compared to the original, the data 
is hierarchical, with genres as the 
top level (visible at the top). Each 
genre layer consists of layers for 
artists that are in turn based on 
single songs. When enlarging an 
artist layer far enough, the single 
underlying songs become visible. 
In this example they appear as oval 
shapes, due to the non-uniform 
scaling (middle layer). The two 
most popular genres have been 
extracted from the overarching 
stacked graph and placed below it 
for further analysis (indie and 
electronic as blue and green layer, 
respectively in Figure 8). We work 
with 1,000 horizontal sample points in this example which 
means that each sample corresponds to roughly 80 minutes 
of the two months. The average song length of four minutes 
leads to much overlap between the song items and explains 
the stacked look of the middle layer. Pinching horizontally 
allows focusing on certain periods in time and pinching 
vertically controls the visible level of the hierarchy (genre, 
artists, songs). More detailed exploration is enabled 
through the possibility to deconstruct the stacked graph and 
drag interesting layers out. Additionally, the TouchWave 
version clearly shows the "burstiness" of music listening 
behavior: people listen to several songs before stopping 
again. This is apparent in the visualization as empty spots 
between stacked sets of songs. The free-flowing layout of 
the original Listening History visualization hinted at these 
gaps but brushed over them. The more realistic 
representation in TouchWave leads to worse results for the 
streamgraph layout however (there is no clear horizontal 
axis). Double tapping on the stacked graph allows 
switching to a different layout - ThemeRiver, for example, 

makes sure that all layers above and below the time axis 
form a symmetrical shape. Another aspect that is enabled 
through the hierarchical view is the comparison between 
different genres. It is interesting to see that the listening 
history is dominated by several main genres (indie, 
electronic, alternative (red color)) while other genres are 
more niche with only few songs.  

Movie Box Office Revenues 
Another popular example of a stacked graph is the New 
York Times' 'The Ebb & Flow of Movies' [3], a 
visualization of box office results from 1986 to 2008 (also 

in Byron and Wattenberg [1]). Each film is depicted as one 
layer and the stacked graph shows the development over 
time. Movies typically make the most money in the first 
few weeks and then start to slowly lose drive until they 
disappear from the theatres. The elongated shapes of single 
films fold into an overarching stream whose shape depicts 
the overall box office. The outer stacked graph shows 
seasonal shifts (summer blockbusters). 

We used a similar dataset in TouchWave, showing the box 
office results for 52 films over 80 weeks (Figure 9). We 
applied a similar color coding to Byron and Wattenberg 
where more saturated red colors depict higher grossing 
films [1]. This allows a rough estimate of which films were 
the most successful. Interaction in the web version of the 
New York Times' graph2 allows clicking on a layer to see a 
story synopsis and horizontal panning for navigation. While 
we did not integrate detail information about a movie into 
                                                             
2 http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REV
ENUE_GRAPHIC.html 

Figure 8: Two months of a listening history with genres and single artist layers. 
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the TouchWave version, our two finger horizontal scaling 
enables focusing on specific regions of the graph while 
keeping the context. This allows comparing the current 
section to the top-grossing films of the whole dataset. 
Visually comparing a film's performance to others is 
difficult if they were not released at the same time. Relying 
on the color coding allows comparing the overall gross 
revenue, but even finding the number of weeks that both 
films were in the theaters is difficult. In TouchWave, two 
films can be compared by extracting their layers from the 
stacked graph with two fingers. Even if they were released 
at different times, both layers can be aligned to compare the 
films' shapes and their time at the box office. Focusing on a 
certain couple of weeks is possible through horizontal 
pinching. Additionally, while the color coding only depicts 
a rough estimate for the overall revenue, the vertical rulers 
show the specific box office results for a given week. 
Moving a ruler along the time axis or creating a second one 
with a second finger enables explicit comparisons. Finally, 
resorting the stacked graph at one specific horizontal 
position sorts all film layers by their revenue in that week. 

DISCUSSION AND CONCLUSIONS 
TouchWave is an example of rethinking an existing 
visualization technique to make a suitable, multi-touch 
based interaction. Our design goals can be valuable for 
extending other visualization techniques from the desktop: 

• Support kinetic manipulation: endeavour to respond to 
a person’s physical motions during interaction with 
harmonious interactive animation and responses.   

• Create integrated interactions: look to spatially locate 
one’s fingers and hands in contact with the visual 
representation whenever possible. The notion is to 
develop a hands-on data experience. Also, to leverage 

the full potential of touch interactions, avoid simply 
copying an interface with existing on-screen widgets. 
Instead, minimize widgets and integrate the widgets 
within the visual representation whenever possible. 

• Avoid complex gestures: while the temptation might be 
to replace complex widget and menu systems with 
complex gestures, the challenge is to enable the same 
rich interaction with simple touch interaction. 

• Consider the viability of the interaction set: when 
working towards simple, kinetic, integrated 
interactions it is important to pay attention to the 
creation of unambiguous interactions that where 
possible can be provided in a modeless interface. 

TouchWave’s kinetic interaction with the visualization uses 
fluid, animated transitions [7], to convey a natural, pseudo-
physical feeling for the data. All interactions are integrated 
where touches are placed directly on the visualization. Our 
only additional widget, touch-based vertical rulers are also 
placed in situ. We adhere to simple touch actions, such as 
those that are becoming commonly accepted. Within the 
immediacy of integrated interaction TouchWave supports a 
mode-less approach to working with the data. Every type of 
manipulation and measurement can be triggered at any 
point without locking people into modes. This general 
approach has the advantage of maximizing the usage of 
available screen space for representing the data instead of 
filling some of it with buttons and other widgets. The 
downside is discoverability; figuring out what the system 
supports for the first time may not be easy as functions 
cannot be discovered by trying all the buttons. Suitable help 
mechanisms such as tutorials and in-place help would 
alleviate this problem and once learned, re-discovering 
interactions options might not be too difficult because 
everything is based only on simple touch gestures. 

A main challenge while designing TouchWave was coming 
up with a consistent interaction set: a mapping between 
elementary touches, on-screen visuals and changes to the 
visualization that would lead to consistent and expected 
results. Ad-hoc mappings between touches and visuals 
usually lead to conflicts and ambiguities in the results. We 
found that creating a suitable combination of all these 
factors is a challenging problem in itself. Our approach was 
to first decide on a list of manipulations that we would 
make available. We then made two lists of all available 
visual categories (single layers, stacked graphs, 
background) and all available elementary interactions (tap, 
pinch, etc.). Finally, we determined what manipulation 
would happen for each combination of a visual category 
and an elementary interaction (e.g., background + touch  
vertical ruler and panning). This allowed us to pick suitable 
interactions for each manipulation without (unwanted) 
collisions. This process may prove useful to apply to other 
visualization techniques for multi-touch interactions. 

We addressed the fat finger problem by initially scaling 
stacked graphs in TouchWave to the maximum available 

Figure 9: Section of box office results for movies. A vertical 
ruler allows reading the numerical values. 
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screen size. Also, sublayers in each stacked graph in 
TouchWave are only shown for a certain size of stream. 
Vertical scaling allows increasing the size of a stacked 
graph and its layers to make reaching them easier. Still, for 
some cases, a single layer can just be too small and for 
these cases, having an on-screen widget such as a type of 
virtual magnifying glass [21,22] could help.  

As multi-touch capable devices such as interactive 
tabletops, walls and tablet computers become more and 
more popular the demand for more complex applications 
such as visualization tools for those devices will also rise. 
With TouchWave we have demonstrated that multi-touch 
can provide a more fluid and modeless interaction with data 
that extends the existing technique. For example, 
TouchWave offers an integrated representation for 
hierarchical data in stacked graphs. Enabling interactive 
exploration through multi-touch gestures can ameliorate 
some of the issues arising from legibility, comparisons, and 
scalability. Even though TouchWave was developed for 
tablets, the proposed interaction techniques are applicable 
to all larger multi-touch devices (tabletops, wall displays). 

With touch-capable devices available everywhere the 
formerly fringe case of touch-based visualization will 
continue to become more generally relevant. Other 
visualization techniques can equally benefit from the 
advantages of having a more immediate interaction with the 
data representations. Kinetic manipulation, integrated 
interaction and a consistent set of interactions based on 
simple gestures can improve the overall experience of a 
multi-touch visualization. 

ACKNOWLEDGEMENTS 
This research was supported in part by NSERC, AITF, CFI 
and SurfNet. 

REFERENCES 
1. Byron, L. and Wattenberg, M. Stacked Graphs - Geometry & 

Aesthetics, IEEE TVCG (InfoVis 2008), vol. 14, no. 6, 2008, 
pp. 1245–1252. 

2. Cleveland, W.S. and McGill, R. Graphical Perception: 
Theory, Experimentation, and Application to the Development 
of Graphical Methods, Journal of the American Statistical 
Association, vol. 79, 1984, pp. 531–554. 

3. Cox, A. and Byron, L. The Ebb and Flow of Box Office Sales, 
The New York Times, February 23, 2008. 

4. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Tong, X., 
and Qu, H. TextFlow: Towards Better Understanding of 
Evolving Topics in Text, IEEE TVCG, vol. 17, no. 12, 2011, 
pp. 2412–2421. 

5. Dörk, M., Gruen, D., Williamson, C., and Carpendale, S. A 
Visual Backchannel for Large-Scale Events. IEEE TVCG 
(InfoVis 2010), vol. 16, no. 6, 2010, pp. 1129–1138. 

6. Dwyer, T., Lee, B., Fisher, D., Inkpen, K., Isenberg, P., 
Robertson, G., and North, C. Understanding Multi-touch 
Manipulation for Surface Computing, IEEE TVCG (InfoVis 
2009), vol. 25, no. 19, 2009, pp. 961–968. 

7. Elmqvist, N., Vande Moere, A., Jetter, H.-C., Cernea, D., 
Reiterer, H., and Jankun-Kelly, T.J. Fluid interaction for 

information visualization, Information Visualization, vol. 10, 
2011, pp. 327–340. 

8. Frisch, M., Heydekorn, J., and Dachselt, R. Investigating 
multi-touch and pen gestures for diagram editing on 
interactive surfaces, Proc. ITS 2009, 2009, pp. 149–156. 

9. Furnas, G.W. Generalized fisheye views, Proc. CHI 1986, 
1986, pp. 16–23. 

10. Hangal, S., Lam, H., and Heer, J. Muse: Reviving memories 
using email archives, Proc. UIST 2011, 2011, pp. 75–84. 

11. Havre, S., Hetzler, B., Whitney, P., and Nowell, L. 
Themeriver: visualizing thematic changes in large document 
collections, IEEE TVCG, vol. 8, no. 1, 1999, pp. 9–20. 

12. Heer, J., Viégas, F., and Wattenberg, M. Voyagers and 
voyeurs: supporting asynchronous collaborative information 
visualization, Proc. CHI 2007, 2007, pp. 1029–1038. 

13. Isenberg, P., Hinrichs, U., Hancock, M., and Carpendale, S. 
Digital Tables for Collaborative Information Exploration, 
Tabletops - Horizontal Interactive Displays, C. Müller-
Tomfelde, ed., Springer-Verlag, 2010, pp. 387–405. 

14. Jetter, H.-C., Gerken, J., Zöllner, M., Reiterer, H., and Milic-
Frayling, N. Materializing the Query with Facet-Streams – A 
Hybrid Surface for Collaborative Search on Tabletops, Proc. 
CHI 2011, 2011, pp. 3013–3022. 

15. Lynch, S., Haber, J., Carpendale, S. ColourVis: Exploring 
Colour in Digital Images. Computers & Graphics, vol 36, no. 
6, 2012, pp. 696-707. 

16. Pentland, A. Maximum likelihood estimation: The best PEST, 
Attention, Perception & Psychophysics, vol. 28, no. 4, 1980, 
pp. 377–379. 

17. Perlin, K. and Fox, D. Pad: An Alternative Approach to the 
Computer Interface, Proc. SIGGRAPH 1993, 1993, pp. 57–64. 

18. Schmidt, S., Nacenta, M., Dachselt, R., and Carpendale, S. A 
Set of Multitouch Graph Interaction Techniques, Proc. ITS 
2011, 2011, pp. 113–116. 

19. Spindler, M., Tominski, C., Schumann, H., and Dachselt, R. 
Tangible Views for Information Visualization, Proc. ITS 
2010, 2010, pp. 157–166. 

20. Tufte, E. The Visual Display of Quantitative Information. 
Graphics Press, Cheshire, CT, USA 1983. 

21. Viégas, F., Wattenberg, M., van Ham, F., Kriss, J., and 
McKeon, M. ManyEyes: a Site for Visualization at Internet 
Scale, Proc. InfoVis 2007, 2007, pp. 1121–1128. 

22. Vlaming, L., Collins, C., Hancock, M., Nacenta, M., Isenberg, 
T., Carpendale, S. Integrating 2D mouse emulation with 3D 
manipulation for visualizations on a multi-touch table. Proc. 
ITS 2010. 2012 221-230. 

23. Voida, S., Tobiasz, M., Stromer, J., Isenberg, P., and 
Carpendale, S. Getting Practical with Interactive Tabletop 
Displays: Designing for Dense Data, “Fat Fingers,” Diverse 
Interactions, and Face-to-Face Collaboration, Proc. ITS 2009, 
2009, pp. 109–116. 

24. Wattenberg, M. Baby Names, Visualization, and Social Data 
Analysis, Proc. InfoVis 2005, 2005, pp. 1–7. 

25. Wattenberg, M. and Kriss, J. Designing for Social Data 
Analysis, IEEE TVCG, vol. 12, no. 4, 2006, pp. 549–557. 

26. Yi, J., Kang, Y.A., Stasko, J.T., Jacko, J.A. Toward a Deeper 
Understanding of the Role of Interaction in Information 
Visualization, IEEE TVCG (InfoVis 2007), vol. 13, no. 6, 
2007, pp. 1224–1231. 

 

 

264




