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Abstract

We present a framework that we are developing to better
solve several critical issues that arise when interactive sys-
tems are extended to large displays. These issues include
slow reaction times, difficulties with high numbers of con-
current interactions or user inputs, and problems that oc-
cur when combining several aspects of visualizations. In
part, these issues arise from a number of complexities that
are present in current approaches. This makes it important
to tackle this problem directly rather simply waiting until
the computing power has increased sufficiently and calls for
a fundamentally new approach to computer interface foun-
dations. Our framework combines ideas from information
visualization, large displays, collaborative work, and non-
photorealistic rendering (NPR). Specifically, we are employ-
ing four concepts/techniques: layered buffers, local coher-
ence, emergent complexity, and force fields.

Keywords: Large displays, responsive interaction, human-
computer interaction, buffer framework.

1. Introduction and Motivation

Much of present-day intellectual work is done in teams and
requires that information be presented in ways that support
shared analysis and decision-making. Computer graphics,
information visualization, and human-computer interaction
(HCI) research fields are converging to solve this important
problem. Several key advances have been made in solving
individual parts of the larger problem:

• visualizations concentrate on supporting the analy-
sis and interpretation of data needed for decision
processes by presenting it in accessible formats [11,
12],

• large screens are being developed in different for-
mats (walls, tables, etc.) accepting input from mul-
tiple sources to support team work and collaborative
processes [4, 18],

• visual setups designed to better support collaboration
by providing awareness information about each other’s
work in progress and to attempt to generally reduce
cognitive load [9, 16], and

• improvements in NPR graphic methods that address
clarification of chosen aspects of depicted items rather
than aiming at fully realistic presentation [19].

However, integrating these independent advances to fully
satisfy the needs of work groups is difficult due in part to
the ways in which present-day user interfaces generate visu-
alizations and provide interaction with them.

In addition, due to complexities in the system design of
current visualizations, user interfaces are severely limited
in terms of further extension. Modern computer interfaces
typically use two types of entities to generate visualizations,
to facilitate collaboration, and to support user-interaction:
the actual visualization objects that carry the information to
be displayed and the interface components that guide the
behavior of the visualization objects, which are in turn af-
fected by user interactions. However, this approach has lead
to the following four major limitations:

• limit in the number of visualization objects because
they have to be steered and maintained by a complex
and application-specific interface components,

• complexity of interaction between visualization ob-
jects and interface components due to the increased
need for maintenance as the size and detail of interface
components increases,

• complexity of interaction between several interface
components since this leads to an exponential compu-
tation effort when combining them to jointly control
visualization objects, and

• limit in the number of simultaneous user-interactions
with either visualization objects or interface compo-
nents due to the specific architectures of the interaction
between objects and interface components.

In addition to these system-internal complexities, the devel-
opment and extension of interfaces for large displays con-
sequently also becomes an increasingly complex endeavor.
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Thus, today’s interactive visualization environments, when
extended to large displays, are not successful in providing
timely feedback to multiple users who are concurrently in-
teracting with a high number of objects. We address these
problems by providing a framework that reduces the men-
tioned complexities.

In the following, we first discuss some related work in
Section 2. Then, we present an overview of our overall con-
cept in Section 3 before giving more details about our sys-
tem and its software architecture in Section 4. Then, Sec-
tion 5 discusses potential application domains, our imple-
mentation, and reports some initial results. We finish with a
conclusion and some future work in Section 6.

2. Related Work

The work presented in this paper ties together ideas from
different areas in computer science. We briefly present the
underlying concepts in this section.

Our system relies first and foremost on the concept of
buffers that store data in form of two-dimensional images, a
technique used very frequently in computer graphics. There,
other data about the rendering process is stored in addition
to the actual image buffer to be used for additional computa-
tions or as additional results. The first of these buffers—the
z-buffer—was introduced by CATMULL [3] to store depth
information to facilitate the hidden surface removal that is
necessary for rendering. The concept was later extended by
SAITO and TAKAHASHI to store any additional information
in form of G-buffers which they used to extract silhouettes
and feature lines [13]. Since then, many new uses for G-
buffers have been explored.

We also build on ideas from swarm intelligence. There,
complex behavior emerges from a swarm of individual
members each with only limited intelligence and without
a concept of the swarm as a whole [2]. This idea has also
previously been used in connection with image buffers to fa-
cilitate the simulation of non-photorealistic rendering styles
using RENDERBOTS [14]. We are, in particular, interested
in the concepts of local awareness and local decisions.

There are interactive systems other than desktop comput-
ers such as large displays which typically use different input
devices and, thus, both facilitate and require new and dif-
ferent interaction metaphors than those known from desk-
tops. These arise from their main application in collabo-
rative scenarios. These interaction challenges have been
identified and approached by many researchers and sev-
eral innovative systems and techniques have been developed
[6, 7, 8, 9, 16, 17].

Good software requires a careful architecture design
which is supported by software frameworks. Designing
and implementing an application as a special case of frame-
works provides benefits such as modularity, extensibility,

and re-usability [15]. Strongly related to frameworks are de-
sign patterns which integrate recurring successful solutions
to common or standard problems into an architecture [5].
Furthermore, design patterns provide a way to document the
structure of a software design, making it more accessible for
future users. This is why we chose to provide our software
as a framework and to incorporate design patterns.

3. A Buffer Framework Concept

In this section, we outline the overall buffer framework con-
cept before discussing its realization in more detail in Sec-
tion 4. The buffer framework borrows mainly from three
areas: computer graphics, physics, and swarm intelligence
which will be introduced in turn.

3.1. Borrowing from computer graphics

The complexity issues with visualization objects and inter-
face components mirror an important scalability trade-off
issue in computer graphics: polygonal mesh granularity ver-
sus rendering time. Fine-grained meshes produce more de-
tailed and pleasing graphics, but take a long time to render
and slow down animations. In computer graphics, layered
image buffers were introduced to deal with this problem
and to generalize image creation using several properties
[13]. We use an approach similar to the rendering buffers
in computer graphics for solving the complexity problem
in computer interfaces by storing properties of the interface
components in a stack of image buffers.

3.2. Borrowing from physics

In most interfaces, interface components are required to in-
teract with other interface components. In order to make
these interactions understandable, they have to be guided
by the behavior of objects in the real physical world. How-
ever, effective interaction does not necessarily follow from
closely simulating real physics since it can involve fairly
complex correlations that are difficult to understand. In
some cases it might be better to derive some kind of inter-
face physics [1] that differs both from real physical interac-
tion and from the approach of limited physics that is used
in today’s interfaces where only few physical properties are
simulated (e. g., non-accelerated straight movement of ob-
jects). In fact, interface physics may resemble approaches in
non-photorealistic cartoon animation where a special kind
of cartoon physics is used that, for example, helps anticipat-
ing certain actions [10].

This concept if reflected in the framework by having the
possibility to combine two buffers, each containing a spe-
cific property, into a single buffer. For example, two sepa-
rate vector field buffers, each containing movement data for



objects, can be combined into one buffer. Such a combina-
tion might be performed by taking ideas from force fields
in physics. There, two or more force fields originating from
different sources combine to form a single field. In order to
achieve understandable interactions between interface com-
ponents the combination might not always be achieved by
simply adding the values of both fields but instead by incor-
porating the above mentioned interface physics.

3.3. Borrowing from swarm intelligence

Ideas from swarm intelligence are borrowed to significantly
extend the number of concurrently active visualization ob-
jects. In particular, we model each visualization object as
a separate entity with a limited set of parameters and only
local awareness. This integrates nicely with the buffer ap-
proach from computer graphics since interaction with im-
age buffers in graphics also has a very local characteristic.
This allows us to unify and simplify the way visualization
objects are interacting with interface components. This re-
sults in a significant increase in the number of objects that
can interactively be processed. Also, the local character of
the interaction with image buffers also allows us to consid-
erably increase the number of concurrent user-interactions
with objects or interface components.

4. Realizing the Buffer Framework

After having introduced the main concept of the buffer
framework in the previous section, we will now discuss the
components of the framework in more detail and how they
interact with each other. In addition, we present some as-
pects of the software architecture which we used to create a
flexible framework that is easy to extend further.

4.1. Framework components and their relationship

As mentioned in Section 1, a typical interface consists of
two entities visible to the user: visualization objects that are
typically carrying the displayed information and interface
components for organizing and interacting with them. The
buffer framework adds a third non-visible entity, the buffer
stack (see Figure 1). The buffers in the buffer stack are writ-
ten into by the interface components and thus contain infor-
mation or data that can be used to control the behavior of
the visualization objects. The buffers typically do not con-
tain any logic or algorithmic information but numerical or
boolean values. By this means the application logic can be
transferred from the interface components to the visualiza-
tion objects. Interactions and animations of visualization ob-
jects are derived from the information read from the buffers
rather than from that being controlled directly by the inter-
face components. In this manner, multiple buffers enable
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Figure 1. Common relationship of an inter-
face component, a buffer stack, and a visu-
alizaton object during user interaction.

very flexible visualizations. The interface components are
relieved of the complex administration and steering tasks
reducing the computational complexity of the system. By
having only local awareness, visualization objects can ac-
cess from the buffers the data that is relevant to themselves.
This data in the buffer is a result of the interface component
sampling its properties and writing to the respective buffer
location, Visualization objects process their gathered infor-
mation and act accordingly (see Figure 2). To simplify the
collection of the relevant information, each buffer in a stack
usually serves a special purpose. For example, there may be
buffers for storing object size, orientation, color, etc.; Fig-
ures 3 and 4 show examples of these different uses.

The interface components modify the buffers. While
the visualization objects typically read and react, the inter-
face components receive input and write to the appropri-
ate buffers in the stack. Thus the interface components
indirectly affect the visualization objects as shown in a
schematic overview of this process in Figure 1. In this
framework, this is the most common configuration for the
interaction between interface components and visualization
objects, however, different ones are possible as well. For
example, one interface component could be controlled by
another interface component, i. e., acting as a visualization
object and reading data from a buffer instead of writing to
it. In addition, a visualization object can also write data to
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Figure 2. The buffer stack and the local
awareness of a visualization object.
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Figure 3. A buffer influencing object color.

a buffer, e. g., to mark its presence in a certain area.
The buffer setup affects both flexibility and performance

of the system because the properties stored in the buffers
essentially control the entire interface behavior and it is,
therefore, of high importance. To model both global prop-
erties used by all framework entities and properties local to
individual interface components, we provide several buffer
stacks. One global stack that covers the visible interface sur-
face and local stacks, one for each interface component, as
shown in Figure 5.

These separate local stacks have the advantage of flexi-
ble size depending on the size of the interface component
or its bounding box reducing the memory requirements of
the system. This setup also facilitates the independence of
the interface components from each other and allows for
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2 2 2 2
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Figure 4. A buffer influencing object size.

greater extensibility. This means that object control is not
tied to the global buffer stack size, thus, it is possible to
move an interface component partially off the screen while
maintaining the integrity of the animation of the object by
the interface component.

The global buffer stack is partially used to facilitate as-
sociating visualization objects to interface components by
providing an ID interface component buffer. After user in-
teraction with a visualization object this ID buffer is used to
determine the responsible interface component at the visu-
alization object’s new position and the object is attached to
the component. The visualization object can then determine
the component’s buffers it is able to process, links to them,
and is consequently affected by their content.

4.2. Software architecture

Any software framework requires easy re-usability in form
of a semi-complete but extendable and customizable appli-
cation [15]. Our architecture fulfills this requirement by re-
lying on object-oriented design patterns [5]. We provide
the functionality of a basic and extensible base set while a
specific application can be built using a chosen GUI and ren-
dering API. For this purpose we employ the Builder and the
Composite pattern (see Figure 6).

A specific application uses the framework’s central Vi-
sualization Control object for controlling the creation, ad-
ministration, and rendering of visualization contents. It pro-
vides the framework’s main loop and coordinates the com-
munication between buffers and the components of the vi-
sualization, e. g., its visualization objects and interface com-
ponents. In order to realize the functionality outlined in Sec-
tion 4.1, the Visualization Control object also provides func-
tionality to handle multiple inputs, to handle different input,
output, and buffer resolutions which are not tightly coupled
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to each other, to change buffer resolutions at run-time, to
combine buffers using different methods for realizing the
force field metaphor, etc. Multiple concurrent inputs are
processed by the main application and then forwarded to
the Visualization Control for manipulating buffers as well
as objects and interface components.

The Builder pattern provides a unified interface to hide
the specific rendering API from the application programmer
so that the API can be replaced if necessary. In addition, we
also use it to create recurring configurations of components
that are commonly used to construct interactive visualiza-
tions. These can then be called by an application to create a
specific visualization.

The Composite pattern contributes by providing a unify-
ing base for the visualization objects and interface compo-
nents. These are all treated in a similar way with the dis-
tinction that interface components can contain visualization
objects as well as other interface components For example,
a storage bin [16] may contain many objects such as images
but may also contain other storage bins. Both the Builder
pattern for visualization components (visualization objects
or interface components) as well as the Composite pattern
have specific implementations for the chosen rendering API.
The implementation of these patterns can be extended to
provide new components, however, while the rendering API
can be changed, the components would need to be reimple-
mented to support the new rendering API.

Figure 7 illustrates this concept further by showing the
class structure outline for the buffer framework in UML-
notation. The buffers themselves are provided by a tem-
plate class, thus supporting many different types of buffers.

Specific Application
(e. g., built on TROLLTECH QT)

Renderer (e.g., OPENGL)

Dynamic Link Library (DLL)

Visualization
Control

Builder Pattern

Composite 
Pattern

Buffers

Figure 6. Schematic overview of the frame-
work architecture.

Foundations for the framework are the abstract classes for
the Builder, the visualization Control and the Compos-
ites. These provide all rendering-independent functionality
such as organizing the Composites or processing user input.
Subclasses add necessary functionality, e. g., the renderer-
specific geometric representation. To use the framework,
which comes with implementations for OPENGL, the user
would implement a basic application frame with the toolkit
of his or her choice. Using the interface of the Builder class
the user is able to create a Visualization and its contents,
consisting of Composites, which work with the buffers
as outlined above. New interaction metaphors are imple-
mented for a specific renderer by sub-classing from the pro-
vided abstract interfaces and integrate seamlessly into the
framework without affecting existing code. By making the
buffer framework independent from any special type of ap-
plication code, the integration of other toolkits or frame-
works into the application is possible. This is especially
interesting if considering toolkits for multiple user input,
which can then be forwarded through the application into
the buffer framework. Figure 8 depicts these interrelations.

5. Applications, Implementation, and Results

Currently, we see the main purpose of this framework as the
development of applications for large displays. Sufficient
interactive response makes it possible to implement and to
evaluate new and complex interaction metaphors. To illus-
trate our framework’s effectiveness, we are in the process
of re-implementing a family of 2D tabletop interaction tech-

http://www.opengl.org/
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Figure 7. Basic class structure of the buffer
framework.

niques [7, 8, 9, 16] that push the edge of regular methods
interactive capabilities. This endeavour has already shown
that our framework is capable of reproducing of these com-
plex metaphors and has resulted in combnining several dif-
ferent interface techniques in one unifying application, thus
indicating the possibility of creating richer and more power-
ful interfaces. Also, we are able to maintain responsive an-
imation because the framework uses local awareness of vi-
sualization objects and property sampling. These interface
metaphors can be represented by a common set of buffers.
These are a direction buffer (2D float vector), an orientation
buffer (2D float vector or an 1D float with an angle value), a
speed buffer (1D float), and a size buffer (1D float). While
this is sufficient to build a great variety of metaphors and ap-
plications, the framework is not limited to these. Extensions
to visualization objects using completely different buffers
are possible, without side-effects to existing code and ob-
jects.

Our specific implementation of the buffer framework is
based on OPENGL as the 3D rendering API and Trolltech’s
QT as the API for the graphical user interface. Both are
exchangeable and can be replaced by other APIs by imple-
menting the respective specific functionality in the software
architecture. Using OPENGL and current graphics hard-
ware provides access to common graphics hardware accel-

Application
Code

Buffer
Framework

Other Toolkits
and Frameworks

Input
Toolkit

Figure 8. Interrelationship of a tabletop appli-
cation’s typical components.

eration. In order to make this process transparent for the
application programmer, a standard configuration for hard-
ware acceleration is part of the implementation but can be
replaced or deactivated if necessary.

In our initial experiments on a 1,280 × 2,048 pixels
(≈ 2.6 Mp) tabletop display consisting of two ceiling-
mounted projectors (see Figure 9) we have measured a
speedup of about one order of magnitude over previous
implementations. For example, with the new framework
we are able to maintain a rendering frame-rate of about
25–30 fps for 1,000 animated visualization objects (see Fig-
ure 10) compared to about 100 objects in a previous appli-
cation that does not use the buffer framework [7, 8]. We re-

Figure 9. Table setting 1, 1,280 × 2,048 pixels
(≈2.6 Mp).

alize that it is difficult to compare applications without hav-
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Figure 10. Example application with 1000 an-
imated image objects (some of them over-
lapping) with a look-and-feel and functional-
ity inspired by a previous application without
buffer support [7, 8].

ing a full implementation of the functionality in both cases.
However, we are currently developing such a comparison
application and we think that the speedups seen thus far are
promising.

Interestingly enough, we also observed that the screen
(or output) resolution, the input resolution, and the buffer
resolution can be relatively independent from each other
and do not have to match as shown in Figures 3 and 4. In
order to maintain a smooth animation even if the buffer res-
olution is considerably smaller than the screen resolution,
we interpolate the buffer cell values based on the area that
a virtual buffer cell, centered around the object’s position,
covers surrounding cells. In our experiments this yielded a
smooth animation without the loss of the finer buffer gran-
ularity being noticeable. In our current experiments this
yielded a considerable reduction in memory consumption
without considerable additional processing for the interpola-
tion. However, this may be different for other applications.

In addition, interaction with the animated objects is pos-
sible without a noticeable slowdown since each interaction
is treated as one processing step among all other object an-
imations. This is due to the relatively small number of in-
teractions when compared to the number of visualization
objects which results in as many interactions per second as
there are frames rendered. The interaction processing rate
can also easily be increased if necessary by having several
interaction “interrupts” per object animation loop.

In our current setup we are using a SMART DViT Board
from SMART Technologies that provides us with two con-
current and independent inputs. Although they are not iden-

tifiable, they provide a natural way of interaction with the
tabletop application. The framework’s input interface is im-
plemented in a generic way so that we can use other and
any number of input devices as well. For example, it would
also be possible to implement inputs using several mice at-
tached to a computer using, e. g., the SDG toolkit [20] in
order to facilitate debugging and increase versatility of the
framework.

We are currently also running experiments with a new
tabletop setup that has 2,800 × 2,100 pixels (≈ 5.9 Mp). It
consists of four rear-mounted projectors and uses the same
SMART DViT Board input (see Figure 11). Even on this

Figure 11. Table setting 2, 2,800 × 2,100 pixels
(≈5.9 Mp).

setup with more than twice the pixel count, the speedup
compared to the traditional implementation without buffers
of about one magnitude could be maintained: The tradi-
tional setup ran at approximately 5–10 fps while the new
prototype achieved about 30 fps for 200 objects, 20 fps for
400 objects, and 7.5 fps for 1,500 objects.

6. Conclusion and Future Work

The major contribution of this paper is a concept for improv-
ing the interaction on large displays such as a 12 by 4 foot
wall or a 4 by 5 foot tabletop. In these displays, pixel counts
may easily reach 9 million and more (compared to 1–2 mil-
lion in desktops) making it difficult to achieve interactivity
with traditional methods. In addition, this concept allows us
to more readily support multi-user information exploration
on these displays. The unifying framework is based on the
integration of several visualization and HCI methods. To-
gether they permit new ways of using rendering techniques
to enable communication and comprehension. Finally, by

http://www.smarttech.com/


providing more responsive and locally independent interac-
tion for large tabletop or wall displays we enable the exten-
sion of existing interaction methods and provide the possi-
bility for the development of new metaphors.

In the future we envision implementing local object
polling by having a local or global object buffer that stores
lists of objects present at certain positions. This way ob-
jects would render themselves into these buffers and at the
next iteration can find all objects in a certain neighborhood.
This reduces the search for neighboring objects from O(n2)
to O(n) for a given neighborhood. Since the framework al-
lows us to store any numeric data in buffers we would like
to explore using function pointers in our buffers, thus en-
abling dynamic change in the behavior of objects depending
on their position. In terms of new application domains, we
will explore using of the framework to develop new ways
to present and interact with information, i. e., creating new
information visualization metaphors.

In the long run, there are a great number of research
questions that will have to be answered as we continue to
develop the framework. For example, what does it mean to
undo an operation that was mediated by a combined field
function, and how is it to be implemented? How many si-
multaneous interactions can be supported while retaining
sufficient interactivity? How well does the framework scale
with a growing size of image buffers?
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