
C4: A Creative-Coding API for Media,
Interaction and Animation

Travis Kirton, Sebastien Boring, Dominikus Baur, Lindsay MacDonald, Sheelagh Carpendale
Innovations in Visualization Laboratory, University of Calgary

2500 University Drive NW, Calgary, Alberta, Canada
travis@c4ios.com, sebastian.boring@ucalgary.ca,

 dominikus.baur@gmail.com, macdonla@ucalgary.ca, sheelagh@ucalgary.ca

ABSTRACT
Although there has been widespread proliferation of
creative-coding programming languages, the design of
many toolkits and application programming interfaces
(APIs) for expression and interactivity do not take full
advantages of the unique space of mobile multitouch
devices. In designing a new API for this space we first
consider five major problem spaces and present an
architecture that attempts to address these to move beyond
the low-level manipulation of graphics giving first-class
status to media objects.

We present the architecture and design of a new API, called
C4, that takes advantage of Objective-C, a powerful yet
more complicated lower-level language, while remaining
simple and easy to use. We have also designed this API in
such a way that the software applications that can be
produced are efficient and light on system resources,
culminating in a prototyping language suited for the rapid
development of expressive mobile applications. The API
clearly presents designs for a set of objects that are tightly
integrated with multitouch capabilities of hardware devices.
C4 allows the programmer to work with media as first-class
objects; it also provides techniques for easily integrating
touch and gestural interaction, as well as rich animations,
into expressive interfaces.

To illustrate C4 we present simple concrete examples of the
API, a comparison of alternative implementation options,
performance benchmarks, and two interactive artworks
developed by independent artists. We also discuss
observations of C4 as it was used during workshops and an
extended 4-week residency.

Author Keywords
Creative coding, Application Programming Interface,
Mobile, Multitouch, Media, First-class objects.

ACM Classification Keywords
D.2.2 [Design Tools and Techniques]: Software Libraries. D.
2.10 [Software]: Design. H.5.1 [Multimedia Information
Systems] Animations. H.5.2. [User Interfaces]: Prototyping,
Graphical User Interfaces.

INTRODUCTION
The term 'media' has often been defined in a rather vague
fashion: media could mean anything from images, to audio,
video and 2D / 3D graphics. As developers were motivated
to enable the most up-to-date types of media on devices in
an efficient way, the actual implementation often relied on
various background tweaks and tricks - something invisible
in the application but evident to the programmer.
Combining all these varied types of output under the same
umbrella term therefore meant that 'media' only existed and
still exists as an idealistic concept instead of as
implementation term. Actually producing a media object
often requires a completely different low-level approach
depending on the type of object. This becomes especially
apparent in programming environments and languages
aimed towards artists: while striving for simplicity and
accessibility, even creative-coding approaches have to force
their programmers to resort to a set of different, oftentimes
obscure ways of handling images, videos and 3D graphics
for display, playback, interaction and animation.

With current hardware, the former distinction between
various types of media has become obsolete. Faster and
more powerful technology has made it possible to create an
API that combines and presents all media types to the
programmer in a consistent fashion, which could be
especially beneficial for creative-coding languages.

To realize a media-focused and enabling environment we
have developed an architecture for an API that shifts from
the mechanics of working with media towards a higher-
level, declarative style. We introduce C4, an API that is
currently targeted for expressive interface design for mobile
applications. This API is situated among other creative
coding languages, however its strength is an innovative
architecture that takes advantage of hardware and software
systems specific for mobile devices.

After a discussion of motivation and related work, this
paper is divided into four main sections: 1) the primary
challenges for creating a creativity-support programming
language that works with media in a higher-level 2) the
design an API that addresses those challenges 3) the
architecture of C4, including examples and discussion of
alternative implementations 4) performance benchmarks,
example artistic works, and a qualitative evaluation of the
API in use through workshops and residencies.

MOTIVATION AND RELATED WORK
C4 was created to provide a stable and efficient platform
for creation of expressive computational works whose
interfaces focus heavily on media, interactivity and
animation. As such, C4 draws its inspiration from:
successful creative-coding languages, previous work on

1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TEI 2013, Feb 10-13, 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-1898-3/13/02....$15.00.

mailto:travis@c4ios.com
mailto:travis@c4ios.com
mailto:sebastian.boring@ucalgary.ca
mailto:sebastian.boring@ucalgary.ca
mailto:dominikus.baur@gmail.com
mailto:dominikus.baur@gmail.com
mailto:macdonla@ucalgary.ca
mailto:macdonla@ucalgary.ca
mailto:sheelagh@ucalgary.ca
mailto:sheelagh@ucalgary.ca

toolkit design, programming language constructs, as well as
contemporary media arts.

Creative-coding languages such as Processing[22] and
OpenFrameworks (OF)[21] offer great facility for learning
graphic programming and flexibility for producing rapid
sketches; however this ease plus flexibility approach
remains to be fully extended into emerging media and
technology capabilities. VVVV [27] and Max/MSP jitter
[19] share this space, providing a flexible system that
includes expressive opportunities for video and sound.
However, all operate in the common graphics mode where
full canvas refresh is used for feature animation. Replacing
this with lazy-graphics update enables this type of facility
for our now common high-resolution handheld devices.

The simple yet powerful design of Processing and OF were
an inspiration for the growth of C4. They are both great
examples of how to make programming graphics simple,
however, they stop short of bringing this same power to
media programming. Projects such as VVVV and Max/
MSP/Jitter share influence by providing an immensely
flexible system for the construction of an extremely wide
variety of expressive computational works. However, it is
not easy to develop native applications for mobile devices
using the aforementioned projects.

Previous research has shown successful techniques for the
development of toolkits and APIs. From a design
standpoint the approach that GroupLab researchers have
taken outlines methodologies for toolkit design, as
expressed through the HapticTouch and Proximity Toolkits
[17,18], Phidgets [11], as well as publications on enhancing
creativity through the use of toolkits [12,13]. We apply
their approach to toolkit design towards a creative-coding
API. The Jazz toolkit [4] provides an interesting approach
to the design of a programming language that encourages
compositional approaches to programming. While
innovative, the authors of Jazz acknowledge drawbacks to
the system. C4 draws on their compositional technique by
employing a more declarative system of control over
objects. Projects such as D3, Prefuse and Protovis [6,15,24]
as well as the InfoVis Toolkit [9] have provided solid
examples for API design, yet are limited to the domain of
interactive visualizations. We draw on their approach
surrounding the discourse of C4 and by adopting successful
models for describing an extensive API. Other influences in
this area stem from work in API design for interactive
graphics[5], and language constructs for evolving APIs
[10]. Furthermore, those who have adopted mobile devices
as mediums for creative expression also inspire our work.
Techniques such as light painting [3] use mobile devices as
brushes. The use of mobile devices as canvases as well as a
means for exhibition is becoming widely accepted in the art
world[25]. These highlight the ability to move into an
application development space that encompasses the use of
devices as objects for creative exploration and expression.

PRIMARY CHALLENGES
We identified six primary challenges for the development
of a creative-coding language that works with media in a
higher-level, declarative style, as follows:

Media Objects. Media – videos, images, audio, text, and
shapes – have not yet received first class status in
programming but largely remains accessible via device
level programming. That is, developers manipulate
containers of media (e.g., a view hosting a video) instead of

the media itself. A negative side effect is that each of these
containers is treated differently depending on the type of
contained media. For example, a developer has to access a
movie in a different way than s/he would access a shape or
text. This has probably arisen out of the step-by-step
integration of new media types in existing APIs (i.e., video
was added later than images).

Media Integration. As with media objects, the integration
of media with other programmable objects such as graphics
and interface components remains similarly low-level. This
challenge increases with the desire to have disparate media
affect and influence one another. In many cases,
programmers may need to know low-level techniques. For
instance, blending two images might necessitate the use of
a graphics processing language such as OpenGL [21].

Interaction. In current languages, interaction with media
objects is enabled through their enclosing containers. That
is, a media object does not handle the interaction directly.
With the addition of multi-touch and gestural interaction,
the problem is further amplified as they define a new
interaction style. Most languages and APIs, however, were
written for systems that relied primarily on mouse
interaction requiring the developer to build touch and
gesture recognition systems from scratch.

Animation. Although animating media objects is possible in
existing APIs, they have to be built differently depending
on the type of media to be animated. The problem is that
developers spend a lot of time dealing with the mechanics
of the application as opposed to the putting more focus on
the application’s state. Furthermore, in most APIs, there is
no unified mechanism for animating different objects. For
example, animating a shape is different from animating a
sequence of images and so on.

Rapid Mobile Development. While mobile development is
proliferating, creating and setting up a project is not as
straightforward as on desktop computers: developers have
to understand several (mostly device-specific) abstract
concepts, such as application initialization hierarchies.
Furthermore, mobile application development commonly
necessitates coding in the language specific to the device.
This implies needing to know many native implementations
and media-specific technologies, something that can be
daunting for novice and intermediate level programmers.

Efficient Rendering. Another significant issue that arises for
applications intended for mobile use is that they have to run
as efficiently as possible. Current APIs, however, update
the entire screen even if there is nothing that needs to be
updated in a given cycle. With mobile devices this is a
serious problem given their limited power resources.

DESIGNING A CREATIVE-CODING API FOR MEDIA
To design an API that addresses the aforementioned
challenges, we took a two-step approach: (1) Design
requirements that seek to shape the experience of working
with the API from the programmer’s perspective; (2)
Software requirements shape the architecture of classes and
class structures in such a way that enables and reifies the
design ideals and provide basic techniques for guiding the
creation of the code that is embedded into the API. These
steps serve to direct the overall development of the project
from conceptual, architectural and engineering
perspectives.

2

Design Requirements
Other APIs have been successful in implementing easy to
use languages for programming graphics. However, our
goal was to do so for media objects, interaction and
animation. Based on the identified challenges, we created a
list of ideals that better fits the expectations of a developer
working with the API. Most importantly, we set out to
consider things that a developer would want or expect from
other mature APIs, such as ease and consistency of use. In
particular, the ideals are:

Media as First-Class Objects. Video, voice, music, and
images, should have first class programmable status. That
is, programmers should be able to work directly with media
instead of their encapsulating containers. All media
properties should be accessible programmatically, allowing
developers to control and manipulate any state of any
media object directly. The access through a media object’s
properties and the corresponding response should be
consistent across various media types.

Easy Integration and Composition. Media should be easily
integrated with another one – regardless of the involved
media types. This allows for adding shapes to movies, text
to images, and so on, creating the possibility for designing
complex media types. This integration should also allow
for media composition, e.g., masking a video with a shape.

Direct Interaction with Media Objects. Developers should
be able to construct interactive interfaces – including
multitouch and gesture – from any type of visual object. An
API should take full advantage of underlying frameworks,
removing the need for developers to build touch and
gesture recognition systems.

Declarative Animations. A developer should be able to
animate each media object directly by setting target states
and transition styles instead of constructing the mechanics
of an animation. This declarative style should decrease the
time spend on constructing complex animations.

Rapid Development. Instead of focusing on the setup of a
project, developers should be able to rapidly prototype
media rich applications. Thus, the time to get a project up
and running should be kept short, i.e., through the use of
easily installable and useable templates.

Efficiency. Media objects should operate as efficient as
possible. Instead of updating a screen’s content on a frame-
by-frame basis, the API should make use of lazy rendering.

Software Requirements
The overall goal of our architecture is to directly support
the ideals of the project. Also, the same principles for
working with media should be reflected in the way code is
used and designed. The following list of goals identifies
targets for the concrete aspects of the API and its
implementation. These targets help determine whether new
additions, add-ons or fixes conform to the expectations of
developers of the API.

Simplification. The architecture should be as simple as
possible. To minimize the conceptual design of the API, we
simplify media objects into two main classes: visual and
non-visual objects (Figure 1).

Use of Properties. Developers should be able to control
media objects and their states through properties. When
properties for a given object do not exist in the native
language, the API should implement pseudo properties.

Unified Methods. Whenever possible, the API should wrap
common operations into single methods. In current APIs,
several operations exist that are only slightly different from
one another. Our API provides single operations instead of
many slightly different operations.

Direct Use. In our API, media objects are designed as
composite structures. The intention is encapsulate native
objects and work with them the way they were designed,
rather than sub-classing and extending their functionality.
We also use existing frameworks to make use of existing,
complex technologies as opposed to reinventing them.

Familiarity. We intend to make the API look like the
underlying language. That is, the API reflects existing
name conventions as well as programming styles of
Objective-C, the language with which C4 was built. This
will help developers use native code in their applications,
should they need more custom functionality.

THE ARCHITECTURE OF C4
The C4 framework is written in Objective-C / Core
Foundation and is deployed on iOS environments (i.e. iPad
and iPhone) as these devices are commonly used for
application development. As such, the development
environment is Xcode and the application development
process is similar to that of creating native iOS
applications. Furthermore, while it may be possible to
develop C4 for other platforms (e.g., Windows Phone,
Android) the current version demonstrates how our
streamlined API realizes the aforementioned ideals.

The architecture of C4 conforms to our stated requirements
and, in doing so, seeks to address the six challenges for
creating a creativity-support programming language. From
a design perspective, C4 offers two class-clusters from
which all objects descend; these clusters, C4Object and
C4Control, provide interfaces for high-level interaction
with visual and non-visual objects. Two strong examples of
integration are that all objects can communicate with one
another via a simplified notification system, and that any
visual object can be used as a mask for any other. The
design of visual objects employs an architecture which
addresses both direct interaction and efficiency by
inheriting the touch / gesture interaction capabilities of
native views, as well as as-needed rendering. This means
that a visual object's contents are updated / redrawn only
when absolutely necessary. Finally, all objects incorporate
the use of properties to control state and where these
properties are animatable; simply setting a new target value
will trigger an animation.

The overall goal of C4 is simplification. A programmer will
generally be dealing with two types of objects, visual and
non-visual, that share common functionalities (Figure 1).
Where the native API presents similar methods for a
common operation, C4 attempts to encapsulate such
functionality into unified methods. For example, the native
use of gesture recognizers requires knowing seven different
objects that share common methods for customization, C4
simplifies this into two methods used to construct and
customize all gestures. Class design further adopts a
composite structure directly with the use of native objects
and frameworks. Two primary examples are C4Movie,
which provides an interface for working with a native video
player, and C4Vector, which wraps calls to the Accelerate
framework [1]. Finally, C4 is structured to look like

3

Objective-C through method naming conventions and other
techniques. This provides a familiarity that allows novices
to gain an understanding of the underlying language,
making any` eventual transition into native application
development easier.

EXAMPLES
In order to illustrate some of the basic capabilities of C4 we
present six short examples that reflect the listed problem
spaces. We recognize that while it may be difficult to grasp
the full scope of the API from these examples, they do
express the simplicity of the language. Furthermore, the
simplicity of these examples do not limit the creation of
more complex setups. C4 can be used at a higher level by
experienced developers; it can also be integrated as a pre-
compiled library into native iOS projects – doing so makes
it easier to construct basic media objects instead of writing
complex native code.

Adding to the Canvas
The following creates a shape and adding it to the canvas:

CGRect r = CGRectMake(0,0,300,300);
C4Shape *s = [C4Shape ellipse:r];
[self.canvas addShape:s];

A CGRect structure, r, defines a space within which the
shape will be created. A shape object is constructed in the
space defined by r and is then added to the canvas. For all
subsequent examples, the reader can assume that any visual
object is added to the canvas in a similar fashion.

Animating a property: lineWidth
Properties provide simple means for customizing and
controlling objects. Many properties of visual objects are
animatable; the following example illustrates animating the
line width of a circle (Figure 2).

This animation is triggered using the following code:

s.animationDuration = 1.0f;
s.lineWidth = 150.0f;

The animationDuration is a property of all visual objects
that determines the length of any transformation. This
example is creates a one-second animation. Any animation
is preceded by setting the object’s animation duration.

Morphing Shapes
All shapes can implicitly transform, even between normal
polygons and text shapes. The following example illustrates
changing a circle to a square (Figure 3).

This animation is triggered using the following code:

[s rect:s.frame];

Figure 1. The class structure of objects is simplified into visual

and non-visual objects

The animation system does its best to interpolate between
the two shapes.

Creating and Animating Images
Creating an image is quite easy; the programmer need only
specify the name of the image file.

C4Image *i = [C4Image imageNamed:@”C4Sky.png”];

Animating an image is nearly the same as animating a
shape. In fact, all properties for all visual objects behave in
similar fashion.

All images have a width property that can be animated. An
image can be fitted to the size of the screen by referencing
the width property of the canvas (Figure 4).

s.width = self.canvas.width;
s.center = self.canvas.center;

The second line in this example makes sure that the image
stays in the center of the screen as it animates. It also shows
that the canvas and the image have a similar property called
width. The difference between the two is that the width of
the canvas cannot be changed.

4

Figure 3. Morphing a shape from an circle to a square.

Figure 2. Animating (left to right) the line width of a shape.

Figure 4. Animating the width of an image.

Image Filters
There are thirty-eight different filters that can be applied to
an image. Some filters require a second image to create a
blend, while others only require input values to change the
look of the image. The following is a simple example of
using an input-style filter to change an image (Figure 5).

[i hue:10.0f];

Calling the hue method on an image will change the color
of the image, and if the duration of the image was properly
set the transition will animate.

Labels and Fonts
Labels are visual objects that have properties and behave
like images and shapes. Fonts are non-visual objects that
can be applied to labels, or to shape objects making them
look like text (Figure 6).

C4Label *l = [C4Label labelWithText:@”Hello C4”];
C4Font *f = [C4Font fontWithName:n size:120.0f];
l.font = f;

This example specifies n as the font name but in reality can
be any one of the fonts available on iOS. The above
actually uses @”ArialRoundedMTBold” in place of n.

The background of the label can be changed, as follows:

l.backgroundColor = C4BLUE;

To apply a drop shadow:

l.shadowOpacity = 0.8f;
l.shadowSize = CGSizeMake(10,10);

Movies and Gestural Interaction
Movie objects can be created in the same way as images,
by specifying the name of a file. All visual objects have the
capability for gesture recognition, in the case of a movie
gestures can be used to control its playback (Figure 7).

Gestures can be added to an object by passing a gesture
type, this example uses the TAP gesture to control playing
and pausing the movie. The first gesture, gest1, will trigger
the movie’s play method; by default the TAP gesture
requires only a single touch. The second will trigger the
pause method, but only if two fingers tap at the same time.

C4Movie *m = [C4Movie movieNamed:@”file.mov”];
[m addGesture:TAP name:@"gest1" action:@"play"];
[m addGesture:TAP name:@"gest2" action:@"pause"];
[m numberOfTouchesRequired:2 forGesture:@"gest2"];
An object can be dragged around the screen by adding a
PAN gesture and having it trigger the move: method. The
following line does so for the movie in this example:

[m addGesture:PAN name:@”gest3” action:@”move:”];

Alternative Implementations
The best example of this is the C4Movie object. Forgoing
the code to set up the application environment, as well as
defines, imports and counting the header definitions (all of
which are provided by C4) as well as individual method
declarations, a comparison of lines of code to construct and
add a movie to the canvas is as follows:

• C4: 2 lines of implementation

• Native: 103 lines of implementation

C4 simplifies the process for adding any kind of gestural
interaction to objects:
• C4: 2 lines of implementation

• Native: 47 lines of implementation

Other creative-coding languages
It is also possible to write these examples in other creative-
coding languages. However, many such languages are less
efficient for dealing with interaction. A programmer using
one of these APIs would have to build a custom event
handling system and write touch / gesture recognition logic.
C4 exploits underlying hardware-software frameworks
making it suited to handle multitouch interaction.

In many cases, a programmer using a graphics-based API
with a common draw-loop architecture would have to code
every step of an animation. This makes the combination of
various animations with differing start times quite difficult.
C4 allows for the combination of many animations by
calling them, or setting various properties, at the same time.

Finally, C4 employs an as-needed approach to drawing.
This means that the system only redraws when it needs to

5

Figure 5. Applying a hue filter to an image.

Figure 6. A label (left), background color (middle) and an

animation of the label’s shadow (right).

Figure 7. Two-finger tap (left) will pause the movie, single-

finger tap (middle) will play the movie, and a single-finger

drag will displace the movie.

do so and only in areas of the screen that need to be
updated. In order to match this efficiency without C4, a
programmer would have to further construct mechanisms to
manipulate and reduce the inherent frame-rate mechanisms
that make drawing calls and render the canvas.

PERFORMANCE BENCHMARKS
By employing an as-needed rendering system C4 greatly
reduces unnecessary computation. Furthermore, being
written in code designed for the hardware environment on
which the API is running allows for each application to be
compiled tightly into an architecture suited for the
platform. These aspects offer improved performance over
other creative-coding languages that are designed to be
cross-platform, and can run at or very near the efficiency of
those written in the API’s native language. We now
substantiate these claims by presenting performance
statistics for four applications implemented in three
different contexts (Figure 9).

Four applications, Three Languages
To test our API we designed 4 simple applications that each
focus on a single type of media. The applications do the
following: 1) draw a circle, 2) draw text, 3) draw a scaled
image and 4) draw a movie (Figure 4).

Each application was implemented in C4, ObjC and OF
(totaling 12 apps). OF is a popular creative-coding API that
can run on mobile devices, and specifically iOS. We
compare implementations of simple OF examples that are
given out-of-the-box by replicating them in C4. In doing
so, we are essentially comparing our implementation to the
simple cases provided by the OF project. This approach
does not undermine the validity or functionality of OF, but
it does position C4 against one of the most popular and
successful creative-coding APIs. Furthermore, as many
other APIs, such as Processing, are not available for iOS
we cannot benchmark their performances. Also, C4 has not
been implemented on Android and so benchmarking
between hardware platforms cannot be made consistent.

Each application was tested in three different contexts –
CPU activity, OpenGL frame count, and total memory
allocation – totaling 36 individual metrics. Measurements
for each application were started at launch and taken for 30
seconds. Testing was done on an iPhone 4S, running iOS
5.1 and recorded using the Instruments developer tool.

CPU Activity
The CPU activity for each application was measured
against the overall system CPU. In all cases, the beginning
of each trace showed a spike in activity as an application

Figure 8. Four applications written in C4, ObjC

and OF for testing performance

was starting up, afterwards the activity dropped
significantly. The OF implementation showed the highest
overall CPU activity and consistently higher average
activity after launch. This is most likely because of its
draw-loop architecture. The ObjC and C4 implementations
showed varying launch activities, but negligible averages
thereafter, between 0.1-0.32%, across all four applications.

OpenGL Frame Count
Comparing OpenGL frames drawn shows that ObjC and C4
applications used zero calls to OpenGL, except in the case
of the movie application, showing that both ObjC and C4
do not continuously render. OF rendered approximately
55fps for the first three applications. The movie
application ran at ~25fps for all three implementations.

Total Memory Allocations
This benchmark illustrates the volume of total allocations
of memory. For all applications the ObjC and C4

6

Figure 9. Performance benchmarks for C4 against ObjC

 and OpenFrameworks

implementations measured between 1.79 and 2.64MB of
memory allocated. C4 showed negligibly higher allocation
than ObjC. The shape application had 0.06MB discrepancy
compared to 0.36MB for the movie application.

Discussion of Performance Benchmarks
The performance data shows three important aspects: 1) C4
shows consistently low levels of activity for working with
basic media 2) the activity of C4 compares with ObjC
suggesting it be nearly as efficient as native code 3) C4 can
handle a significant increase in OpenGL frame count
without displaying marked increases in either CPU activity
or memory allocations. Though these preliminary results
are very promising, a full suite of tests checking various
performances would be necessary to be definitive.

INTERACTIVE ARTWORKS MADE WITH C4
The following are strong examples of artists using C4 to
create new interactive artworks. Each of the artists were
new to using C4, and each project was created by them
over the course of a 4-week residency (Figure 10). Artists
were directed to express their unique creative vision.

Black Sheep, by Manuel Ermecheo, is an interactive video
portrait using 6 devices to display videos of a person’s face
[8]. Each device displayed a specific portion of a face and
contained 4 videos of the same portion from 4 different
people. The videos could be changed via swipe gestures to
animate between videos. (32 Lines of code)

The Red C(4), by Lindsay Sorell, is a dynamic interactive
video-masking project using a combination of 3 overlaid
videos [26]. Gestures are used to initiate control over a
masked draggable video. Sound is also controlled based on
interaction, fading various audio samples in and out.
Animations return the work to its original state when
interaction is ended. (90 Lines of code)

C4 IN USE: WORKSHOPS
C4 has been used extensively in two different scenarios: a
3-week session of short workshops and a 4-week residency
for a small group of artists. Throughout these sessions
gathered informal observations about the C4 project.

A group of approximately 45 participants with little to no
programming experience from the Alberta College of Art +
Design were introduced to C4 as part of a series of single-
day workshops. Participants were tasked to create an
animated interactive work as either a poem or a branding
project for their favorite band.

DISCUSSION
The two major sessions, totaling 7 weeks focused on the
use of C4 by approximately 50 different people. These
helped to solidify the API and the final projects produced

affirmed the goals of C4 and its effectiveness as a creative-
coding API. We frame this discussion around our design
requirements.

Challenges
Media as First-class Objects. The artists made extensive
use of the API’s treatment of media as first-class objects.
The declarative control over the state of each object seemed
to provide the intended freedom. It supported use of media
in ways we had not expected by providing higher-level
interaction allowing the artists to focus more on expression
rather than on developing the mechanics of their works.

Easy Integration and Composition. The participants made
complex integrations of various disparate media objects
with one another. The major components of this aspect are:
observation / communication, the incorporation of visible
objects into one another, masking and filtering.

Interaction and Animation. Many aspects of visual objects
were both used: 1) as interface components with added
touch and 2) gestural recognition. These animations were
used in response and independently

Rapid mobile development. All participants made
applications for either touch pads or touch phones. While
the participants were novice programmers, all were
pleasantly surprised by their ‘own programming abilities’
and by the projects they produced. This is perhaps the best
affirmation of C4 – the participants clearly felt empowered.

Quick. The start time to building a mobile application was
amazingly short. After running the installer package,
workshop participants were able to compile and test their
first projects within minutes.

Learnable. All participants were able to develop interactive
mobile applications on their first day of using C4. The
majority of participants from the workshops were first and
second-year art school students who had never taken a
programming course.

Expressive. The simplicity of the C4 allowed participants to
focus more on expressing their artistic intention instead of
on how to actually make something happen. This allowed
them to focus more on working with media rather than on
the mechanics of various kinds of media.

Efficiency. This is a low-level feature that stood up to the
needs of the projects but was not often commented upon by
participants.

Lightweight + Robust. During the exhibition of the four
works from the residency, 12 devices each ran interactive
applications for more than 5 hours without being connected
to power sources. The API is efficient enough to be run for
long periods of time on mobile devices; a major goal.

Accessibility / generality. One of the most significant
aspects of C4 is the fact that it dramatically reduces lines of
code needed to produce an application.

FUTURE WORK
We see a strong possibility for expanding the control of C4
applications to tangible media, building bridges to
hardware devices such as Arduino controllers. We are
interested in the potential of using Media Objects for
interactive Data Visualizations. Finally, we see the
possibility of developing C4 for other platforms, such as
the Windows Presentation Foundation. We are also looking

7

Figure 10. Black Sheep, by Manuel Ermecheo (Left). The

RedC(4) by Lindsay Sorell (right).

towards the addition of simplified application development
components – including various kinds of views, windows
and object controllers – that share common characteristics
of existing visual objects.

CONCLUSIONS
We have presented C4, the implementation of a creative-
coding API with media as first-class objects integrated with
readily available animations and touch and gesture
interactions. C4 is a rapid prototyping language for
experimenting with mobile tablets. Throughout its
development, C4 was strongly influenced by the needs of
artists and designers for an expressive API. The major API
design contributions of C4 are:

First-class media. The API treats media as first-class
objects with declarative control over the state of each
object. This provides higher-level interaction allowing the
programmer to focus more on expressing intent rather than
on developing the mechanics of working with media.

Media Integration. The API offers numerous ways for the
programmer to integrate various disparate media objects
with one another. The major components of this aspect are:
observation / communication, the incorporation of visible
objects into one another, masking and filtering

Composite Objects. The structure of individual classes is
flexible; the focus is on encapsulation rather than
subclassing. Composite objects contain and provide access
to native objects. This allows for grouping objects into
distinct class clusters, visible and invisible, creating a more
uniform and consistent interface between objects.

Interaction. Visible objects are interface elements to which
touch and gestural recognition may be added.

Animation. The API employs a strong implicit animation
model that makes it easy to create and control animations
through properties and declarative statements.

Rapid Mobile Development. C4 offers straightforward
templates for setting up projects; it simplifies needed code,
and lessens the need for knowing many media-specific
technologies. It has been show as accessible for novice and
intermediate level programmers.

Efficiency. Project installations illustrated the usefulness of
efficiencies of C4 such as the use of lazy updating of a
screen’s content.

ACKNOWLEDGMENTS
We would like to acknowledge: Manuel Ermecheo and
Lindsay Sorell, for the presentation of their artworks; The
Alberta College of Art + Design hosting workshops; and
NSERC, SMART, AITF, SurfNet, GRAND, and
University of Calgary for support.

REFERENCES
1. Apple Developer. The Accelerate Framework. https://

developer.apple.com/library/mac/#documentation/
Accelerate/Reference/AccelerateFWRef/_index.html

2. Arduino. http://www.arduino.cc/
3. BERG. http://berglondon.com/blog/2010/09/14/magic-

ipad-light-painting/
4. Bederson, B., et al. 2000. Jazz: an extensible zoomable

user interface graphics toolkit in Java. In Proc. UIST
(2000). ACM, New York, NY, USA, 171-180.

5. Bederson, B., Grosjean, J, Meyer, J. Toolkit Design for
Interactive Structured Graphics. IEEE Trans. Softw.
Eng. 30, 8 (2004), 535-546.

6. Bostock, M., Ogievetsky, V., Heer, J. D3 Data-Driven
Documents. IEEE Trans. on Visualization and
Computer Graphics 17, 12 (2011), 2301-2309.

7. Core Animation. https://developer.apple.com/
technologies/mac/graphics-and-animation.html

8. Ermecheo, M. Black Sheep. https://vimeo.com/
44775468

9. Fekete, J-D. The InfoVis Toolkit. In Proc. of the IEEE
Symposium on Information Visualization (2004),
167-174.

10.Freeman, S., Pryce, N. Evolving an embedded domain-
specific language in Java. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications
(2006), 855-865.

11.Greenberg, I., Kumar, D., Xu, D. Creative coding and
visual portfolios for CS1. In Proc. of the 43rd ACM
technical symposium on Computer Science Education
(2012), 247-252.

12.Greenberg S., Fitchett, C. Phidgets: easy development
of physical interfaces through physical widgets. In Proc.
UIST (2001), 209-218.

13.Greenberg, S. Enhancing Creativity with Groupware
Toolkits. Invited keynote talk. In Proc. of the CRIWG'
03 9th International Workshop on Groupware (2003),
LNCS vol. 2806, 1-9.

14.Greenberg, S. Toolkits and interface creativity.
Multimedia Tools Appl. 32, 2 (2007), 139-159.

15.Heer, J., Card, S. K., Landay, J. A. prefuse: a toolkit for
interactive information visualization. In Proc. SIGCHI
(2005). 421-430.

16. Instruments. https://developer.apple.com/technologies/
tools/

17.Ledo, D., Nacenta, M. A., Marquardt, N., Boring, S.,
Greenberg, S. The HapticTouch toolkit: enabling
exploration of haptic interactions. In Proc. TEI (2012),
115-122.

18.Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg,
S. The proximity toolkit: prototyping proxemic
interactions in ubiquitous computing ecologies. In Proc.
UIST (2011), 315-326.

19.Max/MSP. http://cycling74.com/products/max/
20.OpenGL. http://www.opengl.org
21.Openframeworks. http://www.openframeworks.cc/
22.Processing. http://processing.org/
23.Pure Data. http://puredata.info/
24.Rostock, M., Heer, J. Protovis: A Graphical Toolkit for

Visualization. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1121-1128.

25.Royal Ontario Museum. David Hockney. http://
www.rom.on.ca/hockney/artist.php

26.Sorell, L. The Red C(4). https://vimeo.com/44784050
27.VVVV. http://vvvv.org/

8

https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/AccelerateFWRef/_index.html
http://www.arduino.cc
http://www.arduino.cc
http://berglondon.com/blog/2010/09/14/magic-ipad-light-painting/
http://berglondon.com/blog/2010/09/14/magic-ipad-light-painting/
http://berglondon.com/blog/2010/09/14/magic-ipad-light-painting/
http://berglondon.com/blog/2010/09/14/magic-ipad-light-painting/
https://developer.apple.com/technologies/mac/graphics-and-animation.html
https://developer.apple.com/technologies/mac/graphics-and-animation.html
https://developer.apple.com/technologies/mac/graphics-and-animation.html
https://developer.apple.com/technologies/mac/graphics-and-animation.html
https://vimeo.com/44775468
https://vimeo.com/44775468
https://vimeo.com/44775468
https://vimeo.com/44775468
https://developer.apple.com/technologies/tools/
https://developer.apple.com/technologies/tools/
https://developer.apple.com/technologies/tools/
https://developer.apple.com/technologies/tools/
http://cycling74.com/products/max/
http://cycling74.com/products/max/
http://www.opengl.org
http://www.opengl.org
http://www.openframeworks.cc
http://www.openframeworks.cc
http://processing.org
http://processing.org
http://puredata.info
http://puredata.info
http://www.rom.on.ca/hockney/artist.php
http://www.rom.on.ca/hockney/artist.php
http://www.rom.on.ca/hockney/artist.php
http://www.rom.on.ca/hockney/artist.php
https://vimeo.com/44784050
https://vimeo.com/44784050
http://vvvv.org
http://vvvv.org

