Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

JunctionBox: A Toolkit for Creating Multi-touch Sound
Control Interfaces

Lawrence Fyfe Adam Tindale Sheelagh Carpendale
InnoVis Group Alberta College of InnoVis Group
University of Calgary Art + Design University of Calgary

2500 University Drive NW
Calgary, AB T2N 1N4
Canada

ABSTRACT

JunctionBox is a new software toolkit for creating multi-
touch interfaces for controlling sound and music. More
specifically, the toolkit has special features which make it
easy to create TUIO-based touch interfaces for controlling
sound engines via Open Sound Control. Programmers us-
ing the toolkit have a great deal of freedom to create highly
customized interfaces that work on a variety of hardware.

Keywords
Multi-touch, Open Sound Control, Toolkit, TUIO

1. INTRODUCTION

JunctionBox is a new toolkit for building multi-touch inter-
faces for controlling sound and music that combines exist-
ing libraries while adding important new functionality. But
why is a new multi-touch toolkit needed and what specif-
ically do sound and music applications require in terms of
functionality?

From DIY vision-tracking-based tables to commercially
available tablet computers, multi-touch interfaces are be-
coming a pervasive interaction paradigm. As multi-touch
interfaces become increasingly common, it is important for
programmers to have high quality toolkits for developing
applications that take full advantage of multi-touch hard-
ware. Toolkits can provide the necessary building blocks
that help programmers to focus on creative tasks by remov-
ing the burdens of low-level implementation, particularly
for non-WIMP (window, icon, menu, pointing device) in-
terfaces [2].

One approach to instrument design is to separate inter-
face building from sound engine building (where a sound
engine might be Pd [9], ChucK [12], SuperCollider [8] or a
similar programmable development environment). In this
scenario, information about the state of the interface must
be sent to the sound engine. Since the most flexible way
to handle messaging is to use Open Sound Control (OSC)
[13], any toolkit for developing sound and music control in-
terfaces should have the ability to handle OSC. In addition,
a multi-touch sound control toolkit should provide an easy
way to map actions on multi-touch hardware to OSC mes-
sages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’11, 30 May-1 June 2011, Oslo, Norway.

Copyright remains with the author(s).

1407 14 Avenue NW
Calgary, AB T2N 4R3
Canada

276

2500 University Drive NW
Calgary, AB T2N 1N4
Canada

Because programmers, including the authors, use a va-
riety of hardware and operating systems, toolkits should,
whenever possible, be cross-platform.

The previous points lead to the following basic require-
ments:

1. Support multi-touch

2. Provide OSC messaging

3. Map multi-touch actions to OSC messages
4. Be cross-platform

Many toolkits exist for building multi-touch applications.
The MoMu toolkit [1] maps many input parameters, includ-
ing touch, on mobile phones (and tablets) to sound control.
While MoMu offers a range of sound control possibilities, it
is not cross-platform and so cannot be used by programmers
who do not choose the hardware and software combination
that MoMu requires.

The MT4J toolkit [6] is cross-platform and has multi-
touch capability via TUIO [5]. However, it offers no ability
to map multi-touch actions to messages. Other toolkits such
as PyMT [3] and tuioZones [7] suffer from a similar lack of
message mapping capabilities.

2. JUNCTIONBOX

JunctionBox was designed as a toolkit to meet the require-
ments from Section 1. This section will discuss the incor-
porated libraries and the classes provided by JunctionBox
to programmers. Figure 1 shows the relationship of the
incorporated libraries to JunctionBox.

JunctionBox
(@]

©

TUIO
—

osc

TUIOJava JavaOSC

5

TUIO Tracker Sound Engine
Processing Output
Figure 1: JunctionBox functionality and compo-
nents.



Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

To make JunctionBox cross-platform, it is written en-
tirely in Java. TUIO was chosen for touch tracking since
it has numerous implementations and is decidedly cross-
platform, being based on Open Sound Control (OSC). A
Java-based TUIO library called TUIOJava [4] provides basic
TUIO client functionality. As a TUIO client, JunctionBox
can work with any touch tracking systems that meets the
TUIO specification. For OSC messaging, a slightly modified
version of the JavaOSC [10] library included with TUIOJava
is used. For visual output, JunctionBox uses the Processing
[11] graphics engine.

The JunctionBox toolkit combines the basic components
just described while providing unique functionality via classes
described in the following subsections. Figure 2 shows the
classes provided by JunctionBox, relating them to external
functions like TUIO tracking and OSC messaging.

TUIO
|
Junction
(]
osCc -
Contact Relay ’ ot @
Dispatcher »
Sound Engine
JunctionBox

Figure 2: JunctionBox classes shown as boxes.

2.1 Dispatcher

All TUIO message handling in JunctionBox is done via the
Dispatcher class. The Dispatcher is a TUIO client but
only handles TUIO cursors (touches) and not TUIO ob-
jects (fiducial markers). Since not all hardware supports
fiducial markers, to be more cross-platform, JunctionBox
only handles touch interactions.

The "Box” part of JunctionBox defines the outer limits
in width and height of the interactive touch area. This
is generally mapped to the size of a touch surface like a
video tracking table or a touch tablet. The following line of
code creates a new Dispatcher object with a box width and
height:

Dispatcher d = new Dispatcher(boxWidth, boxHeight,
"127.0.0.1", 6449);

The new Dispatcher code contains two additional argu-
ments: a target [P address and port number. These ar-
guments are inherited by Junctions (described below) for
sending OSC messages to target sound engines.

2.2 Contacts

When TUIO messages are received by the Dispatcher, TUIO
cursors (touches) are converted into Contact objects by the
Dispatcher. The Contact class contains the same set of
data provided via TUIO 1.1 including session ID, X and Y
position, X and Y velocity vectors and acceleration. The
Contacts are then dispatched to any Junction whose area
coincides with the XY position of the TUIO cursor.

2.3 Junctions

The Junction class represents a defined interaction area that
offers a set of actions be mapped to messages. Junctions can
be created via the Dispatcher:

Junction j = d.createJunction(x, y, width,
height);

This allows Junctions to inherit values from the Dispatcher
like box size and the IP address and port numbers of target
sound engines.

A Junction is essentially defined by its area and can take
on two shapes: rectangle and ellipse. That area and its
location inside of the box determines whether a Junction
receives Contacts based on whether touch events occur in-
side or outside of the area. This is shown in Figure 3.

Junction
Width
—
Junction .
I'j] @ I Height Box Height
Outside Inside

f——— Boxwidth ————]

Figure 3: Touches that fall inside or outside of a
Junction’s area.

Junctions can be rotated, scaled and translated based on
the movement of Contacts within a Junction’s area. Rota-
tion and translation can be done with a single touch while
scaling requires two touches. Each of these actions can be
turned on or off at the discretion of the programmer. Addi-
tionally, limits can set set on those actions. For example, a
limit on Y translation can be coupled with the disabling of
X translation to create something like a vertical slider. The
following lines of code do this for a Junction j:

j.translateX = false;
j.limitTranslateY (100, 500);

The last line would limit translation of the Junction to a
minimum of Y = 100 and a maximum of Y = 500. Note that
these values come from the box size in pixels established
when the Dispatcher is created which in turn is related to
the canvas size of the Processing sketch containing the visual
output code.

Junctions have no inherent visual output but are associ-
ated with rectangular and elliptical shapes in Processing.
To draw a rectangle in Processing that inherits values from
a Junction j:

rect(j.getCenterX(), j.getCenterY(), j.getWidth(),
j.getHeight());

When the rectangle is drawn in Processing, it will take
the current values from the Junction j, so that a translation
action will result in the rectangle moving across the screen
as the translation occurs. Because Junctions move based on
the location of their centers, rectangles and ellipses drawn
in Processing must use the center mode to work correctly.

An unlimited number of Junctions can be defined with
the Junctions being stackable. When multiple Junctions
are created, the last one created receives Contacts where
two or more overlap within the box.

A Junction can be added to another Junction. When this
is done, the added Junction inherits actions performed on
the parent Junction including rotation, scaling and transla-
tion.

2.4 Actions

Actions are a means to create mappings between touches
and messages for a sound engine. To enable this, the Action



Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

class contains constants whose names correspond to actions
built into Junctions.

To add a mapping between an Action and an OSC mes-
sage requires just one line of code:

j.addMessage(Action.TRANSLATE_Y, "/osc/message");

Whenever the center Y value of the Junction j changes,
that value will be sent as a float argument to ”/osc/message”.
If the center Y value of the Junction j changes to 42, the
message will be:

/osc/message,f 42

For a given Junction, any combination of Actions can
be used from none to all. Figure 4 shows some example

Actions.
QROTATE
’ Sso
L
7 oy SCALE
// TRANSLATE_Y ~~_
/ AN
1/ S~
1 s P
K TRANSLATE X | /
{ : g
-~ ; ,
SN H /
~ /
S : /
~o ’
— -
' ~o ’
~ /
~ s
Figure 4: Some Junction actions that can be

mapped to messages.

The following actions are available:

e ACTIVE

If a Junction receives one initial Contact, it will send
a message with a single integer value of 1. Messages
are only sent when the active state of the Junction
changes. So when all contacts have been removed from
the Junction, it will send a message with an integer
value of 0.

¢ TOGGLE

When a Junction receives an initial Contact, it can
send a message with its current toggle state. The first
Contact sets the toggle state to 1 and triggers a mes-
sage with that integer value. Any subsequent Contact
after the first Contact is removed will trigger a change
to the 0 toggle state and that value will be sent in an
integer message. This action allows for the creation of
simple touch switches.

e ROTATE

Junction objects can be rotated a full 360 degrees (or
less depending on custom limits). Each time the angle
of the Junction changes, a float message will be sent
out with the current angle normalized from 0 to 1
where 1 represents 360 degrees or 2 Pi radians.

e SCALE

A two-Contact scaling gesture (where one Contact is
held while the other is moved) when applied to a Junc-
tion will trigger a calculation of the ratio between
the previous area and the current area after scaling.

278

Whenever the scale value changes, a float message is
sent with the normalized (0-1) value of the ratio. The
normalization works because there is an absolute min-
imum value for both width and height of a Junction
of 1 pixel. The maximum values for width and height
of a Junction are the width and height of the box set
in the creation of the Dispatcher.

e TRANSLATE X

Moving a Junction along the X axis (as defined in Pro-
cessing) will trigger a float message with the current
value of the center X point of the Junction. Messages
are only sent when the center moves.

e TRANSLATE.Y

As with X translation, moving a Junction along the
Y axis can trigger a similar float message with the
current center Y value of the Junction. Messages are
only sent when the center moves.

e TRANSLATE_XY

Like the above translate actions but with both float
values of center X and center Y sent in the same mes-
sage.

e CONTACT_COUNT

Whenever the number of Contacts changes, an integer
message with the current Contact count is sent.

e ROTATION_COUNT

Each time a Junction is rotated more than 360 de-
grees, the current value of the angle is reset to between
0 and 360 degrees. When this is done, a counter for
the number of rotations is incremented. This works
for clockwise rotations. For counter-clockwise rota-
tions, the angle is negative and the rotation counter
is decremented. Any change in the rotation count will
trigger an integer message with the current count.

There is no inherent mapping between the chosen actions
and the messages sent other than the value associated with
the action. While the arguments and their types are fixed,
the messages themselves can be changed to any that suit
the programmer.

2.5 Relays

The Relay class offers full-featured access to the OSC func-
tionality available in the JavaOSC toolkit with some ad-
ditional features. Junctions use Relays internally to send
messages that are mapped to actions. Outside of Junctions,
Relays are designed for occasions when more complicated
OSC messaging is required.

A Relay object is created with a target IP address and
port number. Then any number of messages can be associ-
ated with that target and referenced for later sending.

When using Relays, both the address and the argument
number and types can be controlled explicitly. Any action
that a Junction can perform can be emulated by getting the
current state of Junctions and applying those values directly
to messages via Relays.

For example, the following code will create a Relay that
sends messages to localhost. Once the message is added to
the Relay, the values obtained from a Junction j are added
to the message and the message is sent containing the three
arguments.

Relay r = new Relay(127.0.0.1, 6449);

r.addMessage("/relay/example") ;



Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

r.addInteger("/relay/example", j.getToggle());
r.addFloat("/relay/example", j.getAngle());
r.addFloat("/relay/example", j.getCenterX());
r.send("/relay/example") ;

Relays can hold an unlimited number of messages for a
given target. Each message can have its arguments set by
referencing the message address pattern String as shown in
the above example. Additionally, arguments can be added
to all messages contained in a Relay with lines like the fol-
lowing that add a float value of 0.5 to all messages.

relay.addFloat(0.5);
All messages contained in a Relay can be sent by using:
relay.send();

Also, a list of message strings can be provided to send
multiple specific messages.

relay.send(messageStrings[]);

Using Relays from within Junctions is an easy means of
getting multi-touch actions to map to messages. By making
the Relay class itself available to programmers, a new set of
more complex options becomes available, leaving decisions
about messaging and mapping up to the programmer de-
signing the interface without interference from the design
of the JunctionBox toolkit.

2.6 Simulator

The Simulator was created for situations where multi-touch
hardware is not available and simulates TUIO tracking via
the mouse. When used in Processing, the Simulator takes
mouse data: whether a mouse button is currently pressed,
which button is being pressed, the current X-Y position and
the previous X-Y position. That data is then converted to
TUIO messages that are received by the Dispatcher object
as described above. For now, the Simulator can only simu-
late a single touch via the mouse.

3. SUMMARY

The JunctionBox toolkit both combines existing libraries for
touch tracking and messaging with new features not offered
by any existing toolkit. The most significant feature is the
ability to easily map multi-touch actions to sound and music
control messages.

4. ACKNOWLEDGEMENTS

We would like to thank the Alberta Association of Colleges
and Technical Institutes, the Canada Council for the Arts,
the Natural Science and Engineering Research Council of
Canada, the Alberta Informatics Circle of Research Ex-
cellence, SMART Technologies, Alberta Ingenuity, and the
Canadian Foundation for Innovation for research support.
We would also like to thank the members of the Interactions
Lab at the University of Calgary for feedback and support
during the development of this project.

5. REFERENCES
[1] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:
A mobile music toolkit. In Proceedings of the 2010
Conference on New Interfaces for Musical Ezpression,
pages 174-177, 2010.

279

[2] S. Greenberg. Promoting creative design through
toolkits. In Proceedings of the Latin-American
Conference on Human-Computer Interaction,
CLIHC’09, pages 92-93, November 9-11 2009.

T. E. Hansen, J. P. Hourcade, M. Virbel, S. Patali,
and T. Serra. Pymt: a post-wimp multi-touch user
interface toolkit. In Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces, ITS ’09, pages 1724, New York, NY, USA,
2009. ACM.

M. Kaltenbrunner. Tuiojava.
http://www.tuio.org/?java, January 2011.

M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. Tuio - a protocol for table-top tangible
user interfaces. In Proceedings of the 6th International
Workshop on Gesture in Human-Computer
Interaction and Simulation, GW 2005, 2005.

U. Laufs, C. Ruff, and J. Zibuschka. Mt4j - a
cross-platform multi-touch development. In
Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS 10,
New York, NY, USA, 2010. ACM.

J. Lyst. tuiozones. http://jlyst.com/tz/, January
2011.

J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61-68, 2002.

M. Puckette. Pure data: another integrated computer
music environment. In Proceedings of the
International Computer Music Conference, pages
37-41, 1996.

C. Ramakrishnan. Javaosc.
http://www.illposed.com/software/javaoscdoc/,
January 2011.

C. Reas and B. Fry. Processing: programming for the
media arts. AI & Society, 20(4):526-538, 2006.

G. Wang and P. Cook. Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia. In Proceedings of the 12th annual ACM
international conference on Multimedia,
MULTIMEDIA ’04, pages 812-815, New York, NY,
USA, 2004. ACM.

M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(3):193-200, 2005.

(4]

[5]

(6]

(9]

(10]

(11]

(12]

(13]





