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Abstract

This thesis describes my research into the development of a unit interaction model for

multi-touch interactions in a musical context. To create this model of unit interactions, I

first determined the most fundamental aspects of multi-touch that offer interaction build-

ing blocks that can be combined in a variety of ways, allowing for a high degree of freedom

to design and build musical interfaces. This unit interaction model is implemented via

JunctionBox, a toolkit for mapping multi-touch input to control of music.

With JunctionBox, composers, musicians, and programmers can build interfaces that

combine multi-touch and mapping for use in a wide variety of musical contexts. As a

toolkit, JunctionBox features multi-touch input tracking, mapping of input to output

via messaging, output for graphical feedback, and flexible networking options. All of

these features are designed such that they can be used in any combination, allowing for

tremendous creative freedom in building interfaces.

To put JunctionBox in a context, it is compared to other toolkits to examine its in-

teraction features in comparison to other tools. The comparisons show that JunctionBox

provides a richer set of interaction options than the other tools. By providing a rich set of

interactions, JunctionBox opens the door to greater creativity in designing multi-touch

musical interfaces.

JunctionBox is also explored via practice-based research. During my research, I have

created and performed with a variety of interfaces that I built with JunctionBox. These

interfaces range from live performance interfaces to controls for an interactive installa-

tion. The variety of interfaces shows the flexibility inherent in the design of JunctionBox.

In addition, these interfaces serve to show the creative interface possibilities that Junc-

tionBox affords.

Finally, research into the design and implementation of JunctionBox led to the de-
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velopment of a series of design principles that can be applied to toolkits that aspire to

balance features and creative freedom. The design principles are variations on tolerance.

Tolerance for allowing developers to use their own creativity in designing and building

musical interfaces.
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Chapter 1

Introduction

I wanted to give the musician a great deal of power and generality in making

the musical sounds, but at the same time I wanted as simple a program as

possible; I wanted the complexity of the program to vary with the complexity

of the musician’s desires. If the musician wanted to do something simple, he

or she shouldn’t have to do very much in order to achieve it. If the musician

wanted something very elaborate there was the option of working harder to

do the elaborate thing. The only answer I could see was not to make the

instruments myself – not to impose my taste and ideas about instruments on

the musicians – but rather to make a set of fairly universal building blocks

and give the musician both the task and the freedom to put these together into

his or her instruments.

–Max Mathews [97]

Music-making is one of humanity’s most ubiquitous and creative activities and through-

out human history, people have used a variety of tools for creating music. Each new tool,

from the earliest bone flutes to electric guitars, represents a step in the development of

music technology. Humanity’s latest tool, the computer, is a relatively recent addition

in the development of music technology. As with earlier tools, the computer has been

used, from its inception, to make music. In the history of using computers for music, the

way that people interact with computers has changed over time as new forms of human

input are introduced. Multi-touch input is a recent and nearly ubiquitous way for hu-

mans to interact with computers of different kinds including phones, tablets, monitors,
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and tables. Networking is another ubiquitous aspect of computers that allows for inter-

actions between computers. With so many multi-touch, networked computers around,

it is natural to harness their capabilities for music-making. A thorough investigation

of multi-touch and networking in a musical context can unlock their combined musical

potential.

In the quote that opens this chapter, Max Mathews was referring to his MUSIC

III software created in 1960. MUSIC III is significant because it introduced the unit

generators model in which basic signal processing units in digital audio like sine waves,

envelopes, and filters that are very simple on their own but can create very complex

sounds when used in combination. The unit generator model proved to be very successful

and its usefulness continues to the present day in the form of countless software projects

that continue to use the model. Using the success of the unit generator model as a

starting point, my research draws from the foundational notion of universal building

blocks and applies it to multi-touch interactions in order to enable a wide range of creative

possibilities for building musical interfaces. The research question that I address in this

thesis is how to apply the universal building blocks model to multi-touch interactions and

networking in the form of a software toolkit.

This chapter begins with some brief background on interacting with computers to

make music (1.1). This background sets up the motivation behind my research (1.2) that

is narrowed by a description of the scope of the research (1.3). This is followed by the

central question of my research (1.4) setting the stage for a description of the challenges

I faced during my research (1.5). This leads to a description of the methodology I used

to engage in the research (1.6) followed by a list of the contributions from this research

(1.7). This chapter ends with an overview of the structure of this thesis (1.8).
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Figure 1.1: The author of this thesis playing a multi-touch, networked musical instrument
of his own design.

1.1 Interactive Computer Music

As a form of human-computer interaction, multi-touch is not only for music but is a

generalized kind of interaction that can be used in a variety of contexts on a variety

of computing systems. Throughout its history, computer music has taken new ways to

interact with computers, from keyboards and mice to multi-touch, and used them in a

musical context. The history of computer music began with interactions on generalized

computing systems. When Max Mathews created the first audio synthesis language,

MUSIC, in 1957, he did it on an IBM 704 computer that was not designed and built for

creating music [97]. Figure 1.2 shows an IBM 704 in action [19]. MUSIC set a precedent

for a thread of computer music research that took general-purpose computers like the

IBM 704 (or current multi-touch devices) and used them for making music.

In order to interact with the 704 and similar early computing systems, composers

and musicians would program their pieces using punch cards. This process was not

real-time in that a composer could not get an immediate result. Instead the entire

piece could only be heard once all of it was programmed and played back. This lack
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of real-time feedback meant that these early computers were not performable as live

musical instruments. Increased computing power has led to the creation of programming

environments for music [72, 89, 117] that have brought computer music from the days of

punch cards to the possibility of real-time interactions. The ability to handle real-time

interactions has allowed computer-based music systems to go beyond compositions to

something performable. Multi-touch devices appeared after the development of real-time

computer music and so they are well positioned to become a part of performable musical

systems.

Figure 1.2: The IBM 704 computer: not built specifically for making music.

Another development in computing, aside from real-time interaction, is the ability for

computers to interact with each other via networking. Just as computers were becoming
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more widely available, the ability to connect them with wires (and eventually wireless)

became easier. Groups like the League of Automatic Music Composers (that later be-

came the Hub) [11] began, in the late 1970s, to use small relatively inexpensive computers

networked together to create music as a group. With the possibilities afforded by net-

working, the notion of an instrument expanded to be more like a musical system in which

individual computers and musicians could be considered parts of a single instrument.

1.2 Motivation

When a new human-computer interaction, like multi-touch, is developed or when an

interaction begins to become ubiquitous, it is natural that the new technology will be

used in a musical context. From phones to tablets to larger devices like tables and walls,

various kinds of multi-touch-enabled hardware are readily available as potential interfaces

for controlling music. The process of taking multi-touch interactions and using them for

various kinds of musical control is known in computer music as mapping. The following

quote from Hunt et al [49] explains the importance of mapping in electronic instrument

design (in contrast with traditional acoustic instruments):

The interface is usually a completely separate piece of equipment from the

sound source. This means that the relationship between them has to be defined.

The art of connecting these two, traditionally inseparable, components of a

real-time musical system (an art known as mapping) is not trivial.

In the preceding quote, the authors state that the interface is “usually a separate piece

of equipment”. However, regardless of whether the human interface is a separate piece

of equipment, it is the case with computer-based instruments that they cannot operate

without some sort of mapping. Computers are calculating and logic devices that can turn

human (analog) input into numbers. They can then output numbers that are converted
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to analog signals destined for speakers. When computers are involved, mapping is a

requirement, not something that is “usually necessary”. This being the case, it is vitally

important to think about the necessity and the flexibility inherent in mapping when

designing toolkits for building multi-touch instruments.

By supporting computer networking, a toolkit can offer an even greater degree of

flexibility. Networks connect computers together, allowing musical systems to go beyond

a single computer to two or even more computers. Multiple computers can be connected

as separate musical instruments or they can be connected to form a single musical in-

strument. With networking, computers can be connected in local networks (generally

in the same room) or they can be connected over the internet. Regardless of whether

instruments span a local network or the internet, musicians should be able to interact

with computers connected over the network just as easily as they can with computers in

front of them.

Multi-touch hardware requires software in one of two broad categories: 1) applications

for some specific purpose and 2) libraries (or toolkits) for building applications. Appli-

cations generally make it easy to accomplish their specified task but, at the same time,

their specificity limits their flexibility. On the other hand, software libraries require more

effort, via programming, but they have tremendous flexibility. My research is designing

and building software toolkits because I believe that programming, more than any ap-

plication, can leverage the flexibility of software to allow for creative freedom while, at

the same time, providing important functionality. The motivation for my research is to

enable creative freedom by building a toolkit that combines multi-touch and networked

music while at the same time allowing musicians to build the interface that suits their

own creative whims.
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1.3 Scope and Audience

My research is at the intersection of three areas of computer music research: 1) multi-

touch music interfaces, 2) networked music, and 3) software toolkits. Figure 1.3 shows

the intersection of the three areas in graphical form.

Figure 1.3: The scope of the research presented in this thesis.

The scope establishes the audience for my research: computer music researchers and

instrument builders who want to program their own multi-touch musical interfaces. This

audience inspires my research because I believe that putting programming tools into the

hands of creative people will enable them to build the interfaces that they imagine rather

than imagining what they can do with existing interfaces.

1.4 Research Question

To enable builders to program the interfaces that they imagine, I based my research

on the foundation of Max Mathews’ model of universal building blocks for programming

audio. Just as Mathews intended his universal building blocks to enable freedom for

builders to create audio programs from the simple to the complex, my goal is to enable
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creativity and freedom for building multi-touch interfaces. This goal leads to the central

question for my research:

CanMaxMathews’ universal building block model for programming

audio be applied to programming multi-touch, networked interac-

tions?

1.5 Challenges

To answer the research question of applying the universal building block model to multi-

touch interactions, I needed to address a number of challenges. During the course of

answering this research question, I addressed the following challenges:

1. Find the universal building blocks inherent in multi-touch input and

create a unit interaction model

Multi-touch devices afford a variety of interaction possibilities. The challenge for my

research with these devices was to identify the most basic multi-touch interactions

and to use these to create a unit interaction model that represents a set of universal

building blocks that can be used in any combination to create a range of musical

interfaces from the simple to the complex. Since my research is investigating multi-

touch in a musical context, each of the interaction building blocks needs to be easily

mappable to musical control. This means that the unit interactions are not just

basic multi-touch interactions but are also a set of mappable unit interactions.

2. Show that the unit interaction model has been successfully applied by

building a toolkit that reifies the model

The unit interaction model can be reified by building a software toolkit based on

the model, allowing the success of the model to be evaluated. In order to evaluate
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the success of the unit interaction model, I take two approaches.

(a) If the interactions in the unit interaction model have been successfully identi-

fied as unit (fundamental) interactions, it should be possible to compare my

toolkit to existing mapping tools to determine whether my toolkit affords more

mappable interactions.

(b) A software toolkit can show its value by being useful in real situations like

building interfaces and using them in performance situations. If the unit

interaction model has been successfully applied, the toolkit based on the model

should be usable for actual performances.

3. Distill the research into a set of design principles

The process of applying the unit interaction model in the form of a software toolkit

should itself yield some lessons for how to apply the notion of universal building

blocks to multi-touch mapping toolkits.

1.6 Methodology

The methodology employed in this thesis is a form of practice-based research inspired by

Sullivan [106] and his call for emphasizing the possible in the act of creating:

If an agreed goal of research is the creation of new knowledge, then it should

be agreed that this can be achieved by following different, yet complementary

pathways. What is common is the attention given to systematic and rigorous

inquiry, yet in a way that emphasizes what is possible, for to create and cri-

tique is a research act that is very well suited to arts practitioners, be they

artists, teachers or students.
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Proceeding with Sullivan as an inspiration, I applied his methodology in a way that

suits my research interests and musical practice. The methodology has five components:

study, building, analysis, performance and principles. There is a clear pathway which

starts at study, moves to building, branches into analysis and performance, and ends

with principles. Analysis and performance represent Sullivan’s complementary pathways

as shown in Figure 1.4. Both analysis and performance lead to principles that represent

what Sullivan calls “the creation of new knowledge”.

Figure 1.4: The five-component methodology used for my research.

1. Study

To understand the state of multi-touch, networked musical instruments and soft-

ware toolkits, I studied the literature to find relevant related work. By studying

related multi-touch instruments, I was able to understand the kinds of interactions

that they supported. Networked instruments showed the importance of allowing

for a variety of networking configurations. Finally, in looking at related software

toolkits, I was able to determine what interaction features they did and did not

have. In particular, I selected three closely related tools as a basis for determining

the feature requirements for my research.

2. Building

Having understood the related work, I designed and programed a software toolkit

for creating multi-touch, networked musical interfaces. The development process
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for the software involved programming and testing features to ensure that they met

the feature requirements as determined in the Study component.

3. Analysis

To determine whether the toolkit offered more interactions than closely related tools

selected in the Study component, I employed a comparative analysis to demonstrate

that the toolkit offers a greater number of both low-level interactions and combi-

nations of interactions, showing that the toolkit is a superset of the related tools.

4. Performance

To show that the software is usable for real musical performances, I designed and

built a series of musical interfaces and used those interfaces in my own perfor-

mances. For each interface, I started with concepts for both the graphical part

of the interface and the interaction part. Once I had established my concept, I

programmed the interfaces with the software. The performance scenarios for these

interfaces varied from demos to live performances to installations.

5. Principles

Based on the comparative analysis and musical performances, I derived a set of

design principles for building multi-touch, networked software toolkits that have

a high degree of creative flexibility. The process of deriving the design principles

distilled the implementation details down into usable guidelines for building multi-

touch, networked creative coding toolkits. Design principles are important because,

once distilled from implementation and use, they can outlive changes in technology

in their usefulness as a contribution to knowledge.
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1.7 Contributions

By applying the methodology described in Section 1.6, I met the challenges in Section 1.5,

leading to a number of research contributions.

1. A unit interaction model for multi-touch

By examining the literature on multi-touch instruments past and present and by

using various multi-touch mapping tools, I developed a model for unit interactions

that can be used in a variety of combinations. This model represents a set of

universal building blocks for multi-touch interactions. Each of these interactions is

in itself basic but they can be combined to create many kinds of interface controls,

enabling a range of interface styles from the simple to the complex.

2. A toolkit that reifies the unit interaction model

The unit interaction model was reified by building the JunctionBox toolkit, de-

scribed in Chapter 4. All of the multi-touch unit interactions implemented in

JunctionBox are mappable to musical control and fully networked. The process of

developing mappable interactions in JunctionBox represents the application of the

model to something that is both comparable to other tools and usable in musical

performances. The full set of mappable interactions in the toolkit is described in

detail in Chapter 4, Section 4.3. To show that my unit interaction model was suc-

cessfully applied, I used the following evaluation approaches to determine whether

I met my goals of identifying unit interactions and then making them usable for

musical performances.

(a) In order to evaluate the success of JunctionBox as a set of unit interactions,

I compared it to similar mapping tools. The success of the unit interaction
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model was measured by comparing the absolute number of mappable inter-

actions offered by JunctionBox with the number offered by the tools under

comparison. The comparisons were based strictly on the number of mappable

interactions and not on the full feature set in JunctionBox or the other map-

ping tools since their non-interactions features do not overlap. The analysis

showed that my unit interaction model was able to identify more mappable

interactions than the other tools. Details of the analysis are in Chapter 5.

(b) To show the viability of my model, I built a series of interfaces with Junc-

tionBox and used them in musical performances. These interfaces show my

interest in using the toolkit for my own but they also serve as examples of

what the toolkit can accomplish. At the same time, my work creating inter-

faces with the toolkit shows its ability to perform in real musical situations.

My interfaces and performances are described in Chapter 6.

Beyond interaction mapping, the toolkit has a number of what I consider special

features include saving the state of interface controls after interactions have changed

them, having inheritable interactions between different interface controls, recording

interactions for later playback, and managing connections and messages among

networked computers. The special features strengthen the overall contribution

offered by the toolkit since they are not offered by similar tools. These special

features are detailed in Chapter 4, Section 4.4.

3. A set of design principles

The final contribution is a set of design principles that I derived from working on

and with the toolkit. The design principles represent the lessons that I learned in

building a toolkit that gave me the freedom to design the interfaces according to my

own creative whims. Their significance lies in there use as guidelines for building
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creative coding toolkits that are independent of implementation. This contribution

is described in Chapter 7.

1.8 Overview

The following are chapter descriptions for the rest of this thesis:

Chapter 2: Musical Context

Chapter 2 provides musical context for the work presented in this thesis. First,

computers as instruments are placed in the context of advancing music technology

including some background on why computers are significant as music technology

and some history of relevant instruments and their designers (Section 2.1). This is

followed by a discussion of experimental music performance with descriptions of the

work of music groups that embrace both technological and musical experimentation.

(Section 2.2).

Chapter 3: Related Work

Chapter 3 includes work related to my research and is broken into three sections

according to the scope of the research. See Section 1.3 in this chapter for details

about the scope. The first section describes related work in multi-touch instru-

ments (Section 3.1). The second section describes related networked instruments

(Section 3.2). The third section describes related software toolkits (Section 3.3).

Chapter 4: JunctionBox

Chapter 4 describes the JunctionBox toolkit in detail and is broken into three

sections. The first section presents the fundamentals of how JunctionBox enables

multi-touch interaction mapping and networking (Section 4.2). The second section

presents a full list of mappable multi-touch interactions (Section 4.3). The third
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and last section describes the special features built into JunctionBox that go beyond

multi-touch interactions (Section 4.4).

Chapter 5: Comparative Analysis

Chapter 5 is a comparative analysis of the mappable multi-touch interaction op-

tions offered by Junction relative to similar mapping tools. The chapter is broken

into three sections, one for each similar tool. The fist section compares Control

(Section 5.1). The second section compares TouchOSC (Section 5.2). The third

section compares Lemur (Section 5.3).

Chapter 6: Interfaces and Performances

Chapter 6 describes a series of music performance interfaces that I built using the

JunctionBox toolkit. Each section features a different interface that was used in one

or more performance situations. The performance situations are described along

with the rationale for the visual design and the mappable multi-touch interactions

afforded by each interface.

Chapter 7: Design Principles

Chapter 7 examines the design principles that emerged during my research. The

principles are described in detail along with explanations for their derivation and

their application to other toolkits.

Chapter 8: Conclusions

Finally, Chapter 8 summarizes the research contributions (Section 8.1) and de-

scribes future work in extending the research presented in this thesis (Section 8.2).

The thesis ends with some closing remarks (Section 8.3) and a short coda (Sec-

tion 8.4).
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Chapter 2

Musical Context

Composers are now able, as never before, to satisfy the dictates of that inner

ear of the imagination. They are also lucky so far in not being hampered

by aesthetic codification–at least not yet! But I am afraid it will not be long

before some musical mortician begins embalming electronic music in rules.

–Edgard Varèse [114]

This chapter is included to set my research in musical context. In this chapter, I

provide a musical context for my research in two ways: 1) by placing computers as in-

struments into a larger context of advancing music technology and 2) with an overview

of ensembles that experiment with both music and technology. These two contexts rep-

resent the two threads of my research as a developer of new musical systems and as a

performer and improviser. The first section (2.1) provides relevant context on advancing

music technology and the second section (2.2) discusses the development of experimental

performance practices that combine musical improvisation with experiments in music

technology. The last section (2.3) provides a short summary.

Max Mathews wrote the first digital computer music program in 1957. As computer

music was getting started with Max’s program, ideas about how music can be composed

and performed were changing, providing an evolving artistic context for the development

of computer music. Throughout the 1950s, composers like John Cage, David Tudor,

Morton Feldman, Earle Brown, and Christian Wolff, among others, were challenging

both the compositional process and performance practice in what Michael Nyman calls

“experimental music” [79]. At the same time that experimental music was developing,
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the notion of what could be considered a musical sound was changing, especially with

the development of acousmatic music [102] in which any sound could be used to create a

musical work. In 1948, Pierre Schaeffer created his famous acousmatic piece, Étude aux

chemins de fer, using nothing but phonograph recordings of trains as his sound materials.

As Edgard Varèse predicted in as far back as 1936 [114], the very definition of what can

be considered music had been liberated from earlier, more restrictive definitions. This

liberation provides a context in which the very definition of music is not entirely clear.

The history of computer music has been a parallel processes of experimental devel-

opment. Instead of trying to redefine the musical process with traditional instruments,

computer music has taken new developments in computing technology and used them

for musical purposes. Each new computer technology, from networking to various forms

of human input (keyboard, mouse, multi-touch to name a few) has redefined the con-

text in which computer music is made. My research exists in this experimental musical

context: one in which everything from the processes of composition to the use of sound

materials to the nature of performance itself are not so clearly defined. At the same

time, my research exists in the context of every-changing ways for people to interact with

computers.

2.1 Advancing Music Technology

Technology has always played an important role in making music. In this age of ubiqui-

tous computers, discourse about technology tends to focus entirely on computers. How-

ever, aside from the human voice, all musical instruments from drums, to flutes, to violins

are all examples of music technology. Any instrument, whether a computer is involved

or not, is just another form of music technology. Figure 2.1 shows one of the earliest

known pieces of music technology: a set of bone flutes found in China. It is not difficult
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to imagine that these bone flutes were not the first created, but that they are a result

of research and experimentation. The same can be said of any subsequent instrument.

A full history of the development of music technology is beyond the scope of this thesis.

However, it is important to point out that music technology has a long history and that

all musical instruments, including computers, are part of that history.

Figure 2.1: Examples of music technology. These playable bone flutes are between 7000
and 9000 years old. [9]

2.1.1 Computer(s) as Instrument(s)

By thinking about all musical instruments as a form of music technology, it is easy

to see that computers are just the latest iteration in the long human tradition of using

technology of any kind to make music. However, there is an important difference between

computers as instruments compared to older acoustic instruments. The fact that acoustic

instruments have been used by humans for making music for far longer than computers

means that there are whole sets of traditions and a considerable amount of history that

informs how acoustic instruments are used. Compared to the thousands of years that

have gone into the development of acoustic instruments, computer-based instruments

are still relatively new. Coupled with a rapid evolution in how humans interact with
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computers, the computer as instrument is still in a relatively experimental stage. In

essence, the potential for computers as instruments is still being explored.

Max Mathews understood the potential for computers as musical instruments when

he made the following assertion in 1963:

There are no theoretical limitations to the performance of the computer as a

source of musical sounds, in contrast to the performance of ordinary instru-

ments. [71]

This lack of limitations means that a computer can generate an almost unlimited

number of sounds. This also means that a computer can also act as multiple instruments

at the same time. With advances in computer networking, multiple computers can be

combined into a single instrument. This range of possibilities, from the ability to make

any sound to the ability to combine them in many ways, makes computers unique in the

history of music technology.

Beyond sounds and networking, computers have other unique properties. Computer-

based instruments have, by their nature, an inherent energy as long as they have a

power source. In contrast, acoustic instruments are human powered in that they only

generate sound when the performer is putting energy into them. In addition to having

a performative energy, computers are also programmable, giving them the capability to

be autonomous in terms of both energy and decision making. That is:

energy + programmability = autonomy

The potential for autonomy gives computers a range of performative possibilities. At

one extreme, a computer can completely take over the role of performer. At another, a

computer can be programmed to only generate sound when a human performer initiates

a musical gesture. In between these extremes lies interesting opportunities to have a

balance between the human as performer and the computer as performer.
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The notion of autonomy has given rise to a kind of music that is unique to comput-

ers. Algorithmic music is a kind of music in which the computer makes decisions about

musical output in an autonomous or semi-autonomous fashion. In fact, there is a spec-

trum of algorithmic music from entirely autonomous to what the composer Curtis Roads

calls “automation with interaction” [96]. In particular, Roads defines a specific kind of

interaction with algorithms in live performances as:

...intense real-time interaction experienced in working with a performance

system onstage, where the emphasis is on controlling an ongoing musical

process and there is no time for editing.

In this scenario, the person and the computer work together to produce the musical

output in real-time as opposed to developing music in a studio with editing. When an

equal balance is struck between human and computer, the human performer becomes

more like a conductor, giving instructions to the computer that change the sound during

performance.

On the subject of human control versus computer autonomy, Nilsson [76] makes a

distinction between playing instruments and controlling them. Nilsson’s distinction can

be understood as the difference between acoustic instruments which have a strong action-

sound link and electronic and computer instruments that afford different linkages between

action and sound. Acoustic instruments have a strong action-sound link because the

gestures used by a performer are in direct proportion to the sound result of the gesture.

With electronic or computer-based instruments, this linkage between gesture and sound

is possible but not strictly necessary. For situations in which the action-sound linkage is

weak, Nilsson uses the term control to refer to this kind of interaction between human

performer and computer. My own performance practice involves me controlling semi-

autonomous musical processes. The interfaces that I discuss in Chapter 6 are controllers
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that allow me to conduct a musical performer. In my case, the performer is a computer.

Figure 2.2: Léon Theremin playing his eponymously-named instrument.

2.1.2 Instrument Designers

With so many changes in technology, particularly with the rapid change in computing

interfaces, it is the role of the instrument designer to take new technologies and to

find ways to design them to make music. The increasingly widespread availability of

electricity in the early 20th century gave rise to a new class of instruments with new

kinds of sounds. Léon Theremin patented his eponymously-named theremin instrument

in 1928. The theremin was one of the first purely electronic instruments and it created

a unique sound that no acoustic instrument could make. Another electronic instrument,

the ondes Martenot, invented by Maurice Martenot in 1928, featured similar electronic

sounds with a piano-like keyboard. Hugh le Caine’s electronic sackbut, from 1948, was

another keyboard-based electronic instrument with a unique sound. These instrument

showed the potential for using electricity as a medium for musical expression.
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The potential for musical expression with electronic instruments took a great leap

with the appearance of modular synthesizers. In the 1960s, Robert Moog developed a

series of modular synthesizers in which the electronics that generated the sounds could

be configured by the performer. Unlike, the earliest electronic instruments, the modular

synthesizer allowed for experimentation with sounds. During this time, Don Buchla

worked on similar modular synthesizers such as the one shown in Figure 2.3.

Figure 2.3: A Buchla analog synthesizer with knobs, buttons, and cables for changing
the basic sound of the synthesizer.

Moog’s modular synthesizers, with their tremendous control over sounds, found their

way into a variety of recordings from the Beatles to Wendy Carlos’ Switched on Bach

album from 1968. On that album, Carlos plays traditional Bach compositions on the

Moog synthesizer. Musicians like Keith Emerson of Emerson, Lake, and Palmer and

Rick Wakeman of Yes used a portable version of Moog’s synthesizer, the Minimoog,

throughout the 1970s. By allowing performers to have fine-grained control over their

instruments, the synthesizers of Moog and Buchla opened up new ways to experiment

with sounds at the same time that the instruments designers experimented with the

synthesizers themselves.
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Figure 2.4: The Yamaha DX-7 synthesizer enabled experimentation with digital sounds.

The notion of control over sounds has moved from the pure electronics of the early

synthesizers into the digital sound realm of the computer. The Yamaha DX-7, based on

FM synthesis research by John Chowning [15] in the late 1960s and early 1970s, brought

new kinds of sounds and new controls in the form of a digital keyboard in the 1980s. As

a digital synthesizer, the DX-7 gave musicians new ways to experiment by selecting the

fundamental algorithms that generated the sounds.

Figure 2.5: The reacTable modular synthesizer is controlled with blocks and multi-touch.

The reacTable instrument, appearing in 2005, (see Figure 2.5), borrows many of the

same concepts from the early modular synthesizers and puts them into a new kind of

package with new technologies. Instead of keyboard-like controls, the reacTable is a com-

bination of human input, via the placement of blocks or multi-touch, and virtual controls

that are projected onto the surface of the instrument. Like earlier modular synthesizers,

the reacTable has the ability to fundamentally control sounds. The reacTable modular
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synthesizer was played by Damian Taylor on tour with Icelandic singer Björk in 2007

[98]. The use of the reacTable in Björk’s band shows that interest in having fundamental

control over instruments is still strong. With their ability to produce any kind of sound

coupled with control over any sound parameters, computers provide instrument designers

with a virtually infinite canvas with which to create new kinds of instruments.

My own work on advancing the use of multi-touch for musical control is a continuation

of the lineage of taking new kinds of computer input and using them for music. As an

instrument designer, I am interested in both making multi-touch as useful as possible

in a musical context and in keeping the spirit of experimentation from earlier modular

instruments alive. By giving musicians control over their multi-touch interactions, I am

bringing that experimental spirit to the control of human input.

2.2 Experimental Music Performance

In order to show an evolution of influences that are relevant to my research, I have

selected a series of musical ensembles that form a thread that provides a context for

my own work, both technically and musically. All of these ensembles have two things

in common with my own musical practice: 1) all of the ensembles make improvisation

an important part of their music and 2) each of the ensembles takes an experimental

approach to the technology that they use to create their music. A constant theme in

experimental music is the adaptation to new technologies. Musicians do not perform

outside of a musical or a technological context. As musical styles change, musicians

adapt and respond to those changes and the same is true of technology. Musical styles

can remain constant across new technologies. However, new technologies fundamentally

change the ways that music is performed.
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2.2.1 Musica Elettronica Viva (1966–Present)

Musica Elettronica Viva (MEV) was founded by American composers Allan Bryant, Alvin

Curran, Jon Phetteplace, and Frederic Rzewski in Rome in 1966. The group was initially

formed to showcase the compositions of each of its members. However, early in its

existence, MEV moved away from fixed composition and into improvised performances.

According to Rzweski:

We began by performing compositions by ourselves and others which involved

the use of electronic sound produced in real time, or “live” electronic music.

In the summer of 1967 we began to work more with improvisation and less

with determinate structures. [101]

By improvisation, Rzewski is not referring to the “chance” music from composers like

John Cage in which dice, the I Ching, or other random process is used to compose music.

Rather, he is referring to music that is created by musicians collectively in the course of

performance. That is, musicians compose their music during performance in relation to

their own previous sounds and the sounds made by the other performers. Improvisation

is essentially experimental music since the end result is not known in advance.

MEV is an experimental music group in another sense as well: they experimented

with the use of electronics for music. For performances of their collective improvisation

piece, Spacecraft in 1967, the members of MEV used an amplified glass plate, an amplified

tin can, amplified voice, and a Moog synthesizer controlled by brain waves in addition

to acoustic instruments like saxophone, trumpet, and thumb piano [1]. Any performance

by the group would feature both musical improvisation as well as experimentation with

instruments old and new.
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Figure 2.6: Members of Musica Elettronica Viva, from left, Frederic Rzewski, Richard
Teitelbaum, and Alvin Curran [21]. Note the trumpet in the foreground and the Moog
synthesizer in the background.

2.2.2 The League of Automatic Music Composers (1978–1983)

The League of Automatic Music Composers was formed in 1978 by David Behrman, Rich

Gold, John Bischoff, and Jim Horton. The four members were involved with the Center

for Contemporary Music (CCM) at Mills College in Oakland, California. At the time

of the formation of the League, the Bay Area of California had a fertile experimental

music scene [11]. At the same time, small personal computers were beginning to become

available in what later become the Silicon Valley. The League were early adopters of

small personal computers and the members had a keen interest in using these in an

experimental musical context. The name, the League of Automatic Music Composers,

was chosen by the group to reflect their experimental inclinations:

It also sought to convey the artificial intelligence aspect of the League’s activ-

ities as we began to view half the band as “human” (the composers) and half

“artificial” (the computers). As stated in our concert program, “the League is

an organization that seeks to invent new members by means of its projects”.

[10]
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Members of the League were inspired by the chance music of John Cage and oth-

ers and they sought to use computers to bring chance operations to their performances.

Unlike Cage, the League also explored improvisation in their performances. In their per-

formance practice, the League layered experimental music practice on top of technological

experimentation.

Figure 2.7: The League of Automatic Music Composers in 1981: Tim Perkis, John
Bischoff, Don Day, and Jim Horton.

2.2.3 The Hub (1985–Present)

The Hub grew out of the League of Automatic Music Composers with some of the same

members including John Bischoff, Tim Perkis, Chris Brown, Scot Gresham-Lancaster,

Mark Trayle, and Phil Stone. The approach to music-making was carried over from the

League with an emphasis on exploring new technologies. The name Hub refers to both

the group and to their technical setup in which they used a central hub of musical data

that is shared by the six members. Advances in computer networking allowed the Hub

to connect their individual computers to this central hub, providing a new way for the

members to share their improvised musical data. One of the founders, Scot Gresham-

Lancaster describes the ethos behind the Hub [41]:

Interactive electronic music constitutes a continuing story of the ingenious

use of technologies in unique and unconventional ways.
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The Hub adapted to new technologies continually, trying varying combinations of

computing and networking, including an early attempt to use the internet for a musical

performance. With each new technology, the Hub continued to experiment both musically

and technologically.

Figure 2.8: The Hub: Chris Brown, Scot Gresham-Lancaster, Mark Trayle, Tim Perkis,
Phil Stone, and John Bischoff.

2.2.4 Sensorband (1993–2003)

Sensorband was formed in 1993 by Edwin van der Heide, Zbigniew Karkowski, and Atau

Tanaka. The group took a very different approach to human input than either the League

or the Hub. Instead of keyboards and mice, Sensorband used ultrasound, infrared, and

bioelectric sensors for human input. Sensorband performances had a strong theatrical

element since as Atau Tanaka states [109]:

Sensorband’s projects center around the theme of physicality and human

control/discontrol in relation with technology.

Each member had his own specially-designed sensor as part of his instrument. Edwin

van der Heide used a MIDIconductor that used ultrasound signals to determine the

position of his hands as well as the distance between them. Zbigniew Karkowski used
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infrared sensors to detect the position of his arms in the space around him. Atau Tanaka

played his BioMuse system [108] that used an electromyogram (EMG) sensor to detect

his muscle tension. In each case, the sensor input was digitized, enabling the performers

to translate their physical gestures into musical gestures.

Figure 2.9: Sensorband in performance with, from left, the MIDIconductor, infrared
sensing in space, and the BioMuse. [107]

Sensorband performances had a strong improvisational component as the group ex-

perimented musically and technologically with their use of sensors. By experimenting

with sensors, Sensorband showed that computers can be controlled with virtually any

kind of human input.

2.2.5 The Princeton Laptop Orchestra (2005–Present)

Laptop orchestras are ensembles made up of several performers and their laptops. Gen-

erally, each performer has their own speaker or speakers for their laptop sounds. Laptop

orchestras are generally open about human input to the laptop itself including every-

thing from the laptop keyboard and mouse to attached devices like joysticks and drawing

tablets. The first laptop orchestra was the Princeton Laptop Orchestra or PLOrk [113].

Figure 2.10 shows a PLOrk performance. Note the laptops with individual speakers and

the performers sitting on pillows.

In his paper, Why a laptop orchestra? [112], Dan Trueman, one of the founders of

PLOrk, makes the following point about the nature of the instruments they used:

...it is important to point out that the goal isn’t necessarily to create finished

instruments that remain with us for generations, but rather to develop a
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Figure 2.10: The Princeton Laptop Orchestra (PLOrk) performing.

performance practice where instrument building itself plays a central role.

This is one of the great enticements of building digital instruments; we don’t

have to spend a year carving up several pieces of wood to explore a new

acoustical design.

For performances, PLOrk would feature laptop performers, optional soloists, and a

conductor. The performances were often a structured improvisation in which the per-

formers have some freedom to change their sound but are still expected to follow the

overall structure of the piece as conveyed by the conductor via hand signals.

2.2.6 The Stanford Laptop Orchestra (2008–Present)

The Stanford Laptop Orchestra or SLOrk [116] was initiated by Ge Wang when he moved

from Princeton, where he co-founded PLOrk, to Stanford University. In early 2008, he

created a “pre-laptop orchestra” course in which the technology used by SLOrk was to be

built. Along with about 30 other people, I was part of this course. The main objective

and the most work was put into creating custom speakers that would be used by each

member of the orchestra since, as with PLOrk, the idea behind SLOrk was that each

member would have their own instrument consisting of a laptop, some kind of human
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input device, and a speaker.

The speakers needed to be mobile so that they could be transported to performances

as needed. In addition, the speakers needed to have a non-directional sound. Speakers

normally output their sound from the front but, for SLOrk, the speakers needed to output

sound in multiple directions since the intention was for each member to have their own

sound field that radiates from their instrument. While there are commercial speakers like

this available, we decided to build out own speakers. To build them, we took inexpensive,

lightweight wooden salad bowls and drilled holes in them for holding small car speaker

drivers (the part that actually generates the sound), six in total. Figure 2.11 shows the

bowls before the drivers were attached.

Figure 2.11: Making speakers from salad bowls. The holes are for mounting car speaker
drivers. [115]

Once the drivers were attached, we attached a plug strip for audio cables to allow the

signal to get into the speakers along with power connectors for amplifiers that were stored

inside of the speakers. Once everything was set inside the speaker, we put a custom-fitted

wooden plug on the bottom of each speaker. In addition, we attached small handles to

make it easier to carry the speakers. Figure 2.12 shows a finished speaker with salad

bowl, drivers, audio cable connections, power connection, and handle.
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Figure 2.12: A finished SLOrk speaker with six car speaker drivers, audio cable connec-
tions, power connection, and carrying handle. [115]

The do-it-yourself (DIY) nature of the speakers is part of the overall experimental

nature of SLOrk. Beyond the creation of new music technologies like the speakers, SLOrk

was a vehicle for determining what laptops can do in the context of a 20-person orchestra.

When composing for laptop orchestra, a composer needs to thing about many possibilities

including the sounds to use (remembering Max Mathews observation about computers

producing any kind of sound), how the sound(s) will be controlled, and whether each

member of the orchestra will have the same sounds or whether they will have different

sounds [104]. Figure 2.13 shows a SLOrk performance from April 29, 2008 at Stanford

University in which we controlled sounds by tilting out laptops.

2.2.7 The Aspect Ensemble (2012–Present)

Aspect is a music ensemble featuring myself, Simon Fay, and Aura Pon. I initiated the

formation of this ensemble so that it would serve as a musical vehicle for the research of

its members. I chose the name Aspect because it was my intention to make visuals an

important part of our performances. Instrumentation varies, but Aspect always features

digital instruments of some kind. Generally, I played with a multi-touch tablet, Simon
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Figure 2.13: The Stanford Laptop Orchestra (SLOrk) performing, including the author
of this thesis, second from the right.

played electric guitar, and Aura played oboe. In other cases, as with Aura’s piece,

Concordia Discors, each of us played an iPhone while getting instructions for the piece

from an animated digital score. For another performance, we improvised a score for the

1903 silent file, Alice in Wonderland with myself on tablet, Simon with a laptop instead

of guitar, and Aura on oboe.

Figure 2.14: Aspect rehearsing with a visual score. We see the same score on a laptop
in front of us.

In forming Aspect, I saw the potential of the multi-touch tablet computer in a perfor-

mance context and decided to use tablets to control my part of Aspect’s music. Tablets

had shown their usefulness for making music before I started Aspect. In 2010, Apple Inc.
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introduced the iPad tablet, a device that offered direct touch interactions with graphics

that was similar to the iPhone. However, the iPad offered a larger screen (and touch

surface) and more power. Immediately after its release, musicians were using it to make

music. The band Gorillaz, while on tour in 2010, recorded and released an album, The

Fall [39], created entirely with an iPad.

My initial reasons for choosing a tablet as my interface were portability and the abil-

ity to put my software, JunctionBox, onto tablets. Via my performances with Aspect,

I learned that tablets also suit my own performance style. In contrast to the obvious

theatricality of, for example, Sensorband, I tend to eschew large gestures, preferring

instead to control musical processes with more subtle multi-touch gestures. My sub-

tle gestures controlled algorithmic music for our performances, making me a conductor

telling a laptop what musical directions to take. Almost all Aspect performances had a

strong improvisational element, including my control over the algorithmic parts of our

music. Like the other groups discussed in this section, Aspect experiments both techno-

logically, with various kinds of computer inputs and animated scores, and musically via

improvisation.

2.3 Summary

By placing computers as instruments into a larger context of advancing music technology

and by providing an overview of ensembles that experiment with both music and tech-

nology, I have covered the musical context for my research. This sets the stage for the

next chapter which includes background from the perspective of multi-touch instruments,

networked instruments, and software toolkits.
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Chapter 3

Related Work

The Hub has always been a collective of technically savvy musicians; we are

all aware that one must maintain a very difficult balance between technology

and expression. The trick has always been to get the tools working and then

to find the music in the newly built context.

–Scot Gresham-Lancaster [41]

In this chapter, I describe related work that is relevant to my research in three areas:

multi-touch instruments, networked instruments, and software toolkits. Accordingly, the

chapter is broken into three sections. The first describes developments in multi-touch

interactions both generally and in a musical context (Section 3.1). The second describes

significant performances in the history of networked music and includes descriptions of

instruments specifically designed for networked music (Section 3.2). The last section

describes software toolkits for building multi-touch interfaces and for mapping human

input to musical control (Section 3.3).

As new ways to interact with computers have developed, those interactions are invari-

ably used in a musical context. Early computers used punched cards as a way to write

programs. With the advent of the home computer, the keyboard and the mouse became

the primary ways to interact with computers. As the home computer was becoming more

common, networking was becoming easier. This allowed people to interact with comput-

ers that were not in the same room with them. Eventually, the mouse and keyboard

style of interaction gained competition from the development of multi-touch interfaces

in which people could directly interact with the user interface using touch. During all of
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these developments and changes in interaction, software libraries and toolkits have been

an essential part of allowing people to use the new interaction paradigms.

The research presented in this thesis builds on related work in three major areas:

the development of multi-touch as a significant form of human-computer interaction,

networked music as a new way for musicians to interact with each other and with their

computers, and the design and implementation of software toolkits for human input and

for mapping that input to musical control. I drew upon each of these three areas in

my research into developing a model for combining multi-touch and networking into a

software toolkit. The idea behind combining these areas is to achieve Gresham’s “balance

between technology and expression” as stated in the opening to this chapter. By careful

investigation of the technologies involved, their history, and their musical context, the

balance can be tipped toward expression.

3.1 Multi-touch Instruments

In this section, I will describe some milestones in the history of the development of

multi-touch as a human-computer interaction. It is not meant to be a thorough survey

of multi-touch but rather to show some of the important steps that brought multi-touch

interactions to the mainstream.

3.1.1 General Developments

One of the earliest multi-touch devices was a tablet created by Lee et al [63] in 1985.

This tablet had a touch surface that tracked multiple touches based on capacitive sens-

ing. When a person touched some part of the tablet, the touch triggered a change in the

capacitance of sensors beneath the tablet’s surface, allowing for both touch detection as

well as touch position sensing. This mode of touch tracking is used by current phone and

tablet devices and so, as a prototype, it is a direct antecedent for the kind of interac-
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tivity enabled by these devices. However, unlike current devices, this prototype had no

graphical interface built into the tablet itself.

Another relatively early development in multi-touch was the DiamondTouch, a touch

table created at the Mitsubishi Electric Research Laboratories (MERL) in 2001. The

DiamondTouch [32] used capacitive sensing for tracking touches on the surface. More

importantly, the DiamondTouch featured a graphical user interface (GUI) that was pro-

jected onto the surface of the table that responded to touches on the table. This combi-

nation of touch and GUI allowed for direct manipulation of on-screen widgets, providing

a template for the touch-based systems that followed.

Figure 3.1: The design of the DiamondTouch tabletop system [32].

An important step in the evolution of multi-touch interfaces came with Han’s intro-

duction of the Frustrated Total Internal Reflection (FTIR) technique [45]. The touch

sensing was done by an inexpensive web camera rather than by capacitive sensing as

with the DiamonTouch. The camera input was filtered so that it looked in the infrared

(IR) part of the light spectrum avoiding interference from light in the visible part of the

spectrum. Since the edges of the clear plastic touch surface have infrared lights that shine

through the plastic, any touch on the surface of the plastic will change the IR signature
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near the touch, registering on the camera. Figure 3.2 is a diagram of the FTIR technique.

Figure 3.2: The frustrated total internal reflection (FTIR) technique [78] for tabletop
touch tracking.

A projector under the interaction surface throws the graphical output on the under-

side, allowing for real-time interaction with the graphics without blocking the projector

as happened with the DiamondTouch. FTIR tables were relatively cheap and easy to

build, allowing multi-touch to reach outside of the laboratory and become a mainstream

interaction technique.

Figure 3.3: FTIR-based synthesizer controls from Davidson and Han [27].

Davidson and Han [27] used Han’s FTIR technique to create a synthesizer control

interface, showing that FTIR tables can be used in a musical context. The synthesizer
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interface offered a variety of widgets borrowed from hardware interfaces, including slid-

ers, knobs, and keys.

Multi-touch truly hit the mainstream with the introduction of the Apple iPhone in

2007. The iPhone, running the iOS operating system, used a capacitance-based system

under the display hardware to detect touches, allowing for direct manipulation of the

GUI. However, unlike earlier devices, the iPhone was quite small and was easily available

to anyone who could afford it. After the introduction of the iPhone, Google offered its

Android operating system on a variety of devices similar to the iPhone in terms of multi-

touch capability. Eventually, Apple offered the iPad, a larger multi-touch device that is

not a phone with additional features but is a general purpose computing system. Similar

Android devices from a variety of manufacturers soon followed. All of these devices offer

a huge number of music-making apps.

3.1.2 Musical Instruments

Multi-touch musical instruments have some antecedents that are not multi-touch but are

still significant in the development of multi-touch instruments since they serve as models

for later work.

The Jam-o-Drum by Blaine and Perkis [5] is not multi-touch but it is a sonigraphical

instrument. It used commercially available drum pads for input. It did feature a top-

projected visual interface, similar to the setup used for the DiamondTouch, showing that

top-projected tables could be used in a musical context. Jam-o-World [4] expanded work

on the Jam-o-Drum so that each drum pad was mounted on a turntable, adding an

additional musical interaction. The Jam-o-World project is interesting in that it allowed

for multiple players to effectively play the same instrument.

The Audiopad [85] allowed a player to control music by placing pucks on a tabletop
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Figure 3.4: The Jam-o-Drum in use [3]. Note how the interface is projected onto the
outstretched arm of one of the players.

Figure 3.5: Playing with the Audiopad’s [83] RF-enabled pucks.

surface as shown in Figure 3.5. Audiopad continued the development of the Sensetable

[84] which used a very similar interaction system involving pucks that can be identified by

radio-frequency (RF) tags in the pucks. The pucks represented various unit generators

like sample audio file players and filters with each kind of puck identified by an RF tag.

The parameters of each unit generator could be changed by manipulating the puck, either

rotating or translating it. Like the Jam-o-Drum, the interface is projected onto the top

of the tabletop surface.

The reacTable [56] was an important milestone in the development of multi-touch

instruments. The reacTable takes input from multi-touch and from fiducial markers.

The markers are a set of discs with a pattern printed on them that can be recognized
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Figure 3.6: The reacTable with fiducial markers in play.

by a video camera under the table. The reacTable interaction via fiducial discs is quite

similar to the Audiopad puck interaction but since it is based on camera tracking, it

allows for multi-touch as well.

Figure 3.7: The setup [92] of the reacTable touch tracking system.

The camera tracking system, reacTIVision [57], is similar to how touches are recog-

nized in Han’s FTIR system described earlier but instead of putting IR light into a plastic

touch surface, the IR light is projected in a diffuse manner from below the surface. The

technique, diffused illumination (DI), is diagrammed in Figure 3.8.

Both fiducial markers and touch input on the reacTable are encoded in TUIO messages

[58], an OSC namespace that allows any camera-based system to send touch tracking data

like the number of touches and their locations to software that understands TUIO.
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Figure 3.8: The diffused illumination (DI) technique [77] for tabletop touch tracking.

Figure 3.9: The fiducial marker patterns [92] used to control the reacTable.

The reacTable was not only one of the first musical instruments to have multi-touch in-

put, it was also a highly configurable instrument based around the idea of Max Mathew’s

unit generators. Fiducial markers could represent oscillators, filters, sequencers, or sound

file players among others. These could be combined in a variety of ways, similar to the

design of the Audiopad system. This meant that the reacTable could be used to create

many different kinds of instruments with a wide variety of sounds and interactions. The

reacTable, now called the Reactable Live! is available as a commercial product [90] and

eventually, the Reactable company released the Reactable Mobile [91], a software appli-

cation for iPad and Android tablet devices. Rather than having the focus on fiducials as

with the tabletop version, the Reactable Mobile uses multi-touch only.

The JazzMutant Lemur [52] was one of the first commercially available multi-touch

devices specifically for music. It features a variety of configurable widgets like faders,
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Figure 3.10: The original Lemur [51] multi-touch hardware controller.

knobs, and switches and each widget could be mapped to send either MIDI or OSC

messages. This is in contrast to the previously discussed instruments that featured a

direct mapping between user input and control of a particular audio engine. Instead,

with the Lemur, generic input controls could be mapped [127] to virtually any kind of

audio control. For example, a fader widget could be mapped, via OSC message, to the

audio gain. As long as the audio engine controlled by the Lemur understood the messages

sent from the interface, any mapping was possible. The Lemur has ceased production as

hardware and is now available a multi-touch software application for iOS and Android

devices [64]. The Lemur software retains its ability to connect, via networking, to a

variety of audio engines.

3.2 Networked Instruments

This section will focus on musical performances and instruments that feature some form

of computer networking along with some points of interest in the general development

of computer networking. Networked music performance is a sizable area of research that

can be broken down into two broad categories: 1) message-based network performances

and 2) audio-based network performances. The focus of this section is on instruments

and performances that are message-based since this is the most relevant to the research
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presented in this thesis.

Weinberg [118] describes the history of what he calls “Interconnected Musical Net-

works” beginning with the early transistor radio experiments of John Cage. Weinberg

considers Cage’s Imaginary Landscape No. 4 to be the first electronic “Interconnected

Musical Network”. While this is an interesting starting point to choose for networked

music, I will start my examination at a later point than this. The Cage piece does not

represent a true modern network in the sense that radios are one-way only and therefore

do not represent a true live platform for music performance. In other words, radios do not

have the give-and-take that is offered by modern computer networks in which musicians

can interact with each other using networks as a medium.

One of the earliest attempts to create a musical networking system came in the form

of the Musical Instrument Digital Interface (MIDI) specification [73], first published in

1983. MIDI was created to allow for the exchange of musical information such as pitch

and timing to be sent over specialized hardware and cables. MIDI was initially created

with digital keyboards [68] in mind but has since been adapted to a variety of digital

instruments.

Around the time of the development of MIDI, in 1981, the specification [88] for the

fourth version of the internet protocol, IPv4, was released. The IPv4 protocol is signif-

icant in that it became the protocol that powered the internet and eventually almost

every kind of computer network. The protocol is independent of the underlying network-

ing hardware, making networking between different computing systems easier. Together

with the Transport Control Protocol [13] and the User Datagram Protocol [86], IPv4

enables almost all networking traffic.

The first serious messaging system for music to take advantage of networking over

generalized computer networks (unlike MIDI) is Open Sound Control [126]. The OSC
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Table 3.1: Example OSC Messages.
Address Type Tag Arguments
/instrument/gain f 0.5
/instrument/pitch i 2

specification [124], first published in 2002, provides for a content format that can be

used in a variety of networking contexts, including over standard TCP- and UPD-based

networks. Unlike MIDI, OSC is a completely open content format that allows developers

to create arbitrary messages. A standard OSC message has three parts: an address

string, a type tag string, and a series of arguments that matches the types in the type

tag string. Table 3.1 shows example OSC messages separated into address, type tag, and

arguments.

OSC does not specify anything about the message beyond a list of acceptable type tags

(that can be found in the specification), making it extremely flexible for sharing different

kinds of musical data between computers. As long as the messages are understood by all

computers on the network, those computers can become part of a single musical system.

Latency [60] is invariably an issue for networked instruments. In an important study

on the effects of latency, [14, 43], observers examined the effects of latency on ensemble

accuracy by having pairs of participants attempt to clap in time with each other. The

participants could only hear each other over headphones. During the study, an artificial

delay was created between the participants to determine the effects of the delay on

their ability to clap a rhythm with a specified timing. On examining the results, the

experiment showed that any delay of more than 35 ms had a significant negative effect

on the accuracy of the participants clapping. The results showed an accuracy sweet spot

of approximately 11.5 ms with participants speeding up the tempo at values less than

this and participants slowing down at values more than this.

In general, network latency is a matter of physics with the speed of light as the

theoretical maximum. This being the case, Cáceres and Renaud describe [25] their work
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in using latency as a musical device rather than by trying to solve the problem of latency.

Brandt and Dannenberg [6] discuss the notion of timing, including latency and jitter, in

real-time music performance systems. A full discussion of timing is beyond the scope of

this thesis but is an important issue to mention in the context of networked music.

Figure 3.11: A flier for the first know networked music concert.

3.2.1 Performances

The League of Automatic Music Composers performed at the first known networked mu-

sic concert in 1978 [2] at the Blind Lemon club in Berkeley, California. The group used

KIM-1 microcomputers [122] connected with cables that enabled them to share musical

information between their respective microcomputers. During this performance and oth-

ers, the group used a variety of networking configurations. In one configuration, one of

the performers would send the output of his computer to another performer’s computer

for manipulation before the final audio output. This performance showed the range of
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new musical interactions afforded by computer networking.

Figure 3.12: The League of Automatic Music Composers in 1981.

The Hub [41] evolved from the League of Automatic Music Composers, continuing

their experiments with networked music. In 1985, the Hub performed over a modem

from two sites in New York City, one of the first multi-site internet-based performances.

Eventually, around 1990, the Hub moved to using the MIDI protocol for their perfor-

mances. The Hub were one of the early adopters of OSC, using it in an internet-based

performance in 1997 to send MIDI data over the internet. Gresham-Lancaster reflects

on that performance, in the full quote that begins this chapter with emphasis added:

This formidable test actually ended up being more of a technical

exercise than a full-blown concert. The Hub has always been a collective

of technically savvy musicians; we are all aware that one must maintain a very

difficult balance between technology and expression. The trick has always

been to get the tools working and then to find the music in the newly built

context. In this case, the technology was so complex that we were

unable to reach a satisfactory point of expressivity.

This quote from a technically-experienced musician shows the difficulty of early real-

time networked music performances at that time. The quote is also important in the
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context of this thesis in that it shows the importance of providing tools that simplify

the process of playing music over networks while at the same time allowing for creative

flexibility in that same networking context.

3.2.2 Instruments

Networked musical instruments can be roughly broken down into two categories: those

that exchange audio signals over networks and those that exchange control messages

(usually via OSC or MIDI). The focus of this subsection is on instruments that exchange

control messages over networks since that is the most relevant to the work presented in

this thesis. Networked audio instruments have their own issues as discussed in Renaud et

al [95], Barbosa [128], and Mills [74]. Weinberg [119] offers a survey of networking con-

figurations (or topologies), and discusses centralized versus decentralized configurations.

As discussed earlier, latency is an issue with networked instruments since it takes time

for musical data to be passed between players over a network. This is especially true when

that network is the internet though it is less of an issues for local networks. Message-

based instruments are still subject to the limitation of latency but the situation is not as

acute as it is with audio-based networking since audio that is not delivered consistently

and on time will produce very noticeable glitches. Messages that do not arrive on time

or at all are still a problem but this may not even be noticeable depending on what those

messages control. In other words, message-based systems have the potential to be more

adaptive to networked situations.

In 1990, the NetJam project [61] started, allowing participants to submit MIDI data

to a server via e-mail that would then send that data out to all other participants.

NetJam was not a real-time system but it is a good example of making use of existing

technology, in this case e-mail, for the purpose of making music in a collaborative fashion.

Essentially, e-mail acted as a messaging system for musical information.
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Faust Music Online (FMOL) [53] was a relatively early system for collaborative per-

formance and composition over the internet. Performers and composers would download

client software and the clients would then share small proprietary score files based on

input from performers. Those score files would then be sent to a central server that kept

track of the score files for each client. The score files can then be downloaded from the

server to drive the audio engine built into each client. Clients can see and share each

other’s score files as well as manipulate any score file and send it back to the server.

Figure 3.13: The FMOL interface [75].

Quintet.net [44] used modified MIDI messages that are transmitted from each client

node to a central server. The MIDI notes are then sent from the server out to performers

as well as to audience members. This system is notable in that there is another role

aside from performers and audience members, that of a conductor. The conductor in

this system has control over both the sounds and the effects used by clients in addition

to being able to send out short scores to performers.

JamSpace [42], created by Michael Gurevich, was a message-based, client/server music

system. Using this system, the performers could create short phrases using a custom-

made JamPad interface made of 12 pressure-sensitive pads. Performers recorded their

phrases and played them back in their own client interface. The JamSpace client interface

is shown in Figure 3.15. The recorded phrases could then be added to a public JamSpace

server where any other client on the network could download the phrase and play it back.
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Figure 3.14: The Quintet.net client interface.

JamSpace showed the viability of the client/server networking in sharing and combining

musical ideas. As Gurevich points out, the JamSpace system worked well for real-time

sharing because it operated on a local network rather than across the internet, minimizing

network latency.

Figure 3.15: The JamSpace client interface.

The internet served as a the medium for the web-based Public Sound Objects [129],

created by Barbosa and Kaltenbrunner. A server handles all sound synthesis based on
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input from clients. The synthesized sound was then sent back to the client via streaming

audio. The control interface features a moving ball that bounces off of the “walls” of a

square, triggering a sound each time the ball touches the wall. Performers can control

various parameters of the ball including size, speed, and direction. Figure 3.16 shows the

control interface with a bouncing ball.

Figure 3.16: The Public Sound Objects control interface.

A message-based system, peerSynth [105] was designed and implemented by Stelkens

using peer-to-peer (P2P) communication enabling clients to connect directly with no

server involved. The author makes the point that peerSynth saves bandwidth by using

messages with synthesizer control parameters rather than audio between clients. Inter-

estingly, the latency between clients can be used to control parameters of the synthesizer

as well, making peerSynth an instrument that not only accounts for latency but actually

makes use of it in a musical context.
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The idea of using latency as a musical device is also present in the work of the Net

vs. Net collective [25]. The Frequenciliator [94] by Rebelo and Renaud combines audio

and message-based networking. Each performer sends an audio stream to the other

performers. Timing, however, is controlled by messages. This includes countdowns to

upcoming events (to give performers some warning) and general synchronized events that

can be sent to any or all performers and then mapped locally by the receiving performer.

3.3 Software Toolkits

Software toolkits are an essential element of building interfaces, musical or otherwise. At

this stage in the evolution of computing, it is almost impossible to build a human interface

that does not build upon some previously developed software. Almost all software is part

of a stack with the developer’s software resting on top of other software that is itself built

on top of software and so on. The major point with regard to this thesis is that toolkits

(libraries with a more action-oriented name) are an absolutely essential part of building

modern software interfaces.

The toolkits described below are related to the research presented in this thesis in

that they provide some kind of functionality that overlaps with my research. Toolkits are

broken down into multi-touch and mapping toolkits. The multi-touch toolkits discussed

take in touch input and provide output for graphics. The mapping toolkits take touch

input and provide output for graphics and for musical control messages.

3.3.1 Multi-touch

The DiamondTouch toolkit [29] was an early collection of functions for supporting multi-

touch input on the DiamondTouch system. MT4j [62] (Multitouch for Java) is a multi-

touch toolkit that allows for a wide range of multi-touch input with integrated graphics.

SMT is the Simple Multi-touch Toolkit [81] works much like MT4j but without built-
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in graphics. SMT is a library for the Processing graphical programming environment.

Another Processing library is tuioZones [69]. Both SMT and tuioZones support TUIO

and mouse input. PyMT [46] is similar to the previously mentioned toolkits but is written

in the Python programming language. Boing [80] is yet another toolkit that is written

in Python. LightTracker [38] is an all-in-one solution for vision-tracking systems that

includes components for both tracking touches in hardware and software. Other toolkits

are mentioned in Kammer et al [59] along with a taxonomy to categorize them. None

of the previously-mentioned toolkits supports any kind of mapping to messages, either

OSC or MIDI. They only support multi-touch with graphical output. This means that

these toolkits are related only to the multi-touch aspects of my research, not addressing

the mapping part of it.

3.3.2 Mapping

In the context of music performance systems, mapping is the process of taking human

input of some kind and then mapping that to control of musical parameters. Human

input can involve almost anything from multi-touch to waving hands in front of a camera

to just about any connection that can be made between human action and some kind of

musical control. Ultimately, any form of human input will be translated into numbers

and those numbers can then be mapped to musical parameters. For a simple example, a

touch on a tablet interface could be mapped to the control of a synthesizer. By moving

a touch in the X direction, a person could change the pitch like moving across the keys

of a piano but with the option of continuous changes of pitch instead of in discreet notes.

Also unlike a piano, movement in the Y direction could control the volume of the notes

played with continuous changes as a touch moves up and down the interface. This is

the mapping of interaction or gestures to musical control. That mapping can occur in a

variety of ways, but the most flexible is mapping via OSC [127] messages.
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Control [99, 100] is a toolkit for building widgets like buttons, sliders, knobs and

multi-touch XY pads that can be mapped to OSC or MIDI messages. The widgets are

created using JSON code [7] with the following code creating a button.

{

"name" : "myButton" ,

" type " : "Button " ,

"x" : 0 , "y" : 0 ,

"width" : . 2 5 , " he ight " : . 2 5 ,

}

Figure 3.17 shows an example Control interface with buttons, sliders, and knobs. The

features of Control are described in more detail in Chapter 5, Section 5.1.

Figure 3.17: A mixer interface included with Control with buttons, sliders, and knobs.

TouchOSC [47] offers a set of widgets that is similar to the ones available in Control

Like Control, those widgets can be mapped to arbitrary OSC or MIDI messages. Avail-

able interactive widgets include push buttons, toggle buttons, XY pads, faders, encoders,

and sets containing multiples of all of these (other than encoders). Developers use a

specialized editing program called TouchOSC Editor to create layouts featuring one or

more widgets. That layout can then be loaded onto a multi-touch device. Once loaded

onto the device, the interface can be configured to connect to a host that receives OSC
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or MIDI messages.

Figure 3.18: An interface built with TouchOSC [47].

As mentioned earlier, in the section on multi-touch instruments, the Lemur hardware

controller is no longer in production and has been replaced by the Lemur app. That

app features a customizable set of widgets like buttons, faders, knobs, and pads. These

are similar to the widgets available in the TouchOSC and Control. As with these other

toolkits, the Lemur app allows widgets to map to MIDI or OSC. Like TouchOSC’s editor,

widgets are loaded onto a device using a specialized application. The appearance of

widgets can be changed by the application of custom templates. The Lemur is notable in

that it features a physics engine in the interface that allows interface elements to bounce,

rebound, or oscillate.

Mira [22, 110] offers a set of widgets for multi-touch devices that is designed specif-

ically to connect to the Max [24] audio programming environment. Mira’s widget set

includes buttons, toggles, dials, and sliders among others. These widgets are mirrors of

widgets built in the Max interface that Mira connects to. While Mira is a useful way to

build controllers for use with Max/MSP, it is less useful for musicians who use other pro-

gramming environments. Figure 3.20 shows a Mira controller. Notice how the controller

replicates the Max interface running on the laptop.
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Figure 3.19: The Lemur app [65].

Figure 3.20: A Mira controlling a laptop running Max/MSP [22].

TouchOSC, Control, and Lemur are quite similar to JunctionBox in terms of function-

ality and interactions. However, there are significant differences in philosophy between

these three and JunctionBox. TouchOSC, Control, and Lemur are designed to make it

quick and easy to build multi-touch interfaces using well-known widgets with a set visual

design. JunctionBox is designed to allow for a much greater range of both multi-touch

interactions and combinations of interactions in tandem with few constraints on the vi-

sual design of interfaces. TouchOSC, Control, Lemur, and JunctionBox are compared in

greater detail in Chapter 5.
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3.4 Summary

By describing research in multi-touch instruments, networked instruments, and software

toolkits, I have illustrated how computer music has rapidly incorporated new technolo-

gies. This practice of making the best use out of available technologies has shown the

demand for access to multi-touch and networking capabilities as well as the importance

of having toolkits that address those capabilities.
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Chapter 4

JunctionBox

I am a strong believer that tools shape the work of researchers, artists, and

even product developers, so we should pay close attention to the tools that exist

(they determine a lot about short-term progress), and tools that are needed

(the need slows progress and diverts efforts into less productive directions.)

Tools in this domain are generally software applications, but we also need

to consider libraries, plug-ins, frameworks to contain plug-ins, protocols, and

languages.

– Roger Dannenberg [26]

In this chapter, I describe my development of a unit interaction model for multi-touch

interactions and its reification via my JunctionBox creative coding toolkit. The research

question that I address in this thesis is whether Max Mathews’ universal building blocks

concept can be applied to multi-touch, networked interactions, leading to a unit interac-

tion model. To answer this question, I designed and built the JunctionBox interaction

toolkit as a reification of the unit interaction model that I developed. The goal of cre-

ating the unit interaction model was to parallel the concept of universal building blocks

by identifying the most fundamental mappable multi-touch interactions. The process of

creating JunctionBox both instantiated the unit interaction model in usable form and

served as a vehicle for further development of the unit interaction model as the toolkit

was being built. In other words, creating JunctionBox itself served to help identify the

most fundamental mappable interactions. This chapter describes the mappable interac-

tions, implemented in JunctionBox, that serve as the basis for my unit interaction model.
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The chapter is divided into five sections. After defining unit interactions (4.1), the next

section (4.2) describes the fundamentals of JunctionBox design and functionality. The

third section (4.3) contains a detailed description of each unit mappable multi-touch in-

teraction offered by JunctionBox along with a diagram describing that interaction. The

next section (4.4) details the special features in JunctionBox that go beyond interaction

mapping. The last section (4.5) provides a short summary.

4.1 Defining Unit Interaction

To begin to develop a unit interaction model based on the concept of universal building

blocks, I first defined unit interactions in the context of multi-touch interactions that map

to musical control. Unit interactions in this context must meet the following requirements

for inclusion in the model:

1. Each interaction must be the most fundamental action that can be performed with

one or more touches on a two-dimensional surface (e.g. moving a widget across

the screen in the X and Y directions) or a gesture commonly used on multi-touch

devices (e.g. 2-touches to scale the width and height of a widget).

2. Each interaction must be individually mappable to musical control.

3. Each interaction must be networked.

4. Each interaction must have output for graphics.

The interaction building blocks that meet these requirements are the unit interac-

tions that make up the model. The following section on fundamentals describes how

basic functionality is achieved. This is followed by a section that explains how the unit

interaction model is integrated with the basic functionality.
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4.2 Fundamentals

The name JunctionBox is inspired by the following definition of a junction:

junction: [juhngk-shuhn] a place or point where two or more things meet

or converge. [30]

For JunctionBox, the convergence is among multi-touch input, graphical output for

visual feedback, and musical control via message mapping. The meaning of the word

junction highlights the importance of mapping to the design of JunctionBox. The box in

JunctionBox is a reference to the rectangular nature of (nearly all) multi-touch devices.

JunctionBox is as a library for the Processing creative coding environment [111]. Pro-

cessing is primarily geared toward creating graphics but it has support for libraries that

augment its core capabilities. As a library, JunctionBox augments Processing graphics

by taking multi-touch input and mapping that input to musical control. JunctionBox

takes multi-touch input and maps it to two outputs: 1) message output and 2) output

for graphics. Messages are destined for some kind of audio engine and graphics appear

on the screen of the device. Figure 4.1 shows JunctionBox as a hub for mapping touch

input to message and graphical output.

Figure 4.1: JunctionBox takes touch input and maps it to message output for controlling
an audio engine for music and returns output to the device for controlling graphics.
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JunctionBox outputs values to the Processing [93] graphics engine. JunctionBox en-

ables the creation of what Jordà calls sonigraphical instruments [54]. These instruments

feature both sonic and graphical output. Processing works well because it offers a very

capable graphics engine, allowing work on JunctionBox to focus on supporting interac-

tions, especially in a musical context. JunctionBox bridges the interaction gap between

the graphical possibilities offered by Processing and the sound control possibilities af-

forded by the Open Sound Control (OSC) protocol [127].

4.2.1 Multi-touch Input

To map multi-touch input to output, JunctionBox takes in basic touch data including

identifiers for each touch and the X,Y location for each touch on a device’s screen. The

identifier (ID) allows touches to be distinguished from each other while the X, Y loca-

tion is used for mapping to output. Figure 4.2 shows the basic touch input used by

JunctionBox.

Figure 4.2: JunctionBox takes basic touch data as input.

Basic touch data comes to JunctionBox in one of two ways: 1) from TUIO [58]

messages or 2) from Android [35] touch tracking. In either case, the basic touch data

is the same. TUIO is used mainly in larger tables (like the reacTable) while Android is

generally used for smaller phone and tablet devices. JunctionBox can also handle mouse

input with the mouse cursor acting like a single touch point.

Once touch data is received by JunctionBox, it is dispatched to the interactive parts

of the interface, called Junctions. A Junction is defined by its shape, location, and area.
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An interface can have multiple Junctions with each one having either a rectangular or an

elliptical shape. If one of more touches occurs inside the location and area of a Junction,

that touch data will be sent to the Junction, initiating one of the interactions described

in Section 4.3. Touches that occur outside of any Junction have no effect. Figure 4.3

shows a rectangular Junction that turns green when a touch occurs inside of its area.

Figure 4.3: Touches that occur outside of Junctions (1) have no effect while touches that
occur inside (2) initiate an interaction.

The shape of a Junction is important in determining whether a touch is dispatched

to that Junction since rectangles and ellipses require different approaches to figuring

out whether a touch occurs within their respective areas. In order to accomplish this,

Junctions check their shape to determine which approach to take. For rectangles, this is

a check of the location of the center and the area. For ellipses, it is the center and the

distance from the center. Rectangle and ellipse do not need to be squares and circles to

work properly. Rectangles work the same way that squares work but ellipses with axes of

different sizes require some trigonometric calculations for determining whether touches

are inside. Junctions handles this internally by checking for different sized axes. These

checks ensure that interface builders never need to worry about the shape of a Junction.

Touch data will always be handled correctly regardless of whether rectangles or ellipses

have different-sized axes.



63

4.2.2 Message Output

All interactions with Junctions are mappable to messages that are sent to an audio

engine. More specifically, interactions with Junctions are mapped to OSC messages. As

described in Chapter 3, OSC is an open message specification used in a large number of

music performance systems. Part of the appeal of OSC is its flexibility [125] in adapting

to a variety of musical situations. The flexibility also applies to mapping as discussed by

Wright et al [127], making OSC an obvious choice for mapping in JunctionBox. Audio

engines that support OSC include ChucK [117], Max/MSP [23], PureData [18], and

SuperCollider [28]. Each of these audio engines offers a programmable environment for

generating music. In using any of these engines, certain musical parameters are set within

the engine and the messages will control those parameters. The following is an example

message that could control the gain (volume) of an instrument built with an audio engine.

/instrument/gain 0.5

The first part of the message is called the address (/instrument/gain) and that address

can be almost any combination of letters and numbers. Parts of an address can be

separated by a “/” in cases where there might be multiple parameters (gain, frequency,

etc.) for the same instrument. As long as the Junction controlling the engine uses the

same message as the engine itself, the Junction will control that parameter with the value

set in the message (0.5). This is the essence of using OSC for mapping in general and

for JunctionBox in particular.

4.2.3 Networking Options

JunctionBox uses computer networking to connect to audio engines. With computer

networking, there are a range of options for where the audio engine is relative to the

JunctionBox interface. They can both be on the same computer, they can be on different
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computers but in the same room, or they can be on different computers connected over

the internet. OSC messages can be used in any of these networking situations.

JunctionBox supports OSC messages delivered with the User Datagram Protocol

(UDP) [86] on any internet protocol (IP) [88] network. All that is needed to connect

JunctionBox to an audio engine is an IP address and a port number. This is analogous

to delivering a package to an apartment where you would need both the street address

and the apartment number in order to get the package to the correct apartment. In

JunctionBox, the address and the port can be specified for an entire interface or per

Junction. This means that individual controls on an interface can map their interactions

to different audio engines.

4.2.4 Output for Graphics

Junctions create output for graphics in addition to mapping messages, allowing Junctions

to have a defined appearance on the screen of a multi-touch device and to change that

appearance based on feedback from interactions. All graphical output is handled by

Processing. When a rectangle or an ellipse is drawn in Processing, it will take data from

a Junction including location, angle, and size. All of these can change by interacting

with a Junction and that change will be reflected graphically. Shape aside, the graphics

associated with a Junction are not pre-defined. The combination of Processing graphics

and JunctionBox interaction mapping allows for a great deal of freedom in interface

design.

In JunctionBox, OSC messages are sent as soon as an interaction occurs in a way

that is entirely independent of graphical output. Using Processing for graphics means

that visual changes occur at a particular frame rate. If messages were sent only when a

frame is updated, then message sending would be dependent on frame rate. But more

importantly, having messages sent only when a frame is drawn would introduce latency
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or a delay in the sending of an OSC message. At Processing’s default frame rate of

60 frames/second, the time between frames is 16.7 milliseconds, a significant delay for

musical instruments according to Wessel and Wright [121]. Graphical output and OSC

message output are decoupled in JunctionBox in order to avoid these delays.

4.3 Mappable Interactions

The mappable interactions described in this section constitute the unit interaction model

and its implementation via JuntionBox. The following subsections discuss specific map-

pable interactions or categories of interactions. Activation and toggling are interactions.

The remainder of the the subsections (translation, rotation, scaling, and touches) are

categories of interactions. The diagrams in each subsection show how interactions affect

Junctions. As such, they show a Junction as it changes from one state to another based

on the described interaction. The different states of the Junction are separated by arrows

in diagrams where this makes state changes more clear. In other diagrams, arrows rep-

resent state changes in a single image. For simplicity of representation, most diagrams

show only a single touch. JunctionBox supports as many touches per Junction as the

underlying hardware will permit.

4.3.1 Activation

The most basic mapping in a Junction is what I call activation where activation is defined

as the presence or absence of touches within a Junction’s area. For this interaction, a

message is sent to indicate an active state as soon as the first touch is received. When

the last touch is removed from a Junction’s area, a message is sent indicating an inactive

state.

Besides message mapping, Junctions can also provide output on their activation state

for graphics, allowing for visual indicators (like a change of color) in an interface. Fig-
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ure 4.4 shows a color change based on activation.

Figure 4.4: Activating a Junction with a single touch. When the touch is removed, the
Junction is no longer active.

4.3.2 Toggling

A Junction has a toggle state that can be changed with a touch. The first touch sets

the state to toggled and a follow-up touch will de-toggle the Junction. In Figure 4.5,

the Junction turns green when it is toggled. The follow-up touch would de-toggle the

Junction, turning it white again.

Figure 4.5: Toggling a Junction. De-toggling involves a follow-up touch when the Junc-
tion is toggled.

4.3.3 Translation

A Junction can be translated (moved) to any position on an interface. The X or Y values

for the center of the Junction can be mapped to messages as it is translated. The mapping

for this interaction sends both the X and Y values for the center or X and Y values

separately. As with all Junction mapping, values for the center are normalized from 0 -

1 based on the width and height of the interface. Figure 4.6 shows a translated Junction
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and the X and Y value ranges. Messages are only sent when the center of a Junction

changes position. Translation limits can be set that restrict the movement between two

points on an interface. When limit points are set, the values are still normalized based

on those two points.

Figure 4.6: Translating a Junction will send a message with the X and Y values for the
center of the Junction, normalized from 0-1.

Figure 4.7: Mapping Junction translation in the X or Y direction only.

(a) Translating a Junction in the X di-
rection.

(b) Translating a Junction in the Y di-
rection.

In addition to sending both values, a Junction can send only the X or Y value. These

X or Y options are useful since Junctions can be limited to translation in either the X

(horizontal) or Y (vertical) direction only. These X- and Y-only options also allow for

different messages to be sent for both components of translation when both X and Y
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translation are enabled.

The number of touches that translate a Junction is one by default but this number

can be set to any number greater than one. Translation can also be enabled with a

range of touches. For example, translation could happen with 1-4 touches. Regardless of

the number of touches, the same center X and/or Y values for the Junction are sent as

messages. Figure 4.8 shows a 4-touch translation.

Figure 4.8: Translation can be enabled with multiple touch. In this case, four touches
translates the Junction.

4.3.4 Rotation

Junctions can be rotated to any angle and the value of the angle can be mapped to

messages. The angle is mapped starting with the 12 o’clock position. Before rotation,

the 12 o’clock position represents a zero angle. Once rotated, the angle increases in

the clockwise direction until the Junction nears its maximum 360 degree rotation angle.

These values are normalized as shown in Figure 4.9 with a vertical line showing the 12

o’clock position. Once the Junction has passed the maximum 360 degree angle, the angle

reverts to zero and increases again in the clockwise direction. This is repeated for each

full rotation. Rotations in the counter-clockwise direction have negative values for the

angle.

There are two kinds of mappable rotation interactions: a one-touch rotation and a

two-touch rotation. One and two-touch rotations can be enabled or disabled indepen-
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Figure 4.9: The rotation angle of a Junction starts at the 12 o’clock position and is
normalized. The rotation shown is a one-touch rotation.

dently by specifying the number of touches. If the number of touches is not specified,

then both kinds are enabled.

Figure 4.10: Rotating Junctions with either 1 or 2 touches.

(a) Rotating a Junction with one
touch.

(b) Rotating a Junction with two
touches.

The separation of interactions between one and two-touch rotations allows for a

greater variety of mapping situations. If both kinds of rotation were enabled, each kind

could be mapped to a different message, distinguishing between the two kinds of inter-

action using the same Junction.

Junctions keep track of the number of rotations internally. Each full rotation in

the clockwise direction increases the rotation count. Rotations in the counter-clockwise

rotation will roll back the number of rotations. The number of rotations can be mapped
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to messages.

4.3.5 Scaling

The width and height of Junctions can be changed by scaling with two touches. The

values for width and height (or both) are then mapped to messages. The change in scale is

proportional for width and height, changing both at the same time. The distance between

the two touches determines the change in proportion. The values sent for mapping are

normalized to the minimum and maximum values for width and height of the Junctions.

The default minimum is a 1x1 pixel square and the default maximum is the width and

height of the device’s screen. Since scaling is proportional, devices with screens of different

width and height will constrain the maximum overall size to the smaller edge of the device.

Figure 4.11 shows a scaling interaction along with the default maximum values.

Figure 4.11: Using two touches to scale the width and height of a Junction.

Minimum and maximum width and height can be set to any value and they can be

set independently. The sent values for the interactions are then normalized to the new

minimum and maximum. Scaling interactions can send both width and height values or

just one of the two. Width or height scaling can be disabled, allowing scaling in only

one dimension. Figure 4.12a one shows a scaling interaction for width only. In the case

of scaling just width or height, only that value is sent. Figure 4.12b shows a scaling

interaction for height only.
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Figure 4.12: Scaling the width and height of Junctions.

(a) Using two touches to scale the
width a Junction.

(b) Using two touches to scale the
height of a Junction.

4.3.6 Touches

Touches that occur within Junctions can be mapped to messages. The X and Y location

of any touch that occurs within a Junction can be mapped. Each touch message also

includes the ID of the touch to distinguish among multiple touches. For mapping the

X,Y location of touches, each Junction is assigned its own coordinate space. The top left

corner of a Junction represents 0,0 as shown in Figure 4.13. The width and height of the

Junction are both assigned a value of one, making the values of the X,Y location that

are mapped normalized to the size of the Junction.

Figure 4.13: One or more touches can have their X,Y location mapped.

This mapping of X,Y locations works well for rectangular Junctions but works less well

for elliptical Junction where coordinates make more sense in terms or polar coordinates:
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Figure 4.14: Mapping touch X and touch Y inside of Junctions.

(a) One or more touches can have their
X,Y location mapped.

(b) One or more touches can have their
X,Y location mapped.

the distance from the center, R, and the angle relative to the center, theta. To solve

this problem, Junctions map touch data within ellipses using polar coordinates. The

distance from the center is normalized from 0 in the center to 1.0 at the edge of the

circle. Figure 4.15a shows a touch at some distance from the center and the 0 and 1.0

normalized points for a circle. The distance calculation works for ellipses with different

axis sizes as well as for circles.

Figure 4.15: Mapping touch R and touch theta inside of Junctions.

(a) Touches within ellipses are mapped
based on their distance from the cen-
ter. The touch shown here is moving
from the center toward the outer edge.

(b) Contacts within ellipses are also
mapped based on their angle. The
touch shown here is moving in a clock-
wise direction.

Touches within elliptical Junctions also send angle data. The top of the ellipse is the

starting point for the angle and is normalized from 0 to 1.0 going clockwise around the
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ellipse. Figure 4.15b shows a touch and its current angle from the center as well as the

0 and 1.0 angles. The figure shows a circle but the angle calculations work equally well

for ellipses.

In addition to the location or angle of touches within Junctions, the number of touches

in a Junction can be mapped to messages. With this mapping, a new message will be

sent every time the touch count changes. In Figure 4.16, the third touch would send a

message with a value of three.

Figure 4.16: The number of touches can be mapped. The mapping shown here would
send a value of 3.

4.4 Special Features

In addition to mapping, JunctionBox also has some special features that are related to

interactions. The following subsections describe the these additional special features.

4.4.1 Saving Interaction State

JunctionBox has the ability to save the interaction state of Junctions into a file that can

then be loaded, returning Junctions to the state when they were saved. Since Junction-

Box applications are created with code, it is not essential to store all of the Junction

data since much of it is there in the code itself. Instead, the Junction data that is stored

is data that is changed via interaction with the interface, data that would not appear in
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the code itself. Tools that are similar to JunctionBox allow for the interface itself to be

saved but not the state of the interface when interactions have changed it.

The data is stored in an XML-formatted [8] file with the following interaction data

for each Junction:

• The Junction’s order relative to other Junctions.

• A label for the Junction if it has one.

• The X value for the center.

• The Y value for the center.

• The width of the Junction.

• The height of the Junction.

• The angle of the Junction.

• The toggle state of the Junction.

4.4.2 Inheriting Interactions

Junctions can inherit interactions from other Junctions. When Junctions are added to a

parent Junctions, they inherit values for rotation, scaling and translation. This enables

child Junctions or sub-Junctions to easily take on any interaction of the parent without

direct interaction with the sub-Junctions. It is also possible to allow a sub-Junction to

have its own interactions while still inheriting interactions from the parent. Figure 4.17
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Figure 4.17: Junctions can inherit interactions from other Junctions. The smaller squares
in this example are inheriting their rotation angle from the larger parent Junctions shown
in green.

shows three square Junctions with the two smaller Junctions acting as sub-Junctions,

inheriting their angle from the outer parent Junction.

Beyond, inheriting interactions, sub-Junctions enable the creation of an “interaction

graph”. This is similar to a scene graph, in which graphical elements in a scene are

arranged in a tree so that when a change to the graph must occur, the search for scene

elements to change will proceed relatively quickly by not checking every element in the

scene. Figure 4.18 shows how an interaction graph works in JunctionBox.

4.4.3 Recording and Playing Interactions

JunctionBox can record and play back interactions with Junctions. The inspiration for

this feature comes from options available for audio files. Specifically, audio files represent

stored data in a file that can be played back at any time, that can be looped in continuous

playback, and can be scaled in time. These same concepts can be applied to multi-touch

interactions. In JunctionBox, interactions can be recorded, stored, played back, looped,

and time scaled.

For interaction recording, JunctionBox records incoming touch data directly. That
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Figure 4.18: By using inheritance, Junctions can form an interaction graph.

data can then be played back, replicating the interaction itself. In order to get an

accurate recording of the interaction, timing data is essential. To get accurate times for

interaction events, JunctionBox counts the number of nanoseconds between touch events.

When recording begins, the time for the first event is zero and then the elapsed number

of nanoseconds is recorded for each subsequent event.

The time between the start of recording and the first touch is not recorded. Likewise,

any recording done after the last touch is lifted is not included in the recorded interaction.

The reason for this is to keep the interaction discreet without having to worry the timing

of beginning and ending of recording.

Once recording has been stopped, the interaction data can be played back with the

same touch data and timing. Playback is concurrent with any other interactions since

playback occurs on a new thread, or subprogram that operates outside of the main

interface program. Playback can be stopped at any time.

Any recorded interaction that can be played back can also be looped, that is, played
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back repeatedly with looping controlled separately from playback. This allows looping

to be started and stopped anytime during playback. While an interaction is playing,

starting the looping means that the loop will begin at the end of the current playback.

Stopping a loop in the middle of playback will cause the interaction to play to the end

but with no subsequent loops.

Once interactions have been recorded, the events in the recording can be scaled in

time. By scaling, interactions can be made either faster or slower in time. This feature

is analogous to the ability to scale time in sound files. This kind of scaling can allow

developers to change the timing on interactions in an arbitrary and creative way.

4.4.4 Connection and Message Management

A major interest that came out of my thesis research is in ways to make computer music

performance setup easier. The issue of long setup times for performances is especially

acute for distributed music performance systems in which different computers need to

communicate to form a coherent system. Each computer then becomes a node in single

musical instrument as long as they can easily connect to each other. The management

of connections between nodes can be non-trivial and the setup of connections can take

time away from rehearsing and performing actual music.

To facilitate the management of nodes in music performance systems, I created the

Nexus Data Exchange Format (NDEF) [36, 37], a namespace specification for Open Sound

Control (OSC) messages. Appendix B contains the full NDEF specification. NDEF

works by providing nodes a lingua franca for connecting and for sharing OSC messages.

The NDEF specification can be implemented by any system that can handle basic OSC

messages. By implementing NDEF, OSC-based systems have a way to identify and

connect with other NDEF-supported nodes on either local or remote networks. Once

connected via NDEF message exchange, nodes can then request an exchange of the
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OSC messages that they accept. The basic functions of the NDEF specification are

implemented in JunctionBox.

NDEF is similar to the OSC query system proposal by Schmeder and Wright [103].

The proposed OSC query system offered the ability to explore namespaces by allowing an

OSC client to query an OSC server’s namespace by including a ‘/’ character at the end

of a message pattern. The OSC server would then send back a reply containing any sub-

patterns of the provided pattern. The reply begins with the ‘#’ character to distinguish

the query system from standard OSC messages. The following is an example from the

proposal in which the sub-patterns of /foo/bar are requested. The #reply contains the

pattern and the sub-patterns.

→ /foo/bar/

← #reply (sss) ’/foo/bar/’, ’test1’, ’test2’

An important difference between NDEF and the proposed OSC query system is that

NDEF does not require any changes to basic OSC implementations. The ‘#’ character

in the query proposal is not allowed in the basic OSC specification [124]. Therefore,

the query system cannot be used by implementations of the basic OSC specification. In

contrast, NDEF is simply a defined namespace using basic OSC messages that can be

implemented by any system without having to change basic OSC functionality.

Libmapper [70] is a software library that allows for a variety of mappings to be made

via OSC. But more than just mapping, libmapper also handles connections between

nodes on a network as well as message translation. The libmapper library is meant to

retain the flexibility of OSC by avoiding the use of a standardized namespace that might

allow nodes to automatically communicate. Figure 4.19 shows a GUI interface to the

libmapper library with various connections between nodes via OSC message translation.

The problem with this approach is that it simply moves the complexity from OSC
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Figure 4.19: A GUI interface for libmapper [70].

and handles it in software. While this sounds appealing, increasing software complexity,

especially when various kinds of hardware may be involved means that either the software

will not work in enough cases to be truly useful or that configuration of that software

will itself be complex. Making configuration more complex is not the goal of NDEF.

Rather, NDEF is a way to balance the simplicity of a standardized namespace with

enough implementation in software to allow for a variety of connection and message

management scenarios.

4.5 Summary

This chapter has described the basics of how the unit interaction model is defined and

used in the creation of the Junction Box toolkit. While many of the details explained

in this chapter are of necessity low level and detailed, together they show the possibility

of combining and recombining unit interactions at will. Building from the basis of unit

interactions enables simple musical interactions that be combined to create personally

chosen complex interactions. The interactions provided by JunctionBox are compared to
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similar multi-touch tools in Chapter5 and demonstrated through descriptions of interfaces

built with JunctionBox in Chapter 6.
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Chapter 5

Comparative Analysis

Science has one methodology, art and design have another. Are we surprised

that art and design are remarkable for their creativity and innovation? While

we pride our rigorous stance, we also bemoan the lack of design and innova-

tion. Could there be a correlation between methodology and results?

–Saul Greenberg and Bill Buxton [40]

In this chapter, I present the results of a comparative analysis of the mappable inter-

actions available in JunctionBox with those available in Control, TouchOSC, and Lemur.

The purpose of this comparison is to assess the success of the unit interaction model

and to place JunctionBox into the context of current multi-touch interaction mapping

tools. The criteria that I am using for this analysis is the total number of mappable

interactions in JunctionBox versus the other tools. Control, TouchOSC, and Lemur were

chosen because they are mapping tools in the same domain as my research and because

they offer similar mappable multi-touch interactions.

The comparisons were based strictly on the number of mappable interactions and

not on the full feature set in JunctionBox or the other mapping tools since their non-

interaction features do not overlap. In other words, JunctionBox has additional features

not available in the other tools and those tools have some features not available in Junc-

tionBox. For example, all of the other tools feature MIDI output as an option in addition

to Open Sound Control (OSC), which JunctionBox uses exclusively. Though I chose OSC

over MIDI for its greater configurability, the reasons for this choice are less important in

this context than the fact that MIDI is a communication protocol and not a mappable
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interaction. As another example, Lemur includes some physics based feedback, which is

not strictly a mappable interaction. At the end of this chapter, in the chapter summary,

I mention the additional features that are only available in JunctionBox. Thus this com-

parison is strictly about overlapping features while focusing on the application of my unit

interaction model via JunctionBox.

If my unit interaction model is successful in finding the fundamental unit interac-

tions inherent in multi-touch, then my model should have more mappable multi-touch

interactions. Having more available mappable interactions means that my model is an

interaction superset of the interactions available in the other tools. Since JunctionBox is

the reification of the model, I am using its multi-touch affordances as the basis for com-

parison. The chapter is divided into three sections, one for each comparable tool. The

first section (5.1) compares Control, the second section (5.2) compares TouchOSC, and

the third section compares (5.3) Lemur. The final section (5.4) summarizes the results.

The comparisons presented in this chapter are two-way comparisons and each section

has two subsections: 1) a comparison of mappable interactions offered by the tool to

JunctionBox and 2) a comparison of JunctionBox mappable interactions to those offered

by the tool. Referencing the documentation for each tool, I have used the terms that the

documentation uses for the widgets it describes. As part of the analysis I used interfaces

built with each tool and made note of the mappable interactions that were available

in each widget that the tool offers. Images of each widget, from interface screenshots,

are included to show the appearance of the widget and to give an idea of how it is

used. The main text for each widget describes the interactions that I found along with

equivalent interactions in JunctionBox. At the end of the comparison, I provide a list

of the JunctionBox equivalent interactions along with a reference to the figure for the

relevant interactions in Chapter 4, Section 4.3.
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The second part of each comparison looks at how the interactions offered by Junc-

tionBox compare to the other tool. For this, I created a table listing all of the mappable

interactions in JunctionBox along with those in the compared tool. JunctionBox com-

parison tables contain every interaction from Chapter 4, Section 4.3. A star in the tool’s

column indicates that a mappable interaction in JunctonBox exists in the tool.

5.1 Control

Control offers a set of widgets that can be customized in terms of their screen place-

ment, size, color, and the message they use for mapping. Each widget has a fixed set of

interactions with some having multiple interactions depending on their configuration.

5.1.1 Control to JunctionBox

Figure 5.1: A set of four buttons in toggle mode with three of the buttons toggled.

Button

The Button widget has two kinds of interaction: toggle mode and latch mode.

There are some additional mapping options with this widget but it has only two

basic interactions. In toggle mode, an interaction with the button puts it into a

toggled state and a subsequent touch de-toggles the button. Both toggling and de-

toggling send messages with the state of the button. A latch-mode button will send

a message when it is activated by a touch and then a follow-up message when the

touch is removed. The modes of the Button widget are duplicated by the activation

and toggling interactions in JunctionBox.
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JunctionBox equivalent:

• Activation (Figure 4.4)

• Toggling (Figure 4.5)

MultiButton

The MultiButton widget is a group of Buttons as shown in Figure 5.1. The buttons

have the same interactions described for the Button widget.

Figure 5.2: Two crossfade Control sliders in the vertical orientation. Slider 1 is moved
up relative to slider 2.

Figure 5.3: A normal Control slider in the horizontal orientation with the movable rect-
angle in the center.

Slider

The Slider widget has two different forms: 1) a crossfader form and 2) a normal

form. In the crossfader form, the slider is a small rectangle that is moved to change

values. The normal form of a slider is a rectangle that changes size to change

values with an increase in size increasing the value and a decrease in size doing the

opposite. In either case, sliders can be oriented either horizontally or vertically.
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For the normal form, a single touch increases the size of the rectangle while the

base of the rectangle stays fixed. Using JunctionBox, this kind of interaction can

be replicated in one of two ways. A rectangle can have changes in its width and

height mapped. This is not exactly the same interaction used in the Control slider

since two touches change the width or height with JunctionBox. To get the same

interaction in JunctionBox, the X or Y location of a touch within a Junction can

be used to change the width or height with a single touch.

JunctionBox equivalent:

• Scale width (Figure 4.12a) or height (Figure 4.12b)

• Touch X (Figure 4.7a) or Y (Figure 4.7b)

MultiSlider

A MultiSlider widget is a collection of Sliders with same interactions as a basic

Slider. Figure 5.3 shows a two-slider MultiSlider.

Figure 5.4: A Control knob.

Knob

The Knob widget is circular and can be rotated in one of two ways: 1) by directly

rotating with a touch within its area and 2) by moving a touch up and down in a

vertical direction. In either case, the angle of the rotation of the Knob changes its

value. A Knob can be moved to a specific value or a value can be selected and the

Knob will go directly to that value. The first kind of interactions is replicated in
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JunctionBox with the rotation interaction with limits set to duplication the arc-

style mapping of the Control Knob. The angle of Junctions can be changed directly,

allowing for it to be rotated to a specific value. When an angle is changed to a

specific value, messages are still sent in the same way. This kind of direct change to

the angle of a Junction can also be used to replicate the second Knob interaction.

JunctionBox equivalent:

• Rotation 1 (Figure 4.10a)

Figure 5.5: A Control MultiTouchXY rectangle. The numbered squares represent the
location of touches in the widget.

MultiTouchXY

The MultiTouchXY widgets is a rectangular space that maps the X,Y locations of

touches within its area to messages. In JunctionBox, this is done with the touch X

and Y mappable interaction.

• Touch X and Y (Figure 4.13)

5.1.2 JunctionBox to Control

Table 5.1 compares mappable interactions in JunctionBox to Control.
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Table 5.1: JunctionBox vs. Control
Interaction JunctionBox Control
Activation F F
Toggling F F
Translation X F F
Translation Y F F
Translation X and Y F
Translation (>1 touches) F
Rotation 1 F F
Rotation 2 F
Rotation 1 and 2 F
Rotation Count F
Scaling Width F F
Scaling Height F F
Scaling Width and Height F
Touch X F
Touch Y F
Touch X and Y F F
Touch R F
Touch Theta F
Touch R and Theta F
Touch Count F

5.2 TouchOSC

TouchOSC offers a variety of widgets that can be mapped to OSC messages. Each widget

can have a custom OSC message that it sends when it is activated. The widgets all have

a fixed appearance although their sizes can be changed. Widgets are customized with a

separate editing application and are then loaded onto a device.

5.2.1 TouchOSC to JunctionBox

The following list describes each TouchOSC [48] widget and the mappable interactions

that it affords. Only TouchOSC’s interactive widgets are compared since the purpose

of the comparison is to compare mappable interactions. TouchOSC has an option to

send what it calls Z values for every widget. The letter Z is used because a multi-touch
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device has a surface that is a two-axis X-Y plane and the Z axis is the third axis that

extends out from the device towards the person performing an interaction. When an

interaction begins, a Z message is sent indicating that the widget is active and when an

interaction ends, another message is sent indicating the the widget is no longer active.

In JunctionBox, this can be done with the activation interaction and so this interaction

is listed as a JunctionBox equivalent for every TouchOSC widget.

Push Button

Figure 5.6: TouchOSC push buttons with unpushed on the left and pushed on the right.

The push button widget sends an OSC message when a touch occurs in the area of

the button and sends another message when the touch is removed. Button light up

when touched and dim again when the touch is removed. The basic functionality of

this widget can be done in JunctionBox with the activation mappable interaction.

In addition to having a basic activation interactions, this widget also sends a Z

message which does exactly what the basic widget does. They both have the same

equivalent interaction in JunctionBox.

JunctionBox equivalent:

• Activation (Figure 4.4) for the basic interaction

• Activation (Figure 4.4) for the Z message

Multi-Push
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Figure 5.7: TouchOSC multi-push.

The Multi-Push widget is a grid of Push widgets that uses the same mappable

interactions.

Toggle Button

Figure 5.8: TouchOSC toggle buttons with toggled on the left and de-toggled on the
right.

The toggle widget has two touch steps: 1) a touch to set the widget to a toggled

state and 2) a touch to de-toggle the widget. The widget lights up when it is in the

toggle state and dims when it is de-toggled. Messages are sent for when the state

is changed with one message for toggle and one for de-toggle. This interactions is

equivalent to the toggling interaction in JunctionBox.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Toggling (Figure 4.5)

Multi-Toggle

The multi-toggle widget is a collection of toggle widgets laid out in a grid. The

mappable interactions are the same as they are for toggles except that each toggle

is assigned a number in the grid.
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Figure 5.9: TouchOSC multi-toggle.

Fader/Rotary

Figure 5.10: TouchOSC faders and rotaries.

Faders feature a small rectangle that is moved within the confines of a larger rectan-

gle. A fader can be oriented vertically or horizontally with the interaction mapping

in the Y direction or the X direction depending on orientation. In JunctionBox,

these interactions are enabled with the translate X or translate Y interactions.

Rotaries are similar to faders but instead of moving a rectangle, the interaction

depends on the angle of a touch relative to the center of a circle. When a touch

happens within the widget, a circular strip changes grows or shrinks within the circle

to indicate an increase or decrease in value. Clockwise movement increases the value

and counter-clockwise movement decreases the value. The rotation interaction in

JunctionBox is the same kind of mappable interaction.

JunctionBox equivalent:

• Activation (Figure 4.4)
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• Translate X (Figure 4.7a) or Y (Figure 4.7b) for the Fader

• Rotation 1 (Figure 4.10a) for the Rotary

Multi-Fader

Figure 5.11: TouchOSC multi-fader.

A Multi-Fader combines a number of Fader widgets into a single widget.

Encoder

Figure 5.12: TouchOSC encoder.

An encoder is a rotatable widget with no limit on the angle or the number of

rotations. The rotation interaction in JunctionBox offers the same mappable inter-

action.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Rotation (Figure 4.10a)

XY Pad
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Figure 5.13: TouchOSC XY pad with target lines that show the location of the last touch.

An XY pad takes the X,Y location of any touch in its rectangular area and includes

those values in the message set for the widget. This is done in JunctionBox with

the touch X and Y interaction.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Touch X and Y (Figure 4.13)

Multi-XY

Figure 5.14: TouchOSC multi-XY with two touches.

The XY widget works in the same was as the XY Pad but it will take up to five

touches. Otherwise, the mappable interaction is the same as for the XY Pad widget.

5.2.2 JunctionBox to TouchOSC

Table 5.2 compares the mappable interactions available in JunctionBox to those available

in TouchOSC.
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Table 5.2: JunctionBox vs. TouchOSC
Interaction JunctionBox TouchOSC
Activation F F
Toggling F F
Translation X F F
Translation Y F F
Translation X and Y F
Translation (>1 touches) F
Rotation 1 F F
Rotation 2 F
Rotation 1 and 2 F
Rotation Count F
Scaling Width F
Scaling Height F
Scaling Width and Height F
Touch X F
Touch Y F
Touch X and Y F F
Touch R F
Touch Theta F
Touch R and Theta F
Touch Count F

5.3 Lemur

Lemur is similar to both Control and TouchOSC in terms of offering mappable widgets.

Unlike the other widget tools, Lemur allows “skins” that can customize the appearance

of widgets. A notable feature of Lemur is the use of physics to animate the movement

of certain objects after they are released. When objects are released, they can bounce,

rebound, and oscillate on their own. Each of these physical movements is mapped to

OSC messages. For this analysis, I have not included physics as a mappable interaction

in the comparison. The reason for excluding physics is that this is not strictly speaking an

interaction since the objects with physics move on their own, after the actual interaction

has occurred. The physics in Lemur represent a mappable animation. The strict focus

of this analysis is to compare mappable interactions rather than mappable animations.
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5.3.1 Lemur to JunctionBox

The following widgets (objects) are available in Lemur [67]. Details about the widgets are

taken from the Lemur User Guide, Chapter 12 [66] and from building an interface using

those widgets to test the interactions and mapping. Like the Z messages in TouchOSC,

nearly all of the widgets in Lemur send a message indicated that they are actively being

used and another message when they are no longer active. This is the equivalent of

the activation interaction in JunctionBox. The list of equivalent interactions for these

widgets references this JunctionBox interaction.

Pad

Figure 5.15: Four Lemur Pads. The upper left Pad is activated.

Pad widgets are triggered by a touch like Control’s Button in “latch” mode and

TouchOSC’s Push Button. A touch sends a message when it contacts the widget

and another when it leaves the widget.

JunctionBox equivalent:

• Activation (Figure 4.4)

Switch
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Figure 5.16: Two Lemur Switches. To left Switch is not toggled and the right Switch is
toggled.

The Switch widget is like the Control Button in “toggle” mode and the TouchOSC

Toggle Button. When a touch occurs in its area, it is set into a toggled state.

Touching again de-toggles the widget.

JunctionBox equivalent:

• Toggling (Figure 4.5)

StepNote

A StepNote is a set of toggle switches that offers the same interaction described for

the Switch widget.

JunctionBox equivalent:

• Toggling (Figure 4.5)

Custom Button

The Custom Button can be either a Pad or a Switch. Neither option changes the

mappable interactions.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Toggling (Figure 4.5)
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Fader

Figure 5.17: Lemur Fader in a vertical orientation. The bright blue rectangle moves to
change values.

Like the Slider in Control and the Fader in TouchOSC, Lemur’s Fader widget is a

movable rectangle that changes the value based on its movement. Fader’s can be

oriented vertically or horizontally.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Translation X (Figure 4.7a) or Y (Figure 4.7b)

Knob

The Knob widget has two rotation modes: 1) a constrained rotation mode and 2)

an encoder mode with no constraints. This very similar to the knob widget in Tou-
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Figure 5.18: Lemur Knobs in constrained mode on the left and in encoder mode on the
right.

chOSC. Like that widget, JunctionBox does the same mapping with the rotation

interaction.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Rotation 1 (Figure 4.10a) for both modes

MultiBall

Figure 5.19: Lemur MultiBall with thee balls.

The MultiBall widget is one or more movable circles inside of a rectangle. When

the locations of the circles are changed, they send messages with their current lo-

cation. This interaction can be replicated in JunctionBox with the touch X and Y

interaction.

JunctionBox equivalent:
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• Activation (Figure 4.4)

• Touch X and Y (Figure 4.13)

MultiSlider

Figure 5.20: Lemur MultiSlider in a vertical orientation with the sliders set to various
values.

The Lemur MultiSlider is a set of slider objects. A slider in a Lemur interface is

distinct from a Fader in that it does not use a movable rectangle to change values.

Rather, a rectangle changes size to set values. Either the height or the width of

a slider rectangle changes, depending on whether it is in a horizontal (width) or

vertical (height) orientation.

JunctionBox equivalent interactions:

• Activation (Figure 4.4)

• Scaling Width (Figure 4.12a) or Height (Figure 4.12b)

StepSlider

The StepSlider is similar to the MultiSlider but it sends all of the values whenever

there is an interaction. Otherwise, the interactions are the same.

JunctionBox equivalent:

• Activation (Figure 4.4)
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• Scaling Width (Figure 4.12a) or Height (Figure 4.12b)

Range

Figure 5.21: Two Range widgets where the size of the rectangle represents the size of the
value range. The widget on the right has a larger range.

The Range widget sets a range of values based on the width or height of a rectangle.

Increasing the width or height increases the range of values while decreasing it does

the opposite.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Scaling Width (Figure 4.12a) or Height (Figure 4.12b)

RingArea
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Figure 5.22: Lemur RingArea with the Ring held in the upper left part of the circle.

The RingArea widget allows a ball to be moved around inside a circle. Moving the

ball changes its X and Y position inside the circle and this is then mapped to a

message. More interesting than the basic interactions is that this widget actually

has its own physics in that, when released, it bounces around the center of the circle

until it runs out of momentum and stops moving. For the RingArea, messages are

still sent after the ball is released as it loses momentum. JunctionBox does not

have physics but the basic interaction can be mapped with the touch X and Y

interaction.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Touch X and Y (Figure 4.13)

Breakpoint

The Breakpoint is an envelope editor widget. An envelope is applied to a sound

to gradually increase its gain with an optional decrease in gain followed by an

optional sustained gain and ending with a gradual decrease in gain. Envelopes are

the equivalent, when done in this way, of pressing a key on a keyboard, holding
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Figure 5.23: Lemur BreakPoint.

the note for that key, and then lifting the key again to end the note. The envelope

is represented in the BreakPoint with at least three circles, one for each change in

gain. Each the the circles can be moved, changing the shape of the envelope. When

the circles are moved, messages containing the X and Y location of the circle are

sent. Figure 5.23 shows the BreakPoint widget with five circles for the envelope.

JunctionBox equivalent:

• Activation (Figure 4.4)

• Touch X and Y (Figure 4.13)

5.3.2 JunctionBox to Lemur

Table 5.3 shows the comparison of mappable interactions in JunctionBox to those in

Lemur.

5.4 Summary

The point of this comparative analysis was to determine whether JunctionBox offers

more mappable interactions compared to similar mapping tools, making JunctionBox an

interaction superset. Table 5.4 summarizes the comparisons among Control, TouchOSC,

Lemur, and JunctionBox. As the comparisons show, JunctionBox can replicate any of the
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Table 5.3: JunctionBox vs. Lemur
Interaction JunctionBox Lemur
Activation F F
Toggling F F
Translation X F F
Translation Y F F
Translation X and Y F
Translation (>1 touches) F
Rotation 1 F F
Rotation 2 F
Rotation 1 and 2 F
Rotation Count F
Scaling Width F F
Scaling Height F F
Scaling Width and Height F
Touch X F
Touch Y F
Touch X and Y F F
Touch R F F
Touch Theta F F
Touch R and Theta F F
Touch Count F

mappable interactions in Control, TouchOSC, or Lemur. JunctionBox also offers more

mappable interactions in total, making it a superset of the interactions in the comparable

tools. In other words, JunctionBox could be used to build any of these widget-based tools

while at the same time offering more interaction options. By showing that JunctionBox is

an interaction superset of the other tools, I have shown the unit interaction model that

I developed during my research has found more fundamental multi-touch interactions

thus meeting my research challenge of finding the universal building blocks inherent in

multi-touch.

The additional special features in JunctionBox that are beyond those contained in

Control, TouchOSC, and Lemur that are not used for this comparision include: 1) the

ability to save and load ineraction states, 2) allowing actions to be inheritable, thus

supporting propogation of interactions, 3) incoporating the ability to record, play back,
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loop, and time stretch interactions and 4) offering connection and message management

functionality that makes it easier for networked computers to connect and to share the

OSC messages that they use for mapping.

Table 5.4: JunctionBox vs. Control, TouchOSC, and Lemur
Interaction JunctionBox Control TouchOSC Lemur
Activation F F F F
Toggling F F F F
Translation X F F F F
Translation Y F F F F
Translation X and Y F
Translation (>1 touches) F
Rotation 1 F F F F
Rotation 2 F
Rotation 1 and 2 F
Rotation Count F
Scaling Width F F F F
Scaling Height F F F F
Scaling Width and Height F
Touch X F
Touch Y F
Touch X and Y F F F F
Touch R F
Touch Theta F F F F
Touch R and Theta F
Touch Count F
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Chapter 6

Interfaces and Performances

Musical interface construction proceeds as more art than science, and possibly

this is the only way that it can be done.

–Perry Cook [20]

Digital lutherie is in many senses, very similar to music creation. It involves

a great deal of possible and different knowhow, the use of many technical and

technological issues but, like in music, there are no inviolable laws. That is to

say that digital lutherie should not be considered as a science, no more than

music, but as a sort of craftsmanship, that may sometimes produce - in very

exceptional cases - a work of art; no less than music.

–Sergi Jordà [55]

In this chapter, I describe a series of interfaces that I built with JunctionBox and used

in various performance situations (including one installation). Through these interfaces

and their associated performances, I demostrate the success of the unit interaction model

in real performance situations. Each section in the chapter describes an interface, the

mappable interactions used with that interface, and the how the interactions were used

to control audio. A screenshot of the interface opens each section. This is followed by a

list of who created each interface and when and where each interface was performed. A

list of mappable interactions at the end of each description points to the relevant figure

in Chapter 4, Section 4.3 that describes that interaction. The chapter ends with a short

summary (6.7).
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I designed all but one of the interfaces myself and coded all of them using Junc-

tionBox. One interface, Under Control (described in Section 6.5), was a collaborative

design with Simon Fay. In addition, I programmed the audio engines for all but the

Under Control interface. The instruments (interface and audio engine combined) that I

designed myself were intended to allow me to experiment with musical interfaces both

visually and sonically. These experiments show just some of the creative possibilities that

JunctionBox offers.

My own research falls into the general category of digital lutherie or building musical

instruments with computer software and hardware. Digital lutherie certainly has an

element of craftsmanship but there is more to the story of digital lutherie than just

craftsmanship. In order to craft an instrument, especially a work of art, the builder

must have the right tools. This is especially true for software tools like libraries in which

the library itself actually becomes a part of the instrument. A well-designed library or

toolkit both addresses the need for basic building blocks and at the same time addresses

the need for creative freedom, the beginning of any craftsmanship. To determine whether

a tool deisgn is successful, the design of a tool can be tested by using it in practice.

6.1 Apollo 20

Created by Lawrence Fyfe

Performed at CCRMA Summer Workshop

July 30, 2010

Stanford University

In July of 2010, I co-taught, with Adam Tindale, a one-week CCRMA Summer work-

shop on using JunctionBox to create multi-touch musical interfaces. For the workshop, we

used a custom-built FTIR multi-touch table as the touch hardware. During the workshop,
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Figure 6.1: The Apollo 20 interface.

I built my own interface called Apollo 20. At the end of the workshop, the instructors

and the students put on a short concert to demonstrate their work with JunctionBox.

Figure 6.1 shows the Apollo 20 interface. My artistic intention with this interface was to

experiment with constraint by creating a very simple set of interactions and to see how

they can be used.

The interface features four concentric circles designed to represent planetary orbits

much like an orrery [123] represents planets in the solar system. Each orbit has a planet,

representing the four inner planets in the solar system: Mercury, Venus, Earth and Mars.

The four planets are toggle buttons and each uses an actual image of that planet. The

toggle buttons control a bank of four FM synthesizers, one for each planet. The orbital

areas are rotatable and the planets move as the orbital area is rotated. Rotating the

orbital area de-tunes the corresponding FM synthesizer. The mapping between this in-

terface and the audio engine is described in the next section since these two interfaces

share the same audio.



107

Mappable interactions:

• Toggling (4.5)

• Rotation (4.10a)

6.2 Orrerator

Figure 6.2: The Orrerator interface based on an orrery metaphor.

Created by Lawrence Fyfe

Performed at CEC 25th Anniversary Concert

November 22, 2011

University of Calgary

Recording played at Linux Audio Conference

April 13, 2012

Stanford University
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The Orrerator is a revision of the Apollo 20 interface described previously. Like

Apollo 20, the metaphor for the Orrerator is the orrery or a model of the solar system, as

shown in Figure 6.2. For this interaction, I wanted to experiment with a more abstract

representation for the visuals and to add more controls for the audio to give the interface

more expressive control after the experiment in constraint in Apollo 20. The Orrerator

interface has widget-like controls but with a much more stylized appearance.

I performed live with the Orrerator at the CEC (Canadian Electroacoustic Commu-

nity) 25th Anniversary Concert. The Orrerator is designed both as a general instrument

that could be used for a variety of pieces but also specifically for my composition enti-

tled Sol Aur. For Sol Aur, I recorded audio of myself playing the instrument and that

recording was played at the 2012 Linux Audio Conference.

The Orrerator uses the same audio engine as Apollo 20, programmed in PureData

(Pd), and features four FM oscillators. The interface has four planet buttons that light

up when toggled by simply touching the particular planet. Each planet button turns

a single FM oscillator on or off. In addition to on or off controls, each planet button

can be rotated around its orbit by touching the orbit area and rotating it around the

center. The planets move when the orbit area is rotated, giving visual feedback. The

change of rotation will detune that particular FM oscillator from its base frequency by

a factor of between one and two with the starting vertical position being one and a full

rotation back to that same position being two. Orbital rotations are limited to 360 de-

grees from the starting position. That is, planets start at the top of the interface and

can be fully rotated back to that position. They can also be rotated counter-clockwise

to their starting position. On the left and right edges of the interface are two sliders: the

left slider changes the index of modulation and the modulation frequency and the right

slider changes the gain of all four oscillators at the same time.
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Mappable interactions:

• Toggling (4.5) for the planets

• Rotation (4.10a) for the orbital areas

• Translation Y (4.7b) for the sliders

6.3 Particulator

Figure 6.3: The Particulator.

Created by Lawrence Fyfe

Performed at New Music Ensemble Final Concert

December 3, 2012

University of Calgary

The design of the Particulator interface is inspired by the test pattern that was used for

analog television broadcasting. Test patterns are a representation of the color spectrum,
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split into discernible parts. This is somewhat analogous to the breakup of an audio file

into parts in granular synthesis. The audio engine has two granular synthesizers and is

built in Pd. For each granular synthesizer, I used two audio files, each taken from my

recording of Sol Aur mentioned in the description of the previous interface.

I performed with the instrument at the final concert of the NewMusic Ensemble course

at the University of Calgary. For that concert, I worked with the students to develop a

semi-improvised performance featuring each of their computer-based instruments while

I performed with the Particulator.

The three large rectangles on the right and left control, from top to bottom, the po-

sition, the duration, and the interonset times for the granular synthesizers. The middle

sliders control the gain of each audio granulator (they are directly next to their corre-

sponding synth controls). The middle buttons on top of the sliders from left to right,

turn on the granulators for continuous playback and fire off a single grain respectively.

Mappable interactions:

• Activation (4.4) for firing single grains

• Toggling (4.5) for controlling continuous playback

• Translation Y (4.7b) for the sliders

• Touch X and Y (4.13) for the granular parameters

6.4 Glass Steps

Created by Lawrence Fyfe

Performed at Interactions Lab Demo Day

December 9, 2013
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Figure 6.4: Glass Steps.

University of Calgary

Glass Steps originated with my interest using the golden ratio [120] for both visuals

and audio. The steps (blue circles) in the interface are sized according to the golden ratio

with each set into a rectangle that relates to a larger rectangle as shown in Figure 6.5.

Figure 6.5: The golden ratio relating larger and smaller yellow rectangles. Image taken
from Mathworld [120].

Each step plays a particular note and the notes are also tuned using the golden ratio.

The largest circle plays the lowest note and each successive note is 1.6 (close to the value

of the golden ratio, φ) times the frequency of the previous note.

Figure 6.6: φ represents the golden ratio. Image taken from Mathworld [120].

As the steps get smaller, the frequency gets higher in an approximation of the notion
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of smaller acoustic instruments have higher frequencies than larger ones. I used this

interface for short performances during the Interactions Lab demo day where people visit

the lab and the students demonstrate their work for the visitors.

The audio engine used for Glass Steps is ChucK [16] which I chose because ChucK

makes it easy to implement physical models of acoustic instruments. Each of the circles

controls a banded wave guide [17] physical model that sounds like a glass harmonica. The

distance of touches from the center of the circle controls the gain of each glass harmonica,

with the highest gain closest to the center of the circle and the quietest closest to the

edge. A toggle button in the center of each circle controls a chorus effect. The number

of touches in each circle controls the number of voices in the chorus effect.

Mappable interactions:

• Activation (4.4)

• Toggling (4.5) for the chorus effect

• Touch R (4.15a) for the gain

• Touch Count (4.16) for the voices

6.5 Under Control

Created by Lawrence Fyfe and Simon Fay

Performed at International Computer Music Conference - Sound and Music

Computing (ICMC-SMC)

September 16, 2014

Athens, Greece
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Figure 6.7: Under Control.

Under Control was built in collaboration with Simon Fay for his piece_under_scored_

performed with the Aspect ensemble [34] (myself, Simon Fay, and Aura Pon) at the joint

ICMC-SMC 2014 conference. I formed the ensemble with Simon and Aura to create

a performance vehicle for our various forms of research into computer music. For my

own research, the Under Control interface is built with JunctionBox. I played this in-

terface while Simon played guitar and Aura Pon played oboe. The interface controlled a

Max/MSP patch developed by Simon that featured a continuously playing algorithmic

synthesizer with a strong rhythmic component since the piece is in a Jazz fusion style.

The piece is a structured improvisation with four sections: A, B, C, and T (for

transition). In the upper left corner is a list of the sections of the piece that allowed me

to keep track of the current section. Solos are marked with names, either Aura or Simon.

The section is changed during the course of the piece by selected one of the A, B, C,

or T buttons on the right side. Whenever I changed the section, a simple visual score

indicated to Simon and Aura both the current section and the upcoming section that I

had selected. The score is shown in Figure 6.8.

For the different sections, I changed various parameters to give each section a par-



114

Figure 6.8: The visual score for _under_scored_ with A as the current section and B as
the upcoming section.

ticular feel. The two sections marked “Timbre” and “Rhythm and Melody” track the X

and Y location of touches that are mapped to those parameters in the Max/MSP patch.

When moving from one corner to another, the timbre, for example, is cross-faded be-

tween timbres as the touch moves to the other corner. Therefore, the center, indicated

by a ring, represents all four timbre values mixed equally. The mapping is the same for

changes to rhythm and melody. A set of sliders controls the labelled parameters. The

large “Config” button on the right side of the interface opens a form for changing the IP

address and port number used to send messages to the audio engine.

Mappable interactions:

• Activation (4.4)

• Toggling (4.5) for the section buttons

• Translation Y (4.7b) for the sliders

• Touch X and Y (4.13) for the timbre and rhythm and melody controls
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6.6 Distance 2

Figure 6.9: The Distance 2 interface featuring movable tiles that control various audio
files.

Created by Lawrence Fyfe

Installed at Interpreter: The Abstraction of Narrative through Interactive

Digital Rendering Systems

February 6-27, 2015

GalleryFM, University of Calgary

The Distance 2 interface was used for my installation entitled Distance 2 (Toshi

Ichiyanagi). Distance 2 was inspired by Toshi Ichiyanagi’s composition Distance [50]

in which the performer must be a fixed distance away from the instrument during the

performance. For my installation, the notion of distance was conceptual rather than

actual. The sounds I used for this installation are all taken from an interview with Toshi

Ichiyanagi with some effects added. The conceptual distance is from Toshi Ichiyanagi’s

words as the sounds are changed as described below.

A series of numbered tiles, ten in total, can be moved across the interface with each

tile representing a snippet of the interview with Toshi Ichiyanagi. Figure 6.9 shows the
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tiles on the interface. When the tiles are placed in the target circle and the touch used to

move the tile is released, the sound for that tile begins to play. Touching a tile while it is

playing will pause playback. White tiles are the original sound and black tiles represent

the sound reversed. The left side of the target plays sound in the left speaker and the

right side plays in the right speaker.

The concentric circles in the target represent the playback speed for the chosen sound

tiles. The very center plays back the sound at normal speed. Each larger concentric

circle slows down the playback speed by a set amount with the outer circles playing at

2x, 4x, and 8x the normal playback speed respectively. Stretching the files in this way

significantly alters the sound as the playback rate is slowed, representing a conceptual

distance from the original sound. The audio engine for this piece is written in Pd with a

custom file playback control mechanism designed by me.

Mappable interactions:

• Activation (4.4) for the playback

• Translation X and Y (4.6) for the placement of the tiles

6.7 Summary

This chapter described a series of musical interfaces that I built using JunctionBox and

used in performance and installation situations. By using JunctionBox-built interfaces

in a series of performances, I have shown that my unit interaction model is usable in real

musical situations. The interfaces also serve to provide some idea of the range of creative

possibilities that my model/JunctionBox affords.
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Chapter 7

Design Principles

I also discovered that in the grand scheme of things, there are three levels

of design: standard spec, military spec and artist spec. Most significantly, I

learned that the third, artist spec, was the hardest (and most important). If

you could nail it, everything else was easy.

–Bill Buxton [12]

In this chapter, I describe the design principles that I distilled from my research in

applying my unit interaction model via the JunctionBox toolkit. The principles presented

here meet my research challenge of distilling my research into usable design principles.

The value of these principles lies in their ability to meet “artist spec”, as Buxton calls

it, in designing toolkits for building multi-touch musical interfaces. In the context of

my research, I define “artist spec” as doing two important things: 1) offering creative

coding functionality that addresses multi-touch in a musical context and 2) allowing

creative coders the freedom to build multi-touch musical interfaces according to their

own creative whims.

I distilled the design principles in both building and using JunctionBox to build

musical interfaces for my own creative practice. Each of the principles is a variation on

the concept of tolerance. The chapter is divided into five sections with the first four

describing a specific kind of tolerance that is relevant to the design of JunctionBox. The

first section describes interaction tolerance (7.1), the second describes mapping tolerance

(7.2), the third describes networking tolerance (7.3, and the fourth describes graphical

tolerance (7.4). The last section (7.5) is a short summary of the chapter.
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The overarching principle that I distilled from my research is tolerance. My motivation

for using this term for my design principles comes from the definition of the verb form,

tolerate:

tolerate: [tol-uh-reyt] to allow the existence, presence, practice, or act of

without prohibition or hindrance. [31]

In the context of my research, tolerance means allowing programmers the freedom to

build highly customized interfaces while providing relevant functionality. A toolkit, Junc-

tionBox included, offers functionality that inevitably leads to some creative constraints.

The trick in designing a toolkit is to balance functionality with tolerance in how that

functionality is used. My goal in developing a unit interaction model through Junction-

Box was to enable a high degree of tolerance in balance with a rich set of multi-touch

mappable interactions. The importance of the design principles in this chapter is that

they serve to bring that balance to the fore for anyone who wants to build a mapping

toolkit that combines interaction, mapping, and graphics.

7.1 Interaction Tolerance

The first principle that I derived from my research in designing and using JunctionBox

is interaction tolerance. This means that a toolkit should allow for the widest possible

range of interaction options to choose from when building a multi-touch musical interface.

A builder should have complete control over what interactions are or are not used for

a given interface. This means that a builder can use any interaction or combination of

interactions to build interfaces that are as simple or as complex as desired. This principle

is very much in line with the universal building block philosophy that Max Mathews used

in designing unit generators for audio programming. As such, interaction tolerance is

the key to implementing my unit interaction model and JunctionBox demonstrates this
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principle in the interactions that it offers interface builders. These are listed in Chapter 4,

Section 4.3.

7.2 Mapping Tolerance

Mapping tolerance is about allowing but not requiring any multi-touch interaction to

be mappable. Once a set of interactions are selected for a given interface, all of those

interactions should be mappable to messages if desired. Once mapping is desired for a

given interaction, it should be possible to enable the mapping by selecting a message

for it. There should be total freedom in selecting the message for any given mapping.

Messages are the glue that connects interfaces to audio engines to form a single musical

instrument. OSC is an inherently flexible message system, allowing builders to choose

their own messages. A toolkit that uses OSC should not get in the way of the flexibility in

OSC even while providing functionality that makes OSC easier to use. In JunctionBox,

a builder can use any message that they want for mapping while at the same time,

JunctionBox automatically adds parameters to messages based on the interaction for

that message. This achieves a balance between tolerance for customized messages while

still providing basic functionality. Mapping features in JunctionBox are described in

Chapter 4, Section 4.2, Subsection 4.2.2.

7.3 Networking Tolerance

Networking tolerance means that a toolkit should enable a range of networking options.

While allowing networking, a toolkit should not get in the way of how that network is

configured. Interfaces should be able to talk to an audio engine on the same device, in

the same room over a wireless network, or over the internet. An interaction mapping

toolkit should also allow interactions to be sent over the network to different computers.
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That is, any interactive part of an interface should be able to be individually mapped

to any computer. In JunctionBox, an interface can be designed that sends to a single

other computer or different interactions on the interface can send messages to different

computers. This opens up a a wider range of networking options, showing networking

tolerance. Networking options in JunctionBox are described in Chapter 4, Section 4.2.

7.4 Graphical Tolerance

Graphical tolerance refers to the visual design options that a toolkit allows. An inter-

action toolkit should work well in a graphical context, allowing for visual feedback from

any kind of interaction. At the same time, an interaction toolkit should minimize its

constraints on graphical output. This allows for much greater freedom in designing the

look of an interactive instrument. Other than some constraints on the shapes of inter-

active objects on an interface, JunctionBox makes no specification for how these objects

appear visually. Graphical output in JunctionBox is described in Chapter 4, Section 4.2.

Chapter 6 shows just a few of the visual possibilities enabled by graphical tolerance in

JunctionBox.

7.5 Summary

In this chapter, I presented my design principles derived from the development and use

of the JunctionBox toolkit. The most important factor for my research is the concept

of interaction tolerance since it realtes directly to the application of my unit interaction

model. The basic concept of interaction tolerance is the policy of non-inference. Non-

interference, inherently supports the idea that interactions that can be discrete (hence

unit) and can be combined to introduce chosen complexity levels. I also identified map-

ping, networking, and graphical tolerances as important principles in the design and
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implementation of JunctionBox. These design principles distilled from my research of-

fer guidance for toolkits that combine multi-touch interaction mapping, networking, and

graphics for building musical interfaces.
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Chapter 8

Conclusions

My training is as an engineer, and I consider that I’m not a composer, I’m

not a professional performer of any instrument. I do love music. If I’ve done

anything, I am an inventor of new instruments, and almost all the instruments

I have invented are computer programs.

–Max Mathews [82]

In this thesis, I have described my investigation into the development and application

of a unit interaction model to multi-touch, networked interactions for mapping to musical

control. My research was motivated by my interest in creative coding tools that give

developers the freedom to create highly-customized multi-touch interfaces that meet their

specific needs and offer a range of possibilities from the simple to the complex. To

instantiate this model, I designed and built JunctionBox, a creative coding toolkit for

building multi-touch interfaces. To put the model into the context of current technologies

and to test it in real musical situations, I compared JunctionBox to similar multi-touch

mapping tools and used JunctionBox to build a series of musical interfaces that I used

in my own performance practice.

My research in applying my unit interaction model via JunctionBox led to a number

of contributions. In this chapter, I describe those research contributions along with some

ideas for future research. The first section of this chapter details the contributions (8.1).

This is followed by some of my ideas for future work that builds on this research (8.2).

After that, I offer some closing remarks (8.3). The chapter ends with a short coda (8.4).



123

8.1 Contributions

During the course of my research, I answered a number of challenges as described in

(Chapter 1, Section 1.5 and those answers are the contributions made by my research.

1. The Development of a Unit Interaction Model for Multi-touch Interac-

tions

By studying existing multi-touch instruments and mapping tools, I derived a set

of unit mappable multi-touch interactions. I further developed the model during

the course of building the JunctionBox toolkit. The goal for the model was to

determine the most low-level multi-touch interactions that could be individually

mapped to musical control. To find the most low-level interactions, I investigated

two broad categories of interactions: 1) manipulating shapes with multi-touch input

and 2) tracking one or more touches directly. Within these two categories, I found

a rich set of unit interactions to use for mapping to musical control. As a thorough

investigation of the possibilities inherent in multi-touch, the model serves as a

contribution to the advancement of multi-touch input for music.

2. The Creation of a Toolkit that Reifies the Unit Interaction Model

To test my unit interaction model, I reified the model by building the JunctionBox

software toolkit. The unit interactions in JunctionBox can be used in various

combinations for building multi-touch musical interfaces with varying degrees of

complexity. The full set of unit interactions is described in Chapter 4, Section 4.3.

In order to evaluate the success of my unit interaction model, with JunctionBox,

I took two paths: a) a comparative analysis to show that my investigation into

the unit interaction model yielded more mappable interactions than other mapping

tools (Chapter 5) and b) that my unit interaction model is usable in my own musical

practice (Chapter 6).
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(a) Having identified the mappable multi-touch interactions in my unit interac-

tion model, the goal was to make JunctionBox a interaction superset with

a greater number of unit interactions than those offered by similar mapping

tools. JunctionBox was compared to Control, TouchOSC, and Lemur in Chap-

ter 5, showing that it offers significantly more mappable interactions than those

tools. Going beyond unit interactions, I built special features into Junction-

Box that no other tool offers, including saving interaction states, inheritable

interactions, recording interactions, and making network and mapping setup

easier. The special features are described in Chapter 4, Section 4.4.

(b) To show that my unit interaction model was usable in practice, I used Junc-

tionBox to design and build a series of musical interfaces that I used in per-

formances. The interfaces I designed show that JunctionBox can be used to

build creative interfaces with a diversity of interactions and graphical styles.

By building these interfaces and using them in actual performance situations,

I showed that JunctionBox is performable software, ready for use in real mu-

sical situations. Chapter 6 describes the interfaces, how they were used for

musical control, and when and where they were performed.

JunctionBox is itself a contribution, both as a reification of my unit interaction

model and as a working toolkit for performing. By making JunctionBox open-

sourced and free to download [33], I am giving the software back to the creative

coding community to use for building multi-touch interfaces or to use as a reference

implementation for creating their own multi-touch toolkit or for any other use.

3. A Set of Design Principles

My research into the design and development of JunctionBox led me to derive a set

of design principles that distill the lessons I learned in making a toolkit that provides
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functionality while allowing for creative freedom. The design principles are all

variations on the same theme: tolerance. The particular tolerance principles that I

derived include interaction tolerance, mapping tolerance, networking tolerance, and

graphical tolerance. My design principles are significant contribution to knowledge

in that they can be applied to the design and development of mapping toolkits that

balance functionality with creativity. Chapter 7 describes the design principles that

I derived from my research on the development of JunctionBox.

8.2 Future Work

The development of JunctionBox will continue beyond the research presented in this

thesis. Here are the specific features that I want to add in future work:

• Input beyond multi-touch

Multi-touch is such a common way to interact with computers that it is important

to support it. However, phone and tablet devices contain a variety of sensors

that could be mapped in JunctionBox. Some sensors that can be mapped are

accelerometers, light sensors, and temperature sensors to name a few. In order to

handle these sensors, I want to build a generic input framework into JunctionBox

that treats all input as mappable to OSC messages and therefore to musical control.

• A new OSC library

JunctionBox, as currently implemented, uses the JavaOSC library to create, send,

and receive OSC messages. While JavaOSC works for this task, it does not have all

of the features I would like it to have for use with JunctionBox. Some features I want

in my OSC library include more strongly typed parameters, the ability to easily

add parameters to multiple messages, and the ability to reference messages by name
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rather than as object, and an option for message redundancy in unstable networking

situations. All but the last of these are already implemented in JunctionBox. I

would like to take that code and make it available outside of JunctionBox for

others to use as a separate OSC library.

• Further development of NDEF

NDEF is an idea that has, so far, only been used in testing situations to ensure

that the basic functionality works in JunctionBox. While the specification works

well in testing, I would like to begin to use NDEF in real situations. This means

that I need to develop a generalized JunctionBox-based application that takes full

advantage of NDEF. Another important step that would help to advance NDEF

would be to work on downloadable NDEF receivers for a variety of audio engines.

• Interface building without coding

While I am a great believer in the power of using code to build customized interfaces,

I recognize that not everyone may have time to learn to code. Acknowledging this,

I think that interface building through purely visual/interactive means is entirely

possible with JunctionBox. This would open up my research work to a potentially

larger audience.

• Release JunctionBox 1.0

Once I have added all of the features that I want in JunctionBox, I will begin testing

them with the goal of releasing a 1.0 version of the software. JunctionBox 1.0 will be

open-sourced and available as a download for anyone interested in building highly

customized multi-touch music controllers.
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8.3 Closing Remarks

This thesis has detailed my research into the development of a unit interaction model

and the use of that model in the design and implementation of the JunctionBox toolkit.

The model addresses the challenge of offering greater freedom and creativity in building

multi-touch musical interfaces by offering a large number of mappable unit interactions.

I showed that JunctionBox has a greater number of mappable interactions than similar

mapping tools, opening up the creative space of interaction design. Building my own

interfaces with JunctionBox and using them in performances showed that my research

has allowed more creative options for interfaces and that JunctionBox is usable as a

working toolkit for building musical instruments.

Beyond JunctionBox, it is my hope that the methodology employed for my research

can be employed in a variety of settings, even the development of toolkits that are far

removed from the building of musical interfaces. Developing software, can, with the right

rigor and methodology, be a valuable area of research. Researchers have an opportunity

to both create something usable by their community and to share invaluable knowledge

about design and development. My hope if that JunctionBox will not only be used

by others to create musical interfaces but that it will inspire researchers to make a

contribution by creating more software libraries and toolkits that take creative freedom

into account.

8.4 Coda

I did not really know Max Mathews but he was at the Center for Computer Research in

Music and Acoustics (CCRMA) during the time that I was working on a Master’s degree

there from 2007–2008. After finishing my degree at CCRMA, I worked there for a few

months. One day, I made a mistake and managed to give myself a serious cut on my
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finger (the scar is still there). So I ran to the lab where the first aid kit was to get myself

a band-aid. Max was in the lab (the Max lab!) working on something at his desk. I went

through the first aid kit and soon figured out that there were no band-aids to be found

there. Max asked me what I was looking for and I told him that I needed a band-aid for

a cut on my finger. He reached into his pocket, pulled out a band-aid, and offered it to

me. I thanked him, put the band-aid on my finger, and went back to work.

In the quote that opens this chapter, Max downplays his own significance to the his-

tory of computer music. He didn’t just write instruments that were computer programs,

he wrote the very first music programs. Anyone, myself included, who builds instruments

with software programs owes a tremendous debt to Max’s pioneering work. As a non-

composer, non-professional musician, I want to acknowledge the significant work that

Max did that allows myself and others who love music to make a contribution, however

small by comparison it may be.

Thanks for getting computer music started Max. And thanks for the band-aid.
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Appendix A

Code Examples

The JunctionBox software package contains code examples that demonstrate the map-

pable interactions described in Chapter 4, Section 4.3. The examples are divided into

three categories depending on the source of input: Android, Mouse, and TUIO. Within

each category, the examples feature a specific type of interaction with the name of the

example representing the interaction or set of interactions. The following sections feature

a screenshot of each example with a brief description of what it does.

A.1 Example 1: Activation and Toggling

Figure A.1: Example 1: Activation and Toggling. The left Junction is not active and the
right Junction is toggled.

This example demonstrates the activation and toggling interactions. The two are

included in the same example because they are similar enough that there was no need to

have separate examples. The Android version, shown in Figure A.1 features two ovals,

one to be activated and one to be toggled.
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A.2 Example 2: Translation

Figure A.2: Example 2: Translation. A Junction after it has been translated. Note the
Junctions XY center in the upper left corner.

The translation example is a square that can be moved anywhere on the screen. The

coordinates for the center of the square, relative to the size of the screen, are shown in

the upper left corner. They change as the square is translated across the screen.

A.3 Example 3: Rotation

Figure A.3: Example 3: Rotation. An elliptical Junction rotated a little over 180 degrees.

In the rotation example, an oval is rotated with two small red and blue circles to

better show the change in angle. Both the current angle and the number of rotations the

oval has undergone are shown in the upper left corner.
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A.4 Example 4: Scaling

Figure A.4: Example 4: Scaling. A square Junction after it has been scaled to ap-
proximately its maximum height. Note the width and height values in the upper left
corner.

The scaling example features a square that can be scaled with two touches. In the

upper left corner of the example, is the current size of the square in terms of the size

of the screen. Note that in Figure A.4, the square has reached its maximum size since

width and height are scaled proportionally and the height of the screen is less than the

width.

A.5 Example 5: Touches

Figure A.5: Example 5: Touches. An ovular Junction with four touches represented by
blue dots. Each touch/blue dot has and identifier. Note the touch count shown in the
upper left corner.

For the touches example, an oval will track as many touches as the device will allow.
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The device that I used to show this example only allows four touches. Note that the ID

for each touch is shown above the blue dot that represents the touch. The number of

active touches is shown in the upper left corner.

A.6 Example 6: Saving

Figure A.6: Example 6: Saving. The two Junctions have been moved. The save button
will save their current location among other values. The load button will load the saved
values. The reset button moves the Junctions back to their original locations.

The saving example has two translatable Junctions. After moving the Junctions

around, their location can be saved with the “Save” button. Using the “Reset” button

puts the Junctions back to their original position. The “Load” button can then be used

to put the Junctions back into their saved position. Note that the two Junctions can

overlap but that they can also change their order such that selecting the Junction on the

bottom will bring it to the top.

A.7 Example 7: Inheriting

For the inheriting example, three Junctions of different sizes overlap. Rotating the outer-

most Junction rotates the inner two. Rotating the middle Junction rotates the smallest

Junction. Not that the Junctions inherit relative angle changes. This means that if one

of the inner Junctions is rotated and then its outer parent Junction is rotated, the inner
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Figure A.7: Example 7: Inheriting. The two smaller rectangular Junctions inherit their
angles from the parent Junction.

Junction adds to its current angle. This is opposed to having the inner Junctions always

match the exact angle of the outer Junction.

A.8 Example 8: Recording

The recording example is more complex than the previous examples since it combines

many interactions into a single interface. There are recording, playing, looping, stopping,

clearing, stretching, saving, and loading buttons along the left side. The large yellow

rectangle is the area for recording interactions. The interaction involves touches moving

inside of the recording area, drawing a black line as they move. Once recorded, the

interaction, including the black line are played back with the correct location of the

touches and the correct timing for the interaction. The slider at the bottom can be used

to change the timing of the recorded interaction by moving to the left for faster times

and moving to the right for slower times. Once new timing is selected with the slider, the

brown stretch button on the left sets the interaction to the new timing. In Figure A.8,

an interaction is being recorded.
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Figure A.8: Example 8: Recording. The yellow square is a recording area. Notice that
the record button is brighter, indicating that recording is happening. Since recording is
not finished, the time for the interaction in the recording area shows 0 milliseconds.
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Appendix B

The NDEF Specification

The Nexus Data Exchange Format (NDEF) is an Open Sound Control (OSC) namespace

specification that, when implemented, makes connection and message management tasks

easier for developers of OSC-based systems. The NDEF specification can be implemented

by any system that can handle standard OSC messages.

B.1 Connection Management

One of the central features of NDEF is node identification. All NDEF messages have

the IP address and port of the message source (OSC server or client) as the first two

arguments. The generalized form of NDEF messages is:

/ndef/[container]/[method] [IP address] [port]

This kind of identification is particularly useful for cases where one OSC client is in

a one-to-many relationship with multiple OSC servers or where multiple OSC clients are

in a many-to-many relationship with multiple OSC servers.

To begin an NDEF exchange, the OSC client sends out a request message. The type

tag for the request is si where the IP address is the string and the port is the integer.

/ndef/connection/request,si

The NDEF exchange system is similar in some ways to the TCP handshake [13] in

which both ends acknowledge the connection. However, NDEF is a two way exchange

rather than a three-way handshake. When a connection request is received (and ac-

cepted), an accept message is sent to the OSC client.
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/ndef/connection/accept,si

This exchange allow nodes to determine whether another node has NDEF capabilities

and whether it is available for connections. Another important element of the exchange

is that both nodes then can identify each other using IP address and port as unique

identifiers. When multiple nodes may be involved in a network, this identification is

essential.

In creating an NDEF connection, nodes identify each other by their source IP address

and port number. Then all further message exchanges can be identified as belonging to

a specific connection. Once a connection is established, it is useful to be able to test the

connection. In order to allow for connection testing, the namespace now has a “ping”

message:

/ndef/connection/ping,si

The string and integer arguments are the IP address and port of the message sender.

If the node receiving the “ping” message is available, it will send an “echo” message

to the originating node:

/ndef/connection/echo,si

The ping/echo exchange can be used to determine both availability and round-trip

time (latency). NDEF implementations are free to determine how frequently “ping”

messages are sent and what sort of time-out mechanism is in place when “echo” messages

have not been received.

NDEF ping messaging does not use the ICMP protocol [87] used by the ping utility

available with most operating systems. While an ICMP ping is useful for determining

the general availability of a node on the network, it cannot determine when both OSC
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messaging and NDEF messaging are available. A node might be available on the network

with neither essential service running.

The ping/echo exchange would be useful, for example, in a laptop orchestra. Often

it is not always clear that nodes (laptops) in the orchestra are actually receiving the

intended OSC messages. With the NDEF ping/echo, laptops could be periodically polled

to determine whether they are actually receiving OSC messages. This polling makes it

easier to address issues with any nodes that are not receiving messages.

B.2 Message Management

Once a connection has been established between two or more nodes, each node can send a

message request to the other nodes. A message request has a form similar to a connection

request.

/ndef/message/request,si

The reply message has a slightly different form than the other messages in the names-

pace since, besides the IP address and port of the message source, it has the OSC message

encoded as a string as the last argument.

/ndef/message/reply,sis

An example reply message containing the OSC message /foo:

/ndef/message/reply, "192.168.1.1" 7000 "/foo"

Any number of reply messages can be received by a requesting node once an initial

request has been sent. This allows for some flexibility in the setup of OSC servers in-

cluding the sending of new message replies as they are created on the server. NDEF

does not provide a message format for setting ranges on OSC arguments. The reason



151

for this is that JunctionBox values are always sent normalized from 0-1. This eliminates

the need to set ranges since OSC servers will simply scale arguments to any range with-

out the interface being concerned with the specific range. Since all numbers output by

JunctionBox are normalized, all numbers are floats.

Using NDEF, nodes can exchange messages in their OSC namespace. This allows a

node’s OSC namespace to be modelled by other nodes. Since all NDEF exchanges carry

identifying information, each node can be modelled with a distinct namespace.

The new message management NDEF extensions allow nodes to go beyond just having

models of other node’s namespaces. The new extensions allow nodes to add, remove

and replace the messages of other nodes, allowing for namespace synchronization. By

synchronizing namespaces with NDEF, the task of having OSC clients and servers share

a common namespace is made easier.

The new “add” message allows a node to add a message to another node:

/ndef/message/add,sis

An example for adding would be the use of multiple “add” messages to build an entire

namespace on another node. The messages in that namespace could then be mapped by

that node.

Messages can also be removed from a node with the new “remove” message:

/ndef/message/remove,sis

The “remove” message would be useful for removing parts of a namespace that are no

longer shared between the nodes.

The new add and remove extensions having the following basic structure:

/ndef/message/[method] [IP address] [port] [OSC message]
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The OSC message argument should include the address pattern and the type tag.

Arguments should not be included.

A message can be replaced with another message with the “replace” message:

/ndef/message/replace,siss

The replace extension has four arguments with the last two arguments being the old

message string and the new message string that will replace it. The general structure of

replace messages:

/ndef/message/[method] [IP address] [port] [old message] [new message]

Of the three new messages, the “replace” message is the most powerful since the fact

that it replaces a message means that the mapping using that message should still be

valid. For example, an OSC client with an existing namespace could replace a message

on an OSC server. This could be done by an interface designed to simply switch two

messages. No typing would be necessary. But now the OSC server would have a new

message that retains the same mapping as the previous message without the OSC client

having to know about the details of the mapping on the OSC server.

The “add”, “remove”, and “replace” messages are not just meant to be sent to OSC

servers that contain mappings. They can also be sent from OSC servers to clients used

for control. This allows for two-way namespace synchronization.
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Appendix C

JunctionBox Revisions

This appendix contains a revision history for each version of JunctionBox. The version

number for each revision is included along with the date of the release for taht revision.

Each revision contains the following categories of change:

New Features

New features added to JunctionBox.

API Changes

Changes to the JunctionBox API.

Bug Fixes

A bug fix that does not change the API.

Internal Changes

Reorganization of code that has no effect on the API.

Android

Changes specific to the Android version of JunctionBox.

Within categories, changes to specific classes are noted with the name of the class.

Table C.1 is a legend with the markings that denote the change type for categories or

classes.

Table C.1: Revision Legend
+ Added feature
= Change in code with no change in functionality
- Removed code



154

JunctionBox 0.98 - 30 March 2015

API Changes

Distpatcher

= Moved all NDEF functions from the Dispatcher to the the new Nexus

object.

- Removed the constructors Dispatcher() and Dispatcher(String ad-

dress, int port) since they did not require arguments for boxWidth

and boxHeight. Without boxWidth and boxHeight, JunctionBox will

simply not work and that would be silly.

+ Added clearJunctions() to enable the removal of all Junctions.

= Changed startPlayback(), stopPlayback(), getPlaybackTime() to start-

Playing(), stopPlaying(), and getPlayTime(). This is more consistant

with the other methods like startRecording() and others. It also gen-

erally reads better.

+ Changed saveXML() and loadXML() so that they take OutputStreams

and InputStreams directly for writing files.

- Removed readFile() and writeFile() since saveXML() and loadXML()

now handle this.

Junction

+ Added getTargetAddress() and getTargetPort().
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+ The new allowSaving() and isSavable() methods are related to the

new XML saving/loading methods in the Dispatcher. Junction data

can only be saved it is allowed.

Relay

+ Can change the IP address and port number with the new setSocket()

method.

+ Added the getMessageCount() method.

+ The new addFloat(String message, float f, float min, float max) method

allows for specifying the message and mapping the value. This should

have been there in an earlier release. Better late than never.

Action

= Changed Action.CONTACT_COUNT and Action.ROTATION_COUNT

to Action.COUNT_CONTACTS and Action.COUNT_ROTATIONS.

All Actions should be named with a verb first. They are actions after

all.

+ Added new Action.CONTACT_THETA for sending the angle of a

Contact relative to the center of an ellipse.

Nexus

+ To test NDEF connections, added isConnected(String ip, int port)

and isConnected(Relay r) methods.

+ Changed all NDEF related methods to be of the form send[Message] to

clarify their purpose. Each of these has overridden methods accepting
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a single IP, a list of IPs, or no argument (for sending to the default

target). The new methods are sendConnectionRequest(), sendMes-

sageRequest(), sendMessageAdd(), sendMessageRemove(), and sendMes-

sageReplace().

+ New getRelay(int r) and getRelayCount() methods return a specific

Relay or the number of Relays respectively.

internal changes

Distpatcher

+ Added the setDelayValue() method to the Event inner class to enable the

building of event queues from XML files.

= Changed addEvent(), updateEvent() and removeEvent() methods (includ-

ing overridden ones) to queueAddEvent(), queueUpdateEvent(), and queueR-

emoveEvent(). This reads better.

= Moved code in the now defunct addEvent(), updateEvent(), and removeEvent()

methods into addContact(), updateContact(), and removeContact() to

avoid overriding methods for calls to queueAddEvent(), queueUpdateEvent(),

and queueRemoveEvent().

- Removed getEventQueue() that returned a PriorityQueue. Better to use

getEvents() that returns an array.

+ Added scaleEventTimes() that takes a double and multiples it by the delay

time for each Event, thus scaling the time for all Events.

+ The saveXML() and loadXML() methods now call saveJunctions(), saveRe-

lays(), saveEvents() and loadJunctions(), loadRelays(), and loadEvents(),



157

new methods for reading and writing data to XML to be output to a file.

Junction

= Changed code inside of Junction.updateContact() so that messages for Ac-

tion.CONTACT will send different values based on whether the Junction

is a rectangle or an ellipse. A rectangle will send x,y while an ellipse will

send r,theta.

= Fixed Contact mapping code for ellipses that are not circles. It turns out

that theta will not work to find a point on an ellipse. In order to normalize

the r value, a point on the ellipse must be found. Now the trig is right

and the values look nicely normalized.

Nexus

= Put a null check and an isListening() check for OscPortIn inside of stopLis-

tening(). Otherwise, a NullPointerException will issue forth.

+ The acceptMessage() method now has code to take and set labels for Relays

from /ndef/connection/accept messages.

JunctionBox 0.97 - 18 July 2013

API Changes

+ Added Junction.allowRotation(boolean, int) where the int argument rep-

resents the number of Contacts used for rotation. Allowed values are 1 or

2 Contacts.
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+ Added Action.ROTATE_1 and Action.ROTATE_2 to enable the map-

ping of separate messages for 1 and 2 Contact rotations.

+ New Junction.allowTranslation(boolean, int) method allows for an arbi-

trary (greater than 0) number of Contacts for translation.

+ Similarly, Junction.allowTranslation(boolean, int, int) allows for a range

of Contacts to be set for translation. The range is inclusive.

= In Junction, changed setLive() to beLive() since it reads better.

= Changed Action.TRANSLATE_XY to Action.TRANSLATE to be more

consistant with other Actions.

= Changed Action.CONTACT_XY to Action.CONTACT for the same rea-

son.

Bug Fixes

= In Junction, added a check to mapMessage() and unmapMessage() for the

existance of the targetRelay. This insures that if no IP address and port

are specified, no NullPointerException will occur.

Internal Changes

+ Calling Junction.allowRotation(true) with no integer argument enables

both 1 and 2 Contact rotations. These can also be separately controlled

with Junction.allowRotation(boolean, boolean).

+ Junction.setAngle() now relays 1 and 2 Contact rotation mappings if they

are set.

+ In Junctions, added new minTranslationContacts and maxTranslation-

Contacts integers for setting the range of Contacts to be used for trans-
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lation.

+ Added new contactCount integer to Junction.updateContact() for updat-

ing subjunctions.

+ The new ROTATE_1 and ROTATE_2 Actions are now checked inside of

mapMessage() and unmapMessage().

= Replaced rotationContacts integer and rotateable boolean with rotatable1

and rotatable2 booleans. Added relay 1 and 2 booleans along along with

the related lists. The rotatableN booleans are now checked instead of the

rotationContacts integer.

= Removed various relay booleans from inside of Junction.unmapMessage()

since they didn’t need to be set in this method.

JunctionBox 0.96 - 30 May 2013

New Features

+ Added setLabel() and getLabel() to allow a String to be used as a label

for Junctions and Relays.

+ In Relay, the add[argument] methods now add a new OSC message along

with the argument if it is not contained in the Relay.

Dispatcher

+ Added new NDEF messages to the Dispatcher: "/ndef/message/add",

"/ndef/message/remove", and "/ndef/message/replace". Each of these

new messages has a corresponding method for sending. The Dispatcher

can receive these messages as well.
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+ New methods for controlling recording and playback include: startRecord-

ing(), stopRecording(), isRecording(), getRecordTime(), startPlayback(),

stopPlayback(), isPlaying(), loopPlayback(), startLooping(), stopLoop-

ing(), and getPlaybackTime(). Since there is so much new code here, see

the source for more information.

+ For event management, added: getEventCount() and clearEvents().

+ The Dispatcher can write event data to an XML file. New methods are

saveXML(), loadXML(), readFile() and writeFile(). For this release, only

event data can be written to XML.

Junction

+ Added allowRecording() and isRecordable() to control the recording of

events. Use these to determine which Junctions the Dispatcher will record

events for.

+ The allowRotation() and allowTranslation() methods now accept an inte-

ger that controls the number of Contacts used for rotation and translation

respectively. Rotation can be done with 1 or 2 Contacts. Translation can

be done with 1-3 Contacts.

Internal Changes

Distpatcher

+ For recording and playing back events, added the Event and Player private

classes. Many other variables have been added for event recording and

playback. See the source code for a full list.

+ Added an event queue to the Dispatcher to enable the recording of contact

events.
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+ For internal event management: addEvent(), updateEvent(), removeEvent(),

and getEvents().

+ The initialize() method now creates the event queue as well as the XML

document writer.

+ Added checks in addContact(), updateContact(), and removeContact() to

determine whether to record events associated with Junctions that have

recording enabled.

Junction

= When Contacts are mapped to messages, the Y value is now inverted with

the top edge of a rectangle mapping to 0 and the bottom edge mapping

to 1. This is more consistent with Y values in Processing.

+ Added code in updateContact() to enable 2 Contact rotation and 1-3

Contact translation. Added some class-level variables that are associated

with this code. See the source code for more information.

Relay

= Simplified the code in resetMessage(String a).

= Fixed incorrect code in the replaceMessage(String a1, Strng a2) method.

JunctionBox 0.95 - 10 December 2012

First Public Release

New Features

Distpatcher

+ Added setTarget() method to allow for target setting after initialization.
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+ Added addContact(), updateContact() and removeContact. The code

in these methods existed in the related _TuioCursor() methods. The

_TuioCursor() methods now call the new _Contact() methods but the

_Contact() methods can also be called without invoking the _TuioCursor

methods.

+ Added clearContacts() to remove all Contacts.

+ Added getLocalAddress() to return the IP address used by the Dispatcher.

+ Added startListening(), stopListening(), getListeningAddress(), and getLis-

teningPort() methods. These methods will start and stop OSC message

listening and return socket values for the listener as needed by the new

NDEF system.

+ Added requestConnection() and requestMessages() to send out NDEF

connection and message requests.

+ Added acceptMessage() (from the OSCListener interface) to accept vari-

ous NDEF-related OSC messages.

+ Added getRelays() to return the Relay objects created by NDEF message

exchanges.

+ Added getRejectedMessages() and clearRejectedMessages() to get mes-

sage rejected NDEF message strings and to clear those message strings.

Junction

+ The setTarget() method now has a sibling that takes a Relay as an argu-

ment.

+ Added allowScalingWidth() and allowScalingHeight() to give finer control

over scaling.

+ New getShape() method returns RECT or ELLIPSE in Processing.
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+ Added changeWidth() and changeHeight() to give finer control over scal-

ing.

+ Added limitScalingWidth() and limitScalingHeight().

+ Added getMinScalingWidth(), getMaxScalingWidth(), getMinScalingHeight(),

and getMaxScalingHeight().

+ Added getJunctionCount() to return the number of subjunctions.

+ Added the clearContacts() method to remove all Contacts.

+ Added unmapMessage() to remove all mappings for a given message.

Relay

+ Added two varieties of addLong() to add long values to all messages or to

a specific message.

+ Added containsMessage() to determine whether a message has been added.

+ Added replaceMessage() for swapping message Strings.

Action

+ Added the CONTACT_X, CONTACT_Y, CONTACT_XY, and CON-

TACT_R actions that allow for the mapping of Contact movements within

the area of a Junction.

API Changes

Distpatcher

= Changed getJunctionArray() to getJunctions() for simplicity.

Junction

= The boolean fields rotatable, scalable, translatable, translateX, and trans-

lateY are no longer public. They have been replaced by the methods
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allowRotation(), allowScaling(), allowTranslation(), allowTranslationX(),

and allowTranslationY(). The new methods allow rotation, scaling, and

translation setting to be inherited by subjunctions.

- The public booleans rotateClockwise and rotateCounterclockwise have

been removed. Rotation can be limited by setting minimum and max-

imum values.

= The changeScale() method now takes two values, one for width and one

for height. Scaling can still be done proportionally if the two values are

the same.

= The getWidth() and getHeight() methods return the actual values for

width and height. Previously, they returned those values multiplied by a

scale factor. The scale factor has gone away.

= Changed limitTranslateX() and limitTranslateY() to limitTranslationX()

and limitTranslationY(). This naming is more consistent.

= Changed getRotations() to getRotationCount() since this is a more accu-

rate name.

= Changed getMinTranslateX(), getMaxTranslateX(), getMinTranslateY(),

and getMaxTranslateY() to getMinTranslationX(), getMaxTranslationX(),

getMinTranslationY(), and getMaxTranslationY().

= The updateJunction() method now takes two values for scaling, seperate

floats for width and height.

= Changed getJunctionArray() to getJunctions().

= The addContact() method now takes a long value for a Contact id and

the x and y values for the center of the Contact. The Contact is then

created by addContact() rather being passed to it.
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- The updateContact() method now only takes a long for the Contact id and

the x and y values for the center. The values for speed and acceleration

may return again.

= The removeContact() method now takes a primitive long value rather than

the Long class.

= Changed getContactArray() to getContacts().

= Changed addMessage() to mapMessage() since this is a far more accurate

name for this method.

- Removed the isMoving() method since it never really worked well.

- Removed the angle() method since it is no longer needed for determining

rotation angles.

Relay

= Changed clearMessage() to resetMessage() since clear now means remove

in this API.

= Changed removeAllMessages() to clearMessages() for API consistancy.

Contact

- The Contact() constructor now only takes the x and y values for the

center.

- Removed setVelocityX(), setVelocityY(), setAcceleration(), getVelocityX(),

getVelocityY() and getAcceleration(). They may return again some day.

- Removed the moving() method. It is not likely to return.

Action

= Changed ACTIVE to ACTIVATE since all actions should now be verbs.
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Bug Fixes

= In limitTranslateY(), the useTranslateYLimit boolean was not being set

to true. Instead, it was being set in limitTranslateX(). It is now set in

the right method.

Internal Changes

Many small changes appear in this version. I’m just going to describe some of

the more significant changes in Junctions.

Junction

= Inside of updateContact(), the Contact to be updated was removed from

the map inside of Junction and then put back. This is not required and

so the Contact simply receives new values from updateContact() without

the extra steps.

= The scaling of Junctions now works differently internally. It still requires

a two-Contact gesture externally. Now, the distance between the two

Contacts is used to determine the scale changes. Before, the distance of

the two contacts from the center was used. Which is silly and caused

strange behaviors. The two Contacts have to be moving in order to begin

scaling.

= Any field that is changed via a method is not private. Basically, all fields

are now private.

+ Minimum and maximum values for width and height are not being set

at 1 for minimums and bow width and bow height for maximums. The

useTranslate_Limit booleans have been removed.
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- The useTranslate_Limit methods have been removed as per the previous

change.

= In setWidth() and setHeight(), the maximum and minimum values for are

checked to insure that scaling is proportional.

= In addJunction(), limits are now inherited from the parent Junction.

+ All rotation, scaling and translation settings are now inherited in addJunc-

tion(). The settings can still be overridden by subjunctions.

= For rotation, in updateContact(), angles are determined with atan2. This

is a much better way to handle one-Contact rotation than the law of

cosines.

Android

The Android version of JunctionBox is part of this release. There are a number

of internal changes to the Dispatcher, Junction and Relay classes. Here are

the significant changes in terms of the API:

+ The Dispatcher now has the handleMotionEvent(MotionEvent event) method.

This is used to get touch data in Android. Processing sketches MUST

now call dispatchTouchEvent(MotionEvent ev) in the sketch with a call

to handleMotionEvent() inside it. For example:

public boolean dispatchTouchEvent(MotionEvent ev) dispatcher.handleMotionEvent(ev);

return true;

If this call is not in the sketch, touch tracking will simply not work.

+ To import JunctionBox classes into a sketch use:

import junctionbox.android.*;

Note that this may change in a future release. The current namespace sep-
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aration is, however, friendly for the Processing way of handling libraries.

+ All JunctionBox-based sketches MUST have the INTERNET permission

set in either the Processing IDE or in the AndroidManifest.xml file.

Other changes *should* be internal and therefore not problematic for

porting sketches to Android. But it might be a good idea to check out

the changes in Processing for Android:

http://wiki.processing.org/w/Android

JunctionBox 0.9 - 15 May 2011

New Features

+ Added Junction.setLive() and Junction.isLive() to set whether a Junction

will receive Contact from the Dispatcher. This overrides the previous

feature of a public boolean called live since that boolean is now private.

Having the set method allows subjunctions to inherit the live status.

+ Can now use new setToggle() to manually set the state of the toggle

boolean in Junctions.

API Changes

= The Dispatcher’s getJunctionArray() method now returns Junctions in

the opposite order. This was done to be more consistant with Processing

where graphical elements overlap with the most recently created element

on top of the previous. So the most recently created Junction will now

get Contact when it overlaps a previously created Junction in the same

area.

http://wiki.processing.org/w/Android
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= The cursor methods addTuioCursor(), updateTuioCursor() and remove-

TuioCursor() now check a array created from the Dispatcher’s Junction

list in reverse order. See the previous item for the reasoning behind this

change.

- Removed Junction count-checking code from refresh() method.

+ Added changeCenterX(), changeCenterY() and setCenter() to Junctions.

These new methods take delta values rather than set values for changing

the center location.

+ Added changeAngle() to Junction for providing delta values for rotation

angle.

= Changed toggle public field to setToggle() and getToggle() methods.

+ Added limitRotation() method for setting minimum and maximum angles.

+ New getJunctionArray() method returns any subjunctions of a Junction.

= In Junction, changed active() and moving() methods to isActive() and

isMoving() for better naming.

- Removed the checkCounts() method from Junction since that functional-

ity is handled elsewhere.

+ Added relayContactCount() and relayRotationCount() methods to Junc-

tion to replace checkCounts().

+ Added new SCALE_WIDTH and SCALE_HEIGHT actions to Junction.

- Removed, from Relay, all versions of setMesage(), setRange() and dump().

+ Added getIPAddress() and getPort() to Relay.

+ Added addMessage(), getMessages(), clearMessage(), removeMessage()

and removeAllMessages() to Relay.

+ New methods for setting values for messages in Relay include addInte-
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ger(), addFloat(), addString() and addBlob(). Each of these methods has

variations for adding values to specific message or all messages. A version

of addFloat() also has mapping parameters.

= In Relay, the send() method now has three variations: one to send a

specified message, another to send an array of messages and the third to

send all messages.

+ Added new SCALE_WIDTH and SCALE_HEIGHT values to Action.

Internal Changes

= Moved duplicated code from the various Dispatcher constructors into an

initialize() method that created the Junction list and creates and connects

the TuioClient.

= Changed the way in which Junctions are added to the list in the Dis-

patcher. Junctions are now added to the end of the list rather than the

beginning.

= In the Dispatcher, addTuioCursor(), updateTuioCursor() and removeTu-

ioCursor() all created their own array from the Junction list in order to

avoid concurrency problems.

- Removed HashMap from Dispatcher that contained Contacts that were

not added, updated or removed from Junctions. All Contact handling

code from addTuioCursor, updateTuioCursor and removeTuioCursor has

been removed. This functionality does not belong in the Dispatcher.

= Changed Junction’s list of subjunctions from Vector to CopyOnWriteAr-

rayList to void potential concurrency issues.

= In Junction, changed the on boolean to toggleOn to give it a more specific
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and understandable name.

+ Added minAngle and maxAngle floats as well as a limitAngle boolean to

determine whether to use the minAngle and maxAngle.

= Junctions now have a single Relay for sending messages. Where previously

each actions had a list of Relays, now each actions has a list of OSC

message Strings. These message Strings are then sent out via the Relay.

Each list is a Vector of Strings.

+ Junctions now longer have translations limits set to the box width and

height by default. Limits can still be set manually.

+ Since translation limits are no longer required, added useTranslateXLimit

and useTranslateYLimit booleans to test whether limits have been set.

= Fixed setCenterX(), setCenterY(), setWidth() and setHeight() in Junc-

tion so that they obey their relevant minimum and maximum values.

= In Junctions, addContact() and removeContact() now call relayContact-

Count() if the number of Contacts has changed.

= Moved Junction code in updateCursor() to the various new changeX()

methods.

= Added scaleWidthList and scaleHeightList as well as relayScaleWidth and

relayScaleHeight to Junction to handle the new actions.

- From Relay, removed useRange boolean and argFloat.

- In Relay, added a port integer.

+ Added, to Relay, a ConcurrentHashMap called messageMap for holding

multiple messages in a single Relay.

= Used InetAddres.getByName() to parse IP address in Relay constructor

to avoid having to break up address with custom code.
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JunctionBox 0.8 - 18 August 2010

Bug Fixes

+ In Junction.addContact(), added Contact to map after checking the map

to determine whether or not the Contact is completely new. The ACTIVE

relay should now work properly.

= Fixed Junction.inside() test for clockwise rotation of rectangles and for

ellipses both rotated and non-rotated.

= The Simulator now sends better values for velocity and acceleration of

Contacts.

New Features

+ Added getContactArray() method to Junction that returns an array of

copies of the current Contacts for that Junction. The values of Con-

tact.getX() and Contact.getY() are scaled by the boxWidth and box-

Height respectively. This means that the scaling will not have to be done

in Processing.

+ Added setAngle() to Junction to allow for directly setting the angle.

+ The Contact class now has the setVelocityX(), setVelocityY(), setAccel-

eration(), getVelocityX(), getVelocityY(), getAcceleration() and moving()

methods. These values are obtained from the TuioContainer class.

+ Added new Action.TRANSLATE_XY. This action will send messages

with both x and y values in the same message.
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+ A Junction can now handle relaying TRANSLATE_XY values via the

new Action described above.

+ Added new Relay.send() methods that take no argument, two floats and

an Object[].

+ Junction.updateJunction() will now update any subjunctions with values

for center location (translation), rotation or scaling. This allows sub-

juctions to inherit behavior from parent Junctions. This will happen

automatically when subjuctions are added using Junction.addJunction().

Note that this method is protected.

Internal Changes

= Changed contactMap from Hashtable to ConcurrentHashMap in order to

allow for Contact lists to be created from contactMap without having to

worry about the map being updated while the list is being created.

= Several methods were changed from public to protected including Junc-

tion.addContact(), Junction.updateContact(), Junction.removeContact(),

Junction.containsContact(), Junction.getContact(), Junction.inside(), Con-

tact.setX() and Contact.setY().

JunctionBox 0.7 - 8 June 2010

New Features

+ Added new actions CONTACT_COUNT and ROTATION_COUNT. See

next item for details.

+ Added checkCounts() to Junction that enables the Contact count to be

relayed via CONTACT_COUNT and the current rotation count to be re-
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layed via ROTATION_COUNT. The new checkCounts() method is called

from Dispatcher.refresh(), a previously unused method required by Tu-

ioListener. By using refresh(), count checks can be made more regularly.

+ Added createJunction() to the Dispatcher. This allows for Junction cre-

ation and adding in a single line. Junctions can still be created using the

new constructor and added to the Dispatcher as before.

+ The Dispatcher now has multiple constructors. The new constructors al-

low for various combinations of new parameters, including box width/height

and target address/port. If parameters are provided via the new construc-

tors, they will be passed to Junctions.

+ Added setTarget() to Junction that sets a destination target for messages

sent from the Junction.

+ Added addMessage() to Junction that allows for mapping actions to mes-

sages directly, having the Junction create the Relay automatically. This

can save lines of code in Processing situations in which only one target is

needed for a given Junction.

API Changes

- Removed the Constants class since it was no longer useful. See next item.

= Removed the Action enum from the Contstants class. This enum still

carries the same actions as before but is now called as Action.ROTATE

instead of Constants.Action.ROTATE.

+ Junctions now implement PConstants. Now shapes can be designated via

Processing constants RECT and ELLIPSE instead of Constants.Shape.RECT

and Constants.Shape.ELLIPSE.
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+ Simulator now implements PConstants for greater Processing integration.

Simulator can now check for LEFT, RIGHT or CENTER in the mouse

method as in Processing.

= Changed Relay.setAddress() to Relay.setMessage(). This does not strictly

follow the OSC spec but it makes more sense in the larger context of

JunctionBox.

Internal Changes

- Removed excessive use of the "this" keyword, especially from Junction.

This will hopefully make the code a little easier to read.

= Changed parameter target to address. A target should be an address and

a port.

= Changed argument names in Simulator.mouse() to pressed, button, x, y,

px, py to avoid confusion with the equivalent values in Processing and

their use within the Simulator.

JunctionBox 0.6 - 13 May 2010

Bug Fixes

+ In Junction, fixed containsContact() so that it takes into account sub-

junctions.

New Features
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+ Added a Simulator class that can simulate TUIO message directly in Pro-

cessing.

+ Added dump() method to Relay that allow current OSC arguments to be

output as Strings.

+ Added moving() method to Junction that returns true if the Junction

is moving. The output of moving() is not terribly accurate, so caution

should be used in relying on it.

+ Added a Contact container to the Dispatcher so that any Contacts that

are not associated with a Junction can still be tracked. Nothing is being

done with the extra Contacts but this may change in future versions.

+ Added a live boolean field that can deactivate a Junction, preventing it

from picking up any new Contacts.

+ Added the orderJunction() to the Dispatcher for setting the order of Junc-

tions in the Dispatcher’s main list. This can be important since a Contact

can be assigned to only one Junction and that assignment happens in or-

der based on the Dispatcher’s list.

+ Added getJunctionArray() to the Dispatcher for getting Junctions in the

order of the Dispatcher’s main list. This can be used with orderJunction()

to change the output order of Junctions in Processing.

API Changes

= Changed handling of OSC messages in Relays. The send() method no

longer accepts any OSC type. Only float, int and String values can be

sent using overloaded versions of send().

= setTranslateX() and setTranslateY() are now called limitTranslateX() and
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limitTranslateY() to better reflect their purpose.

Internal Changes

= In Dispatcher, changed list of Junctions from Vector to CopyOnWriteAr-

rayList. This prevents locking of list but allows for concurrent access

without throwing an exception.

JunctionBox 0.5 - 2 April 2010

Initial Release
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