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Abstract

Three-dimensional medical image visualization is an important investigative and diag-

nostic tool in medicine. In addition to being a powerful diagnostic tool, it already plays

a crucial role in several procedures including surgical simulation, image guided surgery

and virtual endoscopy.

The enormous computations involved in interactively visualizing a medical dataset

have always been a barrier to its full utilization in clinical practice. Thankfully, recent

advancements in commodity programmable graphics hardware allow for not only inter-

active visualization, but superior image quality and shading options that are beginning

to rival custom medical workstations and even sophisticated offline software techniques.

This thesis presents several new techniques that leverage the new features in modern

commodity graphics hardware to improve the performance, quality and realism of real-

time medical image visualization.
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Chapter 1

Introduction

In this thesis we present new methods that leverage the recent advances in the power,

programmability and data capacity of commodity graphics processors to greatly acceler-

ate 3D medical visualization algorithms while simultaneously increasing diagnostic image

quality and realism. In this chapter we introduce the reader to the medical imaging field,

discuss how changes in computer hardware have had a large impact on medical visual-

ization, and provide the motivation for our research. We then discuss the specific goals

of this thesis and provide an overview of how the thesis is organized.

1.1 Medical Imaging

Medical imaging has become an integral part of modern medicine. In a broad sense, med-

ical imaging refers to a set of techniques that non-invasively produce images of internal

parts of the body. Understanding how the human body is built, how it functions and

how it goes wrong has been greatly assisted by imaging technology that allows physicians

to see beneath the skin without the need to cut it open. It is now used not only in diag-

nostic procedures throughout the medical field, but also in the planning and evaluation

of surgery and radiotherapy.

Medical imaging relies not only on the physics of the interaction between energy and

matter but also on the technology used to acquire, process and display huge quantities

of biological data. Not that long ago, medical imaging referred primarily to x-rays which

were transmitted through the body and processed on film much like a photograph. In

the last three decades however, medical imaging has advanced rapidly, assisted by huge

1
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advances in digital technology which continues to become less expensive, more compact

and computationally faster.

Over the last three decades, imaging modalities such as computed tomography (CT),

magnetic resonance (MR), positron emission tomography (PET) and ultrasound have

been developed to acquire not only projective images but also cross-sectional images of

the human body. Unlike projective images which project an entire 3D volume into one

2D image, a cross-sectional image obtains an unoccluded view of one 2D slice of the body.

Furthermore, by acquiring many 2D cross sections, full 3D images can now be routinely

acquired in all the imaging modalities mentioned above.

A subset of medical imaging which seeks to make use of the vast quantity of 3D data is

3D medical visualization. Medical visualization is the process of generating images from

raw medical data to gain insight into its qualitative and quantitative features. While

clinicians can gain some insight from visualizing 3D data as a series of 2D slices, a 3D

reconstruction of the data provides a much richer and highly comprehensive view of the

structures contained in the image, due to our implicit ability to perceive 3D shapes (see

Figure 1.1).

1.2 Motivation for Real-time Visualization

The largest hindrance of 3D medical visualization tools in the past has been their prac-

ticality. Due to the vast computational requirements of processing a 3D data-set, only

one image could be generated every few seconds or minutes using offline rendering algo-

rithms. Creating just one illustrative image often requires iterating between adjusting

complex rendering parameters and navigating to an area of interest, resulting in a long,

complicated process. This lengthy process often outweighed its usefulness, especially

with many patients awaiting timely diagnosis or treatment. The accuracy of the render-
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Figure 1.1: Left: A 2D slice from a CT scan. Right: The same scan rendered using our
software.

ing could often be reduced in many ways to allow for increased responsiveness, but this

decreased accuracy could lead to misdiagnosis or other errors.

In order to improve the interactivity of 3D medical visualization, expensive custom

workstations have been designed with dedicated hardware that allow interactive real-time

3D visualization. While these workstations were the first plausible way to enable many

new techniques such as surgical simulation, image guided surgery and virtual endoscopy,

they come at a great cost to hospitals and are extremely inflexible compared to standard

desktop software.

In the last few years, a major shift has occurred in consumer processor design. Pro-

cessors have reached practical limits in clock speed, and have moved towards parallel

multi-core processors to realize further speed gains. This shift has been fueled primarily

by graphics processors which were initially designed to solve the “embarrassingly paral-

lel” task of rendering millions of polygons in video games. As graphics processors became

more flexible it became apparent that they could be used not only to render polygons,
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but also to perform a variety of “data-parallel” processing tasks, and that the algorithms

designed for such an architecture can serve a variety of high-performance computing

tasks.

1.3 Thesis Goals

The goal of this thesis is to demonstrate the potential of using modern commodity graph-

ics hardware to greatly reduce the execution time and increase the quality of 3D medical

visualization. We present new methods that leverage the recent advances in the power,

programmability and data capacity of commodity graphics processing units to greatly

accelerate 3D medical visualization algorithms while simultaneously increasing diagnostic

image quality and realism.

There are four interrelated constraints that must be considered when designing a

medical visualization application:

1. Diagnostic Quality - Volume rendering artifacts can not obscure important details

2. Interactivity - High frame rates must be maintained with minimal down-sampling

3. Realism - Accurate lighting can provide extra details and depth cues

4. Architecture - Architectural support for new features, multiple operating systems

and multiple rendering API’s

1.3.1 Diagnostic Quality

Three dimensional medical image visualization usually involves editing an iso-surface

or a transfer function. An iso-surface specifies a surface of interest corresponding to a

scalar value in the data, whereas a transfer function maps all scalar values returned by

the scanner into optical properties such as color and opacity. By editing the iso-surface



5

or transfer function, different anatomical structures can be visualized and their spatial

relationships examined without having to continually extract coarse polygonal surfaces.

The amount of information in a CT image is directly related to the radiation dose

administered to acquire the image. If a visualization tool obscures or otherwise does not

display all of the information in the scan, or obscures it with rendering artifacts, then the

amount of radiation administered could be reduced simply by increasing the visualization

quality of a lower-resolution scan. An artifact that obscures details of even two voxels in

diameter effectively means that only one eighth of the radiation administered was utilized

in the visualization. Thus, reduction of visual artifacts is crucial before a rendering system

can be used in medical settings.

Unfortunately, volume rendering has a history of being very prone to distracting ren-

dering artifacts, often termed “wood-grain” artifacts. These artifacts arise from three

separate causes: Precision Artifacts, Interpolation Artifacts and Under-Sampling Arti-

facts. This thesis presents a volume rendering pipeline that runs on commodity graphics

processing units (GPUs) that strongly reduces these distracting artifacts while maintain-

ing high frame rates.

Precision artifacts usually arise due to the use of lower precision integer calculations

which are used in place of floating point calculations to increase speed. Since modern

graphics processors now support 32-bit floating point calculations throughout the entire

pipeline, they are an excellent candidate to reduce this source of artifacts.

Interpolation artifacts occur when a sample is needed from the volume that falls in

between voxel centers. Tri-linear interpolation, which is used almost exclusively in volume

rendering, will interpret the value to be the weighted average of the 8 neighboring voxels.

Tri-Cubic interpolation, which uses a weighted 4x4x4 grid of voxels, is almost universally

preferred but almost never used since this is very computationally expensive. In this

thesis we apply a method that uses the GPU’s built in interpolation hardware to build
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higher order interpolation kernels that are much less expensive and thus feasible to use

in a real-time application. The result is the reduction of interpolation artifacts and a

better ability to detect subtle structural details.

Figure 1.2: Head-to-head comparison of renderings with and without artifacts. Left:
Image generated with the common open source software package VTK. Right: An image
produced by our renderer using similar rendering parameters.

Finally, under-sampling artifacts are the biggest source of wood-grain artifacts in

volume rendering. While an adequate sampling rate is usually dictated by the highest

frequency of a signal, volume rendering becomes more complicated due to the addition

of the transfer function that is applied during volume sampling. The two step sampling

process has the effect of multiplying the frequency of the transfer function and frequency

of the volume data, making adequate sampling very difficult to achieve. We have come
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up with a new pre-integrated sampling algorithm that uses a native GPU data-structure

called a mip-map to alleviate transfer function under-sampling. Compared to other

approaches that use large lookup tables or extra samples, our approach uses neither

extra memory nor processing overhead.

1.3.2 Interactivity

Achieving interactive frame rates while maintaining high quality is one of the most chal-

lenging tasks in volume rendering. An interactive system can provide immediate feedback

to the user which allows for a much better understanding of the spatial relationships of

features of interest. It also becomes possible to fine tune the transfer function and visu-

alization in ways which are simply not possible with off-line rendering techniques. This

thesis presents a new method for accelerating volume rendering on the GPU which traces

large groups of rays in parallel to skip empty space. This results in an order of magnitude

speed up for most medical datasets, and performs much better than other approaches in

difficult situations such as when skipping internal empty space.

1.3.3 Realism

The strongest influence on our perception of natural objects is the interaction of light

with an object. Lighting variations can reveal subtle contours while complex shadows can

reveal the distances between objects. The illumination models most often used for volume

rendering are only capable of representing local illumination phenomena. However, it has

been demonstrated [43, 47, 105] that subtle lighting effects from neighboring structures

support spatial comprehension and even improve perception of shapes compared to direct

lighting. A sophisticated illumination model should therefore include not only local

illumination effects but also include global effects that depend on neighboring structures

such as complex soft shadows. This thesis presents a new method for pre-computing the



8

global illumination effect known as ambient occlusion. We first show how this complex

interaction can be pre-computed for volume datasets, and then use the discrete nature

of a volume dataset to take the pre-computation time from days using monte-carlo ray-

tracing down to seconds using a statistical approximation.

1.3.4 Architecture

Finally, GPU volume rendering systems suffer from many difficult architectural chal-

lenges. The GPU must be programmed separately from the CPU using shader programs

that aren’t intended for such a complex task. As shader complexity grows, a volume ren-

dering pipeline becomes more and more difficult to maintain. Simple design strategies

such as code reuse and object oriented design are difficult to apply when developing a

large library of GPU programs. Different rendering API’s such as Direct3D and OpenGL

also offer different feature sets and depending on the year released one will often offer a

better feature set than the other. The work presented in this thesis leverages a custom

written API abstraction library that allows for cross platform development on any graph-

ics API and across operating systems. It also leverages a shader management system that

allows for code reuse and object oriented design of the volume rendering pipeline.

1.4 Overview

Chapter 2 provides a more in depth overview of medical image processing, analysis and

acquisition methods that are relevant to this thesis. Chapter 3 introduces modern graph-

ics processors and the relatively new field of general purpose computing on graphics

processors. Since this thesis focuses on a few separate areas within volume rendering,

general related research is presented first in Chapter 4, while specific research related

to our two contribution areas are presented together with our contributions in chapters

5 and 6. Chapter 5 discusses the importance of optimizing volume rendering and our
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hierarchical frustum-casting technique for accelerating GPU ray-casting on the GPU.

Chapter 6 discusses the importance of shadows and realistic lighting techniques such as

ambient occlusion. We then present our technique which is a new algorithm to approx-

imate ambient occlusion and soft shadows very efficiently on the GPU. Discussion of

our contributions and future work is also presented together with our contributions in

chapters 5 and 6, but we provide a brief review and reach conclusions in chapter 7. Our

publication to Volume Graphics 2008, which was the basis for chapter 6, is provided in

Appendix A.



Chapter 2

Medical Imaging

This chapter provides a more in depth overview of medical image processing, analysis

and acquisition methods that are relevant to this thesis. This chapter is not intended to

provide a review of the state of the art, but rather to put our research in context given the

highly interdisciplinary nature of our lab, and to provide a broad overview of the entire

medical imaging field for the interested reader without a medical imaging background.

Medical imaging in general is first introduced, followed by a description of the current

medical imaging modalities. An overview is then given of the three pillars of medical

imaging - registration, segmentation and visualization - and the importance of real-time

applications to solve these problems in medical practice.

2.1 Introduction to Medical Imaging

Medical imaging is most often perceived to designate the set of techniques that allow

clinicians to non invasively ‘see inside’ the human body. The first and most well know

medical imaging technique, the planar x-ray, has largely served this purpose for just over

a century. In the last few decades, however, there has been an explosion of new and

exciting imaging techniques that can provide an array of vital information about the

structural, chemical and electrical properties of the human body.

Technically speaking, medical imaging techniques can be seen as solutions of mathe-

matical inverse problems. This simply means that the cause (properties of living tissue)

must be inferred from the effect (the observed measurements from the imaging device).

Problems of this nature often have many valid solutions, meaning that while they may

10
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provide crucial information, there will always be certain level of uncertainty involved, thus

it is often argued that a human interpretation of the results will always be necessary.

While the body is inherently 3D, the images captured by x-rays have always been 2D,

resulting in ambiguity. The solution to this problem came in the late 70’s and early 80’s

when advances in engineering and computing brought new 3D imaging technologies such

as computed tomography (CT), magnetic resonance imaging (MRI), positron emission

tomography (PET) and 3D ultrasound.

While the technology behind each of the above approaches is different, what they have

in common is the ability to capture cross-sectional images, rather than planar-projections.

While a cross-section is also 2D, each pixel - or picture element - in the image represents a

single position in the body, rather than an entire line through the body like in a projective

image. Thus, by capturing many 2D cross-sections, an entire 3D volume can be captured.

The pixels from each slice become voxels - or volume elements - of the resulting volume

image, and have a one-to-one relationship with locations in the body.

While new imaging technologies can provide vast quantities of new information about

a patient, interpreting this information is not as straight forward as it might seem. Each

imaging modality takes advantage of different physical properties to create an image,

and in its raw form this data may be hard to decipher. In the case of ultrasound, the

image consists of echoing sonic pressure waves, while in projection radiography (x-ray),

the measurement is the strength of attenuated x-rays having travelled through materials

with different atomic densities. In each case, what is recorded by the imaging device and

what is required by the clinician are not completely aligned.

Computer software can greatly assist in transforming the data from its raw form into

a form that is more useful to a human observer, thus aligning disparate requirements of

physicians with the product of imaging acquisition methods. Due to this, physical image

acquisition and computer-based image processing are often intricately linked under the
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umbrella of medical imaging.

2.2 Imaging Modalities

In medical imaging, any of the various types of equipment or probes used to acquire

images of the body, such as radiography, ultrasound and magnetic resonance imaging are

called modalities. Each modality is based on different physical phenomena and thus cap-

ture different types of information. The information captured, while physically mutually

exclusive, may or may not provide complementary information about the patient. Thus

while one modality usually suffices to diagnose a given problem, it is not uncommon for

multiple modalities to be used in a single case.

2.2.1 Computed Tomography

While the mathematical concepts and theories behind computed tomography (CT) date

back to the late 1800s and early 1900s, the mechanical and computational knowledge

required to build a CT device postponed its invention. The first commercially viable CT

scanner was invented by Sir Godfrey Hounsfield in 1967.

The primary concept behind CT is the Radon transform, which describes how an

image can be represented as a series of rotated projections through that image and

vice-versa. The easiest way to visualize how a CT slice is reconstructed is through the

convolution back projection algorithm (see Figure 2.1) which illustrates what the Radon

transform describes mathematically.

Causes of artifacts in CT include the scatter, or complete absorption of x-rays. Since

the Radon transform assumes rays travel in straight lines through the body, completely

attenuation or scattering of rays can cause ‘streaks’ through the image during recon-

struction. A common cause of these artifacts include amalgam fillings [97] (see Figure

2.2).
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Figure 2.1: Illustration of the convolution back projection algorithm. Each projection of
the object is projected back onto image at the angle with which it was acquired. As the
projections are summed together the structure of the object is acquired (a white circle in
this case). With a sufficient number of projections the entire slice can be reconstructed.
Back projection alone produces a blurred image (top row). Thankfully this blur is uniform
and thus sharpening filters can be used restore the original image (bottom row).

Figure 2.2: Amalgam fillings causing ‘streak’ artifacts in CT.
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Advances in CT technology have focused on the often contradictory goals of decreasing

acquisition time, increasing image resolution, and decreasing the dose of radiation to the

patient. A modern CT scanner consists of an x-ray tube mounted on a gantry that

revolves it around the patient (see figure 2.3). A modern CT scanner will cost between

$500,000 and $2,000,000.

Figure 2.3: A modern CT scanner. The Aquilion One by Toshiba acquires 320 slices in
one rotation around the patient, enabling imaging of an entire organ in fractions of a
second.

While the first CT scanner used a single beam detector which needed to switch be-

tween translating back and forth and rotating in small increments (taking minutes per

slice), later generations used multiple moving detectors and eventually full rings of sta-

tionary detectors to greatly acceleration the acquisition process and reduce the artifacts

resulting from disparities between detectors.

Through the 1990s, scanners moved from stationary ring detectors to multi-slice de-

tectors capable acquiring two, four and then 16 slices simultaneously. Increasing the

number of slices acquired in one pass translated into shorter examination times. Re-

duced times allowed processing of images with fewer artifacts caused by movement. CT
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scanners have continued down this path until today, with the most recent being the 320

slice AquilionOne by Toshiba. These extremely high resolution scanners can capture

an entire organ in very high detail with one rotation around the patient, taking only a

fraction of a second per scan while reducing radiation dose drastically. All the while,

vast improvements in computer technology have reduced the computation time from 2.5

hours per slice down to near real-time reconstruction of an entire scan.

The result of the CT acquisition process is a set of images that represent cross-sections

through the body. Similar to an X-ray, each voxel represents the material’s opacity to

X-rays. At the energy levels use for CT, a material’s opacity to X-rays depends mostly on

the density of electrons in the material. Unlike standard X-rays, which can only portray

relative differences in attenuation, a CT computes a unique attenuation at every voxel.

In order to standardize this measurement, the Houndsfield Unit (HU) was created. The

houndsfield unit is calibrated by setting the attenuation of water to 0 and air to -1000.

Another advantage of computed tomography is its high numerical precision. While a

normal grey-scale or colour image is represented with 8-bits of precision, allowing for 256

unique values, a standard CT will returns results with 12-bits of precision (usually stored

in a 16-bit integer). This high precision can allow for detection of very subtle differences

in attenuation. Since the entire range of CT values cannot be displayed on a standard

monitor at the same time, a typical application will allow the clinician to ‘window and

level’ the the display. The ‘window’ refers to the range of values displayed, and the ‘level’

refers to the midpoint of the range of values. Values outside of the current window are

saturated to black or white.

2.2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is based on measuring the resonating frequency (or

spin) of atoms under magnetic fields. Like computed tomography, MRI is able to capture
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Figure 2.4: A CT angiogram of the brain. Each image corresponds to a cross section
through the brain. The blood vessels are brighter due to an injected contrast agent. One
enhanced blood vessel is denoted by the white arrow in the second row.

cross-sectional images of the body. Unlike computed tomography, it uses no ionizing

radiation. Image contrast in MRI is determined due to a number of factors including

the biochemical environment of water molecules, the movement and diffusion of fluid

and the density of water molecules in tissue. Consequently, MRI provides much greater

contrast between the soft tissues of the body than computed tomography. This makes

MRI especially useful in neurological, oncological (cancer) and musculoskeletal imaging.

Although MRI provides a lot of soft tissue contrast to the human observer, image intensity

in MRI is very relative and can even vary for the same material within the same image.

This makes it more difficult to make quantitative measurements based on image intensity.

A detailed discussion the physics of MRI acquisition is well beyond the scope of this
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Figure 2.5: A Philips 3-Tesla MRI scanner

work, however the interested reader can find a very good introduction in [97] or [42].

Very generally, an MRI imaging device consists of a large magnet, radio transmitters

which deliver pulses of radio waves (vibrating magnetic fields), a radio receiver antenna,

and electronics that decode an RF signal (see figure 2.5). The basic principle behind all

magnetic resonance imaging is a property that nuclei have in a magnetic field. Electro-

magnetic pulses can cause the nuclei to absorb energy from the pulse and then radiate

this energy back out. The key to MRI is the resonance equation, which shows that

the resonance frequency is proportional to the magnetic field it is experiencing [42]. By

applying a magnetic field gradient, whereby the intensity of the magnetic field drops

off linearly along a certain axis, the resonance frequency of atoms will depend on their

position along the axis.

As a very simple example, if we picture two physically separate tissues that experi-

ence the same magnetic field, we would only see one “peak” in the magnetic resonance

spectrum. By applying a magnetic gradient such that the two tissues had different mag-

netic field strengths, each tissue would resonate at a different frequency and we could

identity which parts of the signal come from which tissue. This is an over simplification
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Figure 2.6: Comparison of different types of MRI contrast of a patient with a small brain
lesion. In a T2-weighted scan (top left), water and fluid-containing tissues are bright.
In T2-FLAIR (top right) free water such as the cerebrospinal fluid is made dark. T2*
(bottom left) enhances contrast for certain tissues such as venous blood. In T1 with a
gadolinium injection (bottom right), the contrast of white and dark matter are reversed,
but blood vessels are enhanced by the gadolinium. The lesion is also enhanced by the
gadolinium in this case.

however, and real MRI acquisition involves complex applications of carefully chosen radio

frequency pulses, magnetic gradient fields, and radio frequency measurements.

There are two primary characteristics of the response signal which are typically called

T1 and T2. Both T1 and T2 refer to exponential decay times of atomic spins back to

a steady state. The interested reader can refer to [42, 97] for more detail. These two

characteristics together with a large variety of pulse sequences gives MRI great versatility.

Depending on the pulse sequence and T1 or T2 weighting different types of tissue will

be emphasized. For example white matter will be brighter than grey matter in a T1

Figure 2.6: Comparison of different types of MRI contrast of a patient with a small
brain lesion (indicated by white arrow). In a T2-weighted scan (top left), water and
fluid-containing tissues are bright. In T2-FLAIR (top right) free water such as the
cerebrospinal fluid is made dark. T2* (bottom left) enhances contrast for certain tissues
such as venous blood. In T1 with a gadolinium injection (bottom right), the contrast of
white and dark matter are reversed, but blood vessels are enhanced by the gadolinium.
The lesion is also enhanced by the gadolinium in this case.

however, and real MRI acquisition involves complex applications of carefully chosen radio

frequency pulses, magnetic gradient fields, and radio frequency measurements.

There are two primary characteristics of the response signal which are typically called

T1 and T2. Both T1 and T2 refer to exponential decay times of atomic spins back to

a steady state. The interested reader can refer to [42, 97] for more detail. These two

characteristics together with a large variety of pulse sequences gives MRI great versatility.

Depending on the pulse sequence and T1 or T2 weighting different types of tissue will

be emphasized. For example white matter will be brighter than grey matter in a T1
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Figure 2.7: Very coarse images reconstructed from the brain using fMRI while being
shown the corresponding letters [74]. The researchers used learned correlations between
activated brain regions while showing the patient a set of random training images.

weighted image, but this is reversed for T2 (see Figure 2.6).

Like in computed tomography, a contrast agent can be injected to perform MRI

angiography. By lowering the resolution and performing many scans over time, varying

rates of oxidization can be detected across the brain, allowing for functional measurements

of brain activity (fMRI). Creating imaging methods using MRI is still a very active area

of research. Very recently, researchers have even managed to reconstruct rudimentary

images of what a patient is looking at. After being shown a set of training images, the

researchers were able to generate very low resolution images of letters the patient was

shown purely from analyzing the patient’s brain using custom MRI pulse sequences and

machine learning [74] (see Figure 2.7).

While an MRI scan is free of ionizing radiation, making it theoretically harmless to the

patient, MRI scanners still have safety concerns. Due to the extremely strong magnetic

field required for and MRI (often up to 60,000 times the earth’s own magnetic field),

there are several safety issues that must be addressed in MRI facilities. Missile-effect
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accidents, where ferromagnetic objects are attracted to the center of the magnet, have

resulted several injuries and even deaths. In order to help reduce the risks of projectile

accidents, ferromagnetic objects and devices are typically prohibited in proximity to the

MRI scanner, with non-ferromagnetic versions of many tools and devices are typically

retained by the scanning facility. Patients undergoing MRI examinations are required

to remove all metallic objects, often by changing into a gown or scrubs. The magnetic

field and the associated risk of missile-effect accidents remains a permanent hazard, as

superconductive MRI magnets retain their magnetic field, even when not in use. In fact,

starting up a super conducting magnet after it has been shut down or quenched costs

tens of thousands of dollars since they require liquid helium to cool the magnet back to

superconducting temperatures.

2.2.3 PET and SPECT

Both positron emission tomography (PET) and single photon emission computed tomog-

raphy (SPECT) both involve the injection of special compounds into the bloodstream.

These compounds are known as radiotracers. Radiotracers are formed by incorporat-

ing a radionuclide into a normal compound such as glucose, water or ammonia, or into

molecules that bind to sites of interest. Radionuclides are radioactive isotopes with short

half lives such as carbon-11 ( 20 min), nitrogen-13 ( 10 min), oxygen-15 ( 2 min), and

fluorine-18 ( 110 min). As this radioactive decay occurs, gamma rays and/or subatomic

particles are emitted. This decay is then detected either directly (in SPECT) or indirectly

(in PET). Due to the short half lives of most radioisotopes, the radiotracers must be pro-

duced using a cyclotron and radiochemistry laboratory that are in close proximity to the

PET/SPECT imaging facility. However, the half life of fluorine-18 is long enough such

that it can be still be manufactured at an offsite location. PET and SPECT technology

can be used to trace the biologic pathway of any compound in living humans, provided it
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can be radiolabeled with a radionuclide. Thus the specific processes that can be probed

with PET/SPECT are virtually limitless, and radiotracers for new target molecules and

processes are being synthesized all the time [97].

To detect the emitted gamma rays, SPECT imaging utilizes what is called a gamma

camera to detect gamma rays directly. A gamma camera is simply a lead block with

very small parallel holes which permit gamma rays to travel only in one direction before

hitting a sensitive film. Unlike x-ray imaging, where all x-rays originate from one location,

gamma rays may originate anywhere in the body, which is why they must be focused

in one direction by the gamma camera. This type of projection of rays is known as an

orthographic projection. After the gamma camera is in place, 3D SPECT imaging can

be performed in the same way as computed tomography. The gamma camera is simply

rotated around the patient and a 3D tomography can be computed from the sequence of

images.

PET captures special powerful gamma rays that are emitted in exact opposite direc-

tions. Positrons, which are emitted during radioactive decay, undergo a process known

as positron annihilation when they encounter an electron. This annihilation results in

two photons (gamma rays) being shot out in opposite directions. The amount of energy

in these photons is dictated by Einstein’s famous equation e = mc2 [97] , and thus the

PET detectors can easily determine which gamma rays were the result of annihilation.

The PET imaging device captures these photons by a ring of detectors placed around the

patient. The detectors use extremely accurate timing information to pair the photons

and determine the line of response. By collecting large numbers of these lines, an image

can be built similar to how computed tomography is computed. However, due to the

limited number of events that are collected (in the tens of thousands, compared with

billions in CT) PET typically produces a much lower resolution and less accurate image

than CT or MRI.
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2.3 Medical Image Processing and Analysis

As mentioned above, medical imaging and image processing an analysis have become

intricately linked, to the point where it is difficult to discuss one without the other.

Development of very sophisticated reconstruction algorithms were a prerequisite to de-

veloping almost all imaging techniques after the planar x-ray image. Today, medical

imaging is undergoing a similar explosion of data as other IT industries. As the tech-

nology improves, imaging devices are creating exponentially more information, and as

advanced imaging devices become inexpensive and more readily available, more and more

patients are taking advantage of new imaging procedures.

This explosion of information is radically changing how physicians deal with analysis

of these data. Where it used to be practical to analyze a 3D scan by inspection of all the

2D slices, it is now becoming common practice to analyze scans using many computer

assisted processes. The most common questions that clinicians wish to gain answers to

by looking at an image or set of images include:

• What is the extent and size of a particular structure or process?

• How are structures related in 3D space, including distances and relationships be-

tween neighboring structures?

• How does data from one image correlate to data in an other image, be it from the

same patient/modality or a different patient/modality?

Attempts to address this set of questions has led to three interrelated groups of

algorithms in medical image processing and analysis: segmentation, registration, and

visualization, each of which we will discuss briefly.
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2.3.1 Registration

Image registration is the process of transforming different sets of data into one coordinate

system. Registration is necessary in order to be able to compare or integrate the data

obtained from different measurements. In medical imaging this occurs when images are

taken at different times, in different patients, or using different imaging modalities. After

successful image registration, correlated anatomical locations from different images will

be aligned.

The information gathered over time, from different patients, or different modalities

are often complementary. For a single patient, a physician might want to align the

functional information from a PET scan with the structural detail provided from a CT

scan, or the structural changes in one CT scan to an earlier CT. For multiple patients, a

physician might want to collect a statistical map of how often and where certain cancers

are found in the brain. Image registration permits automatic or semi-automatic fusion

of any number of scans into a common space, which is a much more powerful diagnostic

tool than any single image alone.

Image registration in a single patient can sometimes be accomplished through the

use of fiducial markers which are rigidly attached to the patient, or manually chosen

anatomical markers (such as the tip of the nose, for example). In this case, registration

becomes a fairly simple process of rigidly aligning a set of known point correspondences.

However, when fiducial markers are not present, registration becomes a much more

algorithmically challenging task. Within a single modality, automated feature detection

can be used followed by rigid or non-rigid alignment of matched features. In different

modalities, however, features in one image may not map to the same feature in the other,

making comparison even more complicated.

The gold standard for multi-modal alignment uses an error metric that measures the

alignment of two images called mutual-information. Two overlapping images have higher
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!a" !b"

Figure 7.5:  Checkerboard representation of a CT angiogram and T2!weighted MR image prior 
to registration "a#, and post registration "b#.

# The checkerboard images show alternating patches of the $xed and moving 

images, permitting a qualitative inspection of the alignment.  We can see that prior 

to registration, the images are clearly misaligned, but after performing multi%modal 

registration, the structures appearing in the complementing modalities are well 

matched.  Registration permits the concurrent visualization of important 

information from both modalities in their proper context by using image fusion 

methods, and also allows automated image analysis methods to jointly process the 

two images.  The complete registration took a total of 8.6 seconds to complete using 

our method, compared to a total time of approximately 30 minutes using FLIRT, a 

relative acceleration of approximately 200 times.

# Our $nal example concerns the task of using inter%subject registration to 

perform automatic segmentation of the brain.  We use non%linear mono%modality 

registration transfer an expert segmentation from a T1%weighted MR atlas image to a 

T1%weighted image of another subject.  The non%linear transformation recovered by 

the registration algorithm is used to deform the segmentation of the atlas image so 

that it $ts the structures on the patient image.  The results of the automatic 

segmentation by registration are shown in Fig. 7.6.
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Figure 2.8: Illustration of registering two complementary modalities (CT and MRI).
The checkerboard pattern is used to show the misalignment (left) and alignment after
registration (right) [15].

mutual information when they are poorly aligned, as sets of image values are very poorly

correlated in the two images. To align the images a numerical optimization algorithm

is used that iteratively guesses a good transformation, evaluates an error metric (in this

case mutual information) and guesses again using knowledge of the error from previous

guesses. Assuming a good initial starting point, the algorithm will usually converge on

a good alignment. Due to the uncertainty involved, a physician will usually be involved

just to verify that the registration was successful.

2.3.2 Segmentation

In medical image processing, segmentation refers to the process of partitioning an image

into multiple segments - sets of pixels/voxels. The goal of segmentation is to simplify

and/or change the representation of an image into something that is more meaningful

and easier to analyze. Segmentation of organs and/or tissues is required to determine

important characteristics such as the size, shape or volume of an anatomical structure.
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Image segmentation may be performed manually, automatically or semi-automatically.

Manual image segmentation requires a knowledgeable physician to provide a contour for

each slice of the image that contains the organ or tissue. In addition to being very time

consuming, manual segmentations have a high degree of variability between physicians,

thus a diagnosis based on size or volume measurements from these segmentations becomes

problematic.

Figure 2.9: Interactive segmentation of the brain being performed inside an interactive
3D volume rendering visualization [61].

Automatic or semi-automatic segmentation utilize automated region growing algo-

rithms that can be constrained based on curvature and various thresholds entered by the

physician. Unfortunately automatic segmentation is often very difficult due to poorly

defined boundaries, limited image resolution and high levels of image noise. To improve

automatic methods, often algorithms are customized for particular organs or tissues and
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use a combination of automated and manual control.

2.3.3 Visualization

Visualization refers to the use of images, diagrams and animations to communicate a

message. Medical visualization is a specialized type of scientific visualization which

attempts to transform, select or represent data from simulations or experiments to allow

for exploration, analysis and improved understanding of the data. In the context of

medical imaging, usually visualizations are designed to illustrate raw acquired data in a

form more familiar or clear to the physician.

As a concrete example, consider the data acquired in a modality called diffusion tensor

imaging (DTI). In DTI, a specialized set or MRI pulse sequences are used to acquire not

only one value per voxel, but 6 or more values representing the diffusion tensor of the

voxel (more values can also be used better represent “off-diagonal” information). The

diffusion tensor more or less represents the direction and magnitude of diffusion of water

in the brain. If mentally visualizing a 3D image from slices is difficult for a normal scan,

DTI makes it nearly impossible without assistance. A few scientific visualizations of DTI

include color coding the image based on gradient flow direction, and even simulating the

flow of water through the brain and generating 3D ‘tracts’ which represent the neural

pathways in the brain (see figure 2.10).

Another example of medical visualization which is the focus of this thesis is volume

visualization. While it is still common clinical practice to review patient scans as two

dimensional planar images in the format that they were acquired, this is becoming more

and more impractical for many applications. If one thinks of following a curving vessel

through 3D space or planning the trajectory of a surgical intervention, it becomes clear

how much useful information can be gleaned from having a simple 3D view of the data.

Figure 2.10 illustrates how a correctly designed 3D visualization can immediately identify
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Figure 2.10: Visualizations of medical image volumes. Neural tracts are simulated from
diffusion tensor images (top left) [45]; An ‘unravelled’ view of the colon used for quickly
finding polyps in virtual CT colonoscopy (top right) [40]; Interactive volume visualization
from our software of a CT angiogram to diagnosis ischemic stroke (bottom left) and to
plan reconstructive surgery (bottom right).
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the location of an ischemic stroke, or provide crucial structural details of broken bones

before reconstructive surgery. However, while a 3D view can be more intuitive, it also

has the drawback of occluding itself and hiding potentially important information.

Thus, an effective 3D visualization needs to provide both a detailed unobstructed view

of the object in question together with its context in 3D space, while at the same time

being easy to navigate. The correct way to achieve these disparate goals is often situation

dependent. One illustrative example is in virtual colonoscopy, where the physician wants

to find lumps on the colon called polyps. While a normal 3D view can mimic a real

colonoscopy, polyps can be found much faster by ‘unrolling’ the colon wall into a 2D

sheet that can all be viewed like a piece of paper (see Figure 2.10).

2.3.4 Real-time Applications

While many of techniques above are useful for illustrative purposes and in the lab, apply-

ing them to real patient data in the field comes with a large set of additional constraints.

The state-of-the-art algorithms from each of the above categories can take minutes, hours,

or even days to complete. While those timelines might be acceptable for creating a few

carefully chosen illustrations, in the real world physicians need to make many compli-

cated diagnoses daily, and don’t have the luxury of setting up a complicated simulations

or visualizations for each patient unless it can be performed quickly and painlessly. While

the most advanced algorithms might produce provably better results, they will often stay

in the realm of research labs unless they can be made efficient and practical in a clinical

setting. The phrase ‘Time is brain’ used by stroke physicians illustrates how urgent a

timely diagnosis can be.

In seeking to make medical imaging processing analysis practical for use in the field,

a large amount of recent research has focused on optimizing medical imaging algorithms

to run in real-time or near real-time. While large compromises in the quality of results
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used to be acceptable to provide real-time performance, the vast improvements in com-

puting power and algorithmic advances are blurring the line between high quality offline

approaches and lower quality real-time approaches.



Chapter 3

Graphics Processing Units

Since the contributions of this thesis lie in utilizing the power of modern graphics pro-

cessors, this chapter serves to introduce a reader with a traditional computer science

background to the relatively new field of general purpose computing on the GPU (or

GPGPU). The software developed for this thesis makes exclusive use of GPU computing

so a discussion of the added complexity of GPU programming is warranted before we

delve into the specifics of our research.

3.1 Introduction

Over the course of the last few years there has been an explosion in the computer games

industry that has fueled unprecedented growth and advancement of graphics processing

hardware. While commodity CPU’s have traditionally realized speed gains by increasing

clock speeds and decreasing transistor sizes, GPUs have been able to take advantage of

the “embarrassingly parallel” nature of computer graphics problems to vastly increase

raw processing power. As reported by ATI, the Radeon HD 3870 includes 640 stream

processors consisting of over 1.3 billion transistors and running at peak performance of

over 1 TFlop at a memory bandwidth of 86.4GB/s. Although CPUs are now starting to

take advantage of multi-core processing as well, this speed is still an order of magnitude

faster than the peek performance of 80 GFlops and 8.5 GB/s on an Intel Xeon 7000

Quad-Core CPU.

Semiconductor capability, driven by advances in transistor design and fabrication

technology, increase at the same rate for both CPUs and GPUs. So why has graphics

30
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hardware performance increased so much more rapidly than CPU performance in recent

years? The difference is primarily attributed to major architectural differences in the

two platforms. CPUs are optimized for high performance on sequential algorithms, with

a large proportion transistors dedicated to out-of-order execution and branch prediction.

The highly parallel nature of graphics problems has allowed GPUs to utilize a much higher

percentage of transistors on arithmetic throughput. Additionally, GPUs can make use

of higher transistor counts very effectively by simply adding processing cores. Sequential

performance on CPUs does not scale in the same manner. This has resulted in a rate of

growth that is significantly faster than the often-quoted Moore’s Law (see Figure 3.1).J. D. Owens et al. / A Survey of General-Purpose Computation on Graphics Hardware 81
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Figure 1: The programmable floating-point performance of
GPUs (measured on the multiply-add instruction, counting 2
floating-point operations per MAD) has increased dramati-
cally over the last four years when compared to CPUs.

for the SSE units of a dual-core 3.7 GHz Intel Pentium Ex-
treme Edition 965 [Int06]). GPUs also use advanced proces-
sor technology; for example, the ATI X1900 contains 384
million transistors and is built on a 90-nanometer fabrication
process.

Graphics hardware is fast and getting faster quickly. For
example, the arithmetic throughput (again measured by
GPUBench) of NVIDIA’s current-generation launch prod-
uct, the GeForce 7800 GTX (165 GFLOPS), more than triples
that of its predecessor, the GeForce 6800 Ultra (53 GFLOPS).
In general, the computational capabilities of GPUs, measured
by the traditional metrics of graphics performance, have com-
pounded at an average yearly rate of 1.7 (pixels/second) to
2.3 (vertices/second). This rate of growth significantly out-
paces the often-quoted Moore’s Law as applied to traditional
microprocessors; compare to a yearly rate of roughly 1.4 for
CPU performance [EWN05] (Figure 1).

Why is graphics hardware performance increasing more
rapidly than that of CPUs? Semiconductor capability, driven
by advances in fabrication technology, increases at the same
rate for both platforms. The disparity can be attributed
to fundamental architectural differences: CPUs are opti-
mized for high performance on sequential code, with many
transistors dedicated to extracting instruction-level paral-
lelism with techniques such as branch prediction and out-of-
order execution. On the other hand, the highly data-parallel
nature of graphics computations enables GPUs to use addi-
tional transistors more directly for computation, achieving
higher arithmetic intensity with the same transistor count.
We discuss the architectural issues of GPU design further in
Section 2.

1.2. Flexible and programmable

Modern graphics architectures have become flexible as well
as powerful. Early GPUs were fixed-function pipelines whose

output was limited to 8-bit-per-channel color values, whereas
modern GPUs now include fully programmable processing
units that support vectorized floating-point operations on val-
ues stored at full IEEE single precision (but note that the
arithmetic operations themselves are not yet perfectly IEEE-
compliant). High level languages have emerged to support
the new programmability of the vertex and pixel pipelines
[BFH*04b,MGAK03,MDP*04]. Additional levels of pro-
grammability are emerging with every major generation of
GPU (roughly every 18 months). For example, current gen-
eration GPUs introduced vertex texture access, full branch-
ing support in the vertex pipeline, and limited branching ca-
pability in the fragment pipeline. The next generation will
expand on these changes and add “geometry shaders”, or
programmable primitive assembly, bringing flexibility to an
entirely new stage in the pipeline [Bly06]. The raw speed,
increasing precision, and rapidly expanding programmabil-
ity of GPUs make them an attractive platform for general-
purpose computation.

1.3. Limitations and difficulties

The GPU is hardly a computational panacea. Its arithmetic
power results from a highly specialized architecture, evolved
and tuned over years to extract maximum performance on the
highly parallel tasks of traditional computer graphics. The
increasing flexibility of GPUs, coupled with some ingenious
uses of that flexibility by GPGPU developers, has enabled
many applications outside the original narrow tasks for which
GPUs were originally designed, but many applications still
exist for which GPUs are not (and likely never will be) well
suited. Word processing, for example, is a classic example
of a “pointer chasing” application, dominated by memory
communication and difficult to parallelize.

Today’s GPUs also lack some fundamental computing con-
structs, such as efficient “scatter” memory operations (i.e.,
indexed-write array operations) and integer data operands.
The lack of integers and associated operations such as bit-
shifts and bitwise logical operations (AND, OR, XOR, NOT)
makes GPUs ill-suited for many computationally intense
tasks such as cryptography (though upcoming Direct3D
10-class hardware will add integer support and more general-
ized instructions [Bly06]). Finally, while the recent increase
in precision to 32-bit floating point has enabled a host of
GPGPU applications, 64-bit double precision arithmetic re-
mains a promise on the horizon. The lack of double precision
hampers or prevents GPUs from being applicable to many
very large-scale computational science problems.

Furthermore, graphics hardware remains difficult to apply
to non-graphics tasks. The GPU uses an unusual program-
ming model (Section 2.3), so effective GPGPU programming
is not simply a matter of learning a new language. Instead, the
computation must be recast into graphics terms by a program-
mer familiar with the design, limitations, and evolution of the

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

Figure 3.1: The floating point performance of NVIDIA and ATI GPUs compared to Intel
CPUs leading up to 2007 [78]. This trend continues to accelerate.

With graphics processing units quickly becoming the dominant computing power

in desktop computers, it is only natural to try to make use of this power for other

computational problems. Since virtually every computer sold today comes with a graphics
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processor, the GPU’s ubiquity and low cost are making it a very compelling alternative

to super computers, clusters and expensive workstations.

3.2 General Purpose Computing on the GPU

Only a few years ago, graphics processors consisted of custom hardware that could only

perform one task; their job involved simply drawing, or rasterizing triangles onto a 2D

array of memory called the framebuffer. As time progressed, graphics accelerators were

outfitted with custom hardware to perform more complicated graphics operations such as

transform and lighting (T&L). It wasn’t long before programmable elements were added

to allow for custom lighting calculations on a per-vertex and per-pixel level. Each pixel

could be processed by a short program that could use textures as input and each geometry

vertex could likewise be processed by a short program before it was projected onto the

screen. Along with programability came support for much higher precision calculations.

While fixed-function pipelines were limited to 8-bit calculations, programmable hardware

used 16-bit and eventually 32-bit calculations throughout the entire pipeline.

The first programmable GPUs had extremely limited instruction sets and programs

were limited to only a few instructions in length. Basic flow control mechanisms such as

branching and looping were also unsupported, meaning exactly the same instructions had

to be executed on every pixel or vertex in an object. By 2003 many of these limitations

had been removed and several high-level C-like languages were introduced. Microsoft’s

High-Level Shading Language (HLSL) [72] , the OpenGL Shading Language (GLSL) [87]

and NVIDIA’s C for graphics (Cg) [68] were all proposed as languages that support

a familiar C-like syntax as well as native vector and matrix calculations. All of these

languages are still in use today.

With each generation of GPUs adding new levels of programability, researchers and
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developers have become interested in harnessing this power and flexibility for general

purpose computing. This effort has become collectively known as GPGPU or ”General

Purpose computing on the GPU”. A vibrant developer community has already emerged

1 and there is already very promising research in the literature. Nonetheless, the GPU

remains a specialized piece of hardware and many applications exist that will likely never

be suitable for execution on the GPU. To understand when and where the GPU can

be utilized, we first have to understand the underlying architecture and programming

model. From there we can describe how an algorithm can be structured for effective

execution on a GPU.

3.3 The GPU Pipeline

Modern graphics hardware is designed to maximize performance of real-time rendering

applications. Graphics applications require very high performance for very repetitive

and independent pixel and vertex operations. To exploit the parallel nature of these

operations, graphics hardware is traditionally structured as a pipeline which is divided

into several stages (Figure 3.2). Each graphics primitive is processed by each stage

in the pipeline, and each stage is implemented using additional hardware. Since each

vertex and pixel can be calculated independently, each stage can be implemented using

several processing cores. The more cores there are, the faster a given 3D object can be

transformed and shaded. Each programmable stage inputs and outputs a limited number

of four-component floating-point vectors. The vertex stage takes fixed size vertices as

input and output while the pixel processor takes interpolated vertices from the rasterizer,

and outputs a number of color values. The recent addition of the geometry stage allows

for entire primitives to be taken as input and a variable number of primitives to be

emitted as output.

1http://www.gpgpu.org
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Figure 3.2: The modern graphics pipeline. The vertex, fragment and geometry stages
are programmable. [8]
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Traditionally each stage of the graphics pipeline used separate processors which had

different capabilities. Pixel processors could read from textures while vertex processors

could not, and there were several times more pixel processors than vertex processors to

account for the ratio of pixels to vertices in the pipeline. The recent trend, however,

has been towards a pool of unified stream processors that have the same capabilities and

can be used by any stage of the pipeline. This insures that no stage in the pipeline will

become a bottleneck, as more processors can simply be allocated to that stage on the fly.

3.4 The GPU Programming Model

With all the recent advances in GPU technology, it seems only natural for it to be used

outside of the narrow scope for which it was initially intended. Unfortunately, since GPUs

were developed with only graphics applications in mind, the programming model is very

different from that of traditional CPUs. Therefore, utilizing the GPU is not simply

a matter of learning a new programming language and porting over application code.

Geometry primitives, texture mapping and rendering passes must be understood and

applied in the correct way to invoke a parallel computation on the GPU. Even the most

trivial of programs must at a minimum initialize the graphics pipeline, create textures

and vertices, invoke the renderer, and read back the results from the GPU.

While graphics APIs such as Direct3D and OpenGL require the use of graphics ter-

minology, the GPGPU community often uses a more abstract concept of stream program-

ming when designing parallel algorithms. Stream programming is an inherently parallel

programming model which describes problems in terms of streams and computational

kernels (Program 1). To specify a program using a stream programming language, the

programmer must find data-parallel calculations — identical calculations that are applied

to many independent pieces of data. The data elements are grouped together and re-
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ferred to as a stream while the calculations applied to each element are referred to as the

computational kernel. A complex application can be built by chaining together several

streaming operations. By specifying a program in this way unnecessary serial dependen-

cies in the code are removed. Since the streaming kernel may be applied independently

to each data element, each streaming operation may be shared by an arbitrary number

of processors without any additional effort by the programmer.

Program 1 Conversion of a typical serial for-loop into SIMD and then a stream and
computational kernel for a fictional stream processor.

Sequential Paradigm

for(int i = 0; i < 100 * 4; i++)

result[i] = source0[i] + source1[i];

Single Instruction Multiple Data (SIMD)

for(int el = 0; el < 100; el++) // for each vector

vector_sum(result[el], source0[el], source1[el]);

Stream Programming Paradigm

streamElements 100

streamElementFormat 4 numbers

elementKernel "@arg0+@arg1"

result = kernel(source0, source1)

We can illustrate how these concepts map directly to GPU programming by looking

at a simple example. A typical GPGPU program will use the pixel processor to execute

a streaming operation. A program will usually be structured as follows [78]:

1. The programmer determines a data-parallel piece of the application. The computa-

tional kernel is specified as a fragment program and the input and output streams

are stored in GPU memory using textures.

2. To invoke the kernel, a the range of output stream elements and a domain of input

elements must be specified. This is accomplished by passing geometry vertices to
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the GPU. Typically a quadrilateral (quad) is oriented on the frame buffer to line

up with a 2D rectangular region. The output range is specified using the vertex

positions and the input domain is specified using texture coordinates.

3. The GPU rasterizer interpolates the quad’s vertices (including texture coordinates)

and generates a fragment for every pixel in the quad.

4. The fragment program (kernel) is executed for every fragment. The fragment pro-

gram can read from abitrary memory locations using texture reads, but can only

output to a fixed location in memory (the pixel’s location in the frambuffer).

Program 2 Example GLSL fragment program for the stream programming kernel from
program 1. The input and output streams are specified using using geometry.

uniform sampler2D source0;

uniform sampler2D source1;

void main(void)

{

vec4 arg0 = texture2D( source0, gl_TexCoord[0].xy );

vec4 arg1 = texture2D( source1, gl_TexCoord[0].xy );

gl_FragColor = arg0 + arg1;

}

To mitigate the need for graphics experts, several libraries have been proposed to

abstract the stream programming features of GPUs into a more generic stream pro-

gramming library. Sh [71] uses ad-hoc polymorphism (operator overloading) to specify

streams and kernels within C++ and is being commercialized by RapidMind [81]. The

BrookGPU programming language [12] provides C extensions to specify streams and ker-

nels. Many GPGPU algorithms are also characterized in terms of stream programming.

Recognizing the demand for general purpose computing on GPUs, NVIDIA has released
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Cuda [77] and ATI has released FireStream [4]. Unfortunately, these libraries only work

on their respective platforms, and have not been widely adopted for this reason. More

recently, an open standard called OpenCL has been introduced which will be supported

by both ATI and NVIDIA. Microsoft will also be releasing DirectCompute as part of the

Direct3D 11 API.



Chapter 4

Volume Rendering

This chapter introduces, and formalizes for later chapters, the basic background and

concepts of volume rendering. We leave more in depth literature reviews of ray-casting

optimization and volume lighting techniques for chapters 5 and 6 respectively, where we

present our contributions in these areas. For the interested reader, Real-Time Volume

Graphics [25, 32] by Hadwiger et al. also provides an excellent in depth introduction to

volume rendering. In terms of notation, this chapter follows the conventions used in a

few seminal papers in the area [26,69,70].

4.1 Introduction

In traditional computer graphics, 3D objects are represented using surface descriptions

such as polygonal meshes, NURBS ( non-uniform rational B-Splines ), or subdivision

surfaces. Using this style of modeling, light transport is usually only evaluated on points

of the surface, and thus lacks the ability to account for light interactions that takes place

in the interior of an object. Volume rendering, on the other hand, describes a range

of techniques used to generate images directly from 3D scalar datasets such as those

acquired in medical imaging. The most common approaches to volume rendering involve

extracting 2D surfaces embedded within the dataset, or treating the entire volume as

material that interacts with light. The former is generally referred to as iso-surface

rendering, while the latter is known as direct volume rendering.

More formally, Iso-surface rendering is concerned with finding the distribution of a

desired value within a volume data set. This set consists of all points that satisfy the

39
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Figure 4.1: Left: A single iso-surface rendering. Right: A DVR rendering of the same
dataset.

trivariate function f(x, y, z) = c where c is the iso-value. Direct volume rendering (DVR)

involves trying to capture the interaction of light and participating media. Light may be

absorbed, scattered, or emitted by gaseous or solid material that participates in the light’s

propagation through the volume.

Since volume rendering is based on the concepts of light transport and image pro-

cessing, it is worthwhile to first discuss the theoretical background in these areas before

delving into the recent developments in later chapters.

4.2 Volume Rendering Pipeline

Volume visualization has the goal of visually extracting information from a 3D scalar

field. This can be written as a mapping from a three dimensional space to a single value:

φ : R3 → R (4.1)
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Since the 3D scalar field originates from discrete measurements on a 3D grid, it leads to

the question of how the function φ can be evaluated for any point in the 3D domain. This

refers to the problem of data reconstruction, or interpolation. Assuming such a recon-

struction is available, the scalar value is then mapped to a set of optical properties that

describe how light interacts with that point in space. This mapping is called classifica-

tion and is usually implemented through the use of a transfer function. Mathematically

a transfer function simply maps a scalar value provided by φ to a colour and opacity:

c = qc(φ(p)) (4.2)

α = qα(φ(p)) (4.3)

Assuming this second mapping also exists, we are faced with the problem of lighting the

classified material. Lighting is performed using what is known as the volume rendering

integral. The volume rendering integral and all of its stages are known as the volume

rendering pipeline. We will discuss each of these stages in turn.

4.3 Reconstruction

Reconstruction (or interpolation) refers to the processing of creating plausible data for

points where samples were not aquired. Since volume rendering involves sampling along

rays that travel in arbitrary directions through the volume, most sampling locations

are not directly located on an image voxel. The problem is to decide how to use the

neighboring image values to determine what the value might have been at the sample

location.

The most common interpolation methods include nearest neighbour, tri-linear, spline-

based, and in theory the sine cardinal (sinc) filter. According to signal and information

theory, sinc interpolation produces an image that is most true to the original. However, it
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Figure 4.2: Left: A grid of voxels in the volume. Center: A grid samples from rays
traversing through the volume. Right: Interpolation is needed when the two grids fail to
light up perfectly. Multiple image values are used to reconstruct a value for the sample
location. [15]

is extremely computationally expensive compared to other interpolation methods unless

it is performed in the fourier domain.

The form of interpolation most frequently used in volume rendering applications is

tri-linear interpolation, because it gives acceptable results and often has native support

in graphics hardware. Cubic and other B-spline interpolation kernels are much closer to

the sinc interpolation kernel, but are much more expensive to compute when compared

to linear interpolation. Interpolation is the aspect of volume rendering that is often given

the least consideration. However, it is important because the choice of interpolation can

produce very noticeable artifacts as shown in Figure 4.3. For the interested reader, [69]

provides an extensive examination of the pros and cons of each style of interpolation

when used for volume rendering.

Since all graphics processors include custom hardware to perform bilinear and trilinear

sampling, it makes sense to make use of this sampling hardware whenever possible. For

our implementation we adopted a technique proposed by [94] to efficiently design higher
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Figure 4.3: The importance of interpolation. Top: Tri-linear interpolation supported in
hardware. Bottom: Optimized cubic B-spline interpolation used in our software. We use
the hardware’s native tri-linear samples to build a cubic B-spline sample efficiently.
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order filters. While a naive cubic interpolation filter would take 64 samples (4x4x4), an

optimized filter only takes 8 samples. The key is to choose the positions of the samples

based on the ratio of the desired sample weights and let the tri-linear sampling hardware

fetch 8 samples at a time.

4.4 Classification

Figure 4.4: Left: Slice of a CT scan. Center: Illustration of a transfer function that maps
scalar values to colour/opacity values. Right: Left image with the transfer function
applied. The transfer function is completely opaque in this 2D example for clarity,
however in 3D DVR rendering usually most values are at least partially transparent.

In order to see important details embedded in a volume, it is necessary to make

undesired areas invisible and desired areas visible or highlighted. This can be achieved

in a number of ways, but at the voxel level this is usually achieved through a transfer

function. A transfer function classifies each voxel and assigns it a specific color and

opacity value (see Figure 4.4. Mathematically it is simply a function that takes a scalar
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value as input and returns a colour and opacity as output.

c = qc(s)

α = qα(s) (4.4)

This mapping is illustrated in figure 4.4 where air is blue, fat and soft tissues are beige,

contrast agent (blood) is red and bone is white. This transfer function is completely

opaque, but usually it would be at least partially transparent in a real DVR rendering.

Although application of a transfer function seems trivial, when combined with interpo-
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Figure 4.5: An illustration of transfer function under-sampling. When image interpola-
tion is enabled, the thin red bar above contains all values between 0 and 1. Depending
on very small variations in the sampling location the transfer function can return any
value. Almost no sampling rate can solve this problem when using naive transfer function
classification.

lation it can cause severe artifacts in volume rendering. Combining a transfer function

with volume interpolation has the result of multiplying the Shannon-nyquist sampling

rates of the volume and range of transfer function between two volume samples. Figure

4.5 illustrates the worst case.

Thankfully, a technique called pre-integrated sampling [26] allows us to separate the
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transfer function integration from the rendering integral. Pre-integrated sampling uses a

2D lookup table of all possible integrals from one sample to another within the transfer

function. When looking into the transfer function, both a front and back sample are

specified in the lookup.

Figure 4.6: Comparison with and without pre-integrated transfer in our software. Images
on the right use the same number of samples but achieve much higher quality with
pre-integrated transfer functions.
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4.5 Volume Rendering Integral

We have now described how at any point in the volume we can both find a scalar value,

and determine the optical properties for that value. To perform proper lighting, however,

we need to consult the volume rendering integral. Integrals are often used as physically

correct rendering formulas, as they are continuous. Unfortunately, rendering integrals

to not specify the algorithm to calculate the formula, and a naive algorithm based on

the integral alone is often prohibitively expensive. Most algorithms therefore attempt to

approximate the rendering integral rather than compute it exhaustively.

In volume rendering, the most pronounced effects of light interaction that must be

accounted for are listed below [25]:

Emission Matter releases energy in the form of light, increasing light energy.

Absorption Matter absorbs incoming light and turn it in to heat, reducing light energy.

Scattering Light can be scattered by participating media, changing the direction of

light propagation. In-scattering adds additional energy to a ray while out-scattering

removes energy.

An an optimal model for computing light transport should include the effects of emission,

absorption and multiple scattering. Because a complete solution becomes very computa-

tionally intensive, it is very common to neglect the effects of multiple scattering and use

a more tractable emission-absorption model with single in-scattering of light towards the

eye as depicted in Figure 4.7). For the interested reader, a comprehensive discussion of

light transport models can be found in [70]. The volume rendering formula for emission

and absorption can be solved by integrating along the direction of light from a starting
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Figure 4.7: Illustration of a simple emission absorption lighting model. Light decays
exponentially by absorption but additional light can be added to the ray by emission or
single scattering (in-scattering) from an external light. [25]

point behind the volume to an endpoint in front of the volume.

I(D) = I0e
− R D

s0
κ(t)dt

+

∫ D

s0

q(s)e
− R D

s0
κ(t)dt

ds (4.5)

In this form we integrate from the starting point s = s0 to the endpoint s = D. I0 repre-

sents the background radiance entering from behind the volume at the initial position S0

and I(D) is the light energy leaving the volume at s = D in the direction of the camera.

The first term represents the background light energy (radiance) contribution while the

second term represents the emissive contribution q(s) from every point on the ray atten-

uated by the absorption κ(t) along the remaining distance to the camera. The effect of

single scattering or in-scattering — the reflectance of light via a local illumination model

— can be incorporated without added complexity by simply treating local illumination

as part of the emissive term.

It is often more intuitive to think of this integral in terms of transparency rather than

attenuation. We can define the transparency of the material between s1 and s2 as

T (s1, s2) = eτ(s1,s2) = e
− R D

s0
κ(t)dt

(4.6)
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While absorption ranges from 0 to ∞, transparency T ranges from 0 to 1. With this

definition of transparency we can redefine the volume rendering integral as follows

I(D) = I0T (s0, D) +

∫ D

s0

q(s)T (s,D)ds (4.7)

Direct volume rendering seeks to efficiently compute this integral for every ray in the

image. The most common way to approximate this integral is with a Riemann sum

over n equidistant positions along the ray defined as s0, s1, ..., sn. If we define discrete

approximations of transparency T and color c for the ith interval as

Ti = T (si−1, si) (4.8)

ci =

∫ si

si−1

q(s)T (s, si)ds

The radiance at the endpoint D can then be recursively defined as

I(D) = I(sn) = I(sn−1)Tn + cn = (I(sn−2)Tn−1 + cn−1)Tn + cn = ... (4.9)

This recursion terminates when it reaches I0 which is simply the background color. This

can be rewritten as a summation as follows

I(D) =
n∑
i=0

ci

n∏
j=i+1

Tj (4.10)

We can describe this summation as summing the contribution of all colors along the ray

after first weighting them by the accumulated transparency up to that point. Trans-

parency is often interchanged with opacity or α which is defined as

αi = 1− Ti (4.11)
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4.6 Rendering Techniques

Now that we have discussed the theory behind volume rendering. We can discuss some

of the basic algorithms that approximate the volume rendering integral and apply the

volume rendering pipeline.

4.6.1 Compositing

With the exception of fourier volume rendering [67], all volume rendering algorithms

involve some form of iterative compositing scheme. Compositing is used to integrate the

volume rendering equation in either back-to-front or front-to-back order. Usually the

algorithm chosen for rendering will imply which compositing order is needed. In some

cases, such as half-angle-slicing [51], both back-to-front and front-to-back are needed.

Front-to-back compositing evaluates the volume rendering integral in discrete steps

using the operator:

Ci+1 = (1− Ai) · αi · ci+Ci (4.12)

Ai+1 = (1− Ai) · αi +Ai

Where, respectively, C,A denote the color and opacity value of the ray, c, α denote the

color and opacity value given by applying the transfer function, and i denotes the sample

index. Back-to-front compositing uses the familiar alpha blending operator:

Ci+1 = αi · ci + (1− αi) · Ci (4.13)

Both discrete approximation methods can be viewed as discretizing the volume into slabs

(or shells). Each slab emits light and absorbs light but light emitted in each slab is not

attenuated by the slab itself. An important addition to these volume integration schemes
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is opacity correction. The opacity specified by a transfer function must assume a given

sampling interval ∆x. If the true sampling interval ∆x̃ is different, the corrected opacity

α̃ must be adjusted in the exponent:

α̃ = 1− (1− α)
∆x̃
∆x (4.14)

This is especially important if a variable sampling rate is used during rendering or if the

transfer function opacity is specified in a real world unit such as millimeters but the data

has an independant sampling density.

In addition to these physically based compositing operators, medical imaging often

makes use of additional illustrative operators. Examples include X-ray, which simulates

X-ray attenuation, and maximum intensity projection (MIP), which chooses the value

with the highest intensity.

4.6.2 Texture Slicing

Texture slicing is one of the first algorithms designed for volume rendering. It involves

drawing large 2D polygons which slice through the volume. Slices can be drawn in

front-to-back or back-to-front order using the compositing operators from the last sec-

tion. Since basic texture mapping of polygons was one of the first hardware accelerated

features, it is also the first approach used to achieve real-time frame-rates.



52

26 Course 28: Real-Time Volume Graphics

Polygon Slices Final Image2D Textures

Figure 3.3: Object-aligned slices used as proxy geometry with 2D texture mapping.

3.1 Proxy Geometry

The first thing we notice if we want to perform volume rendering with
rasterization hardware is, that hardware does not support any volumet-
ric rendering primitives. Supported primitives comprise points, lines and
planar polygons. In consequence, if we want to utilize rasterization hard-
ware for volume rendering, we have to convert our volumetric representa-
tion into rendering primitives supported by hardware. A set of hardware
primitives representing out volumetric object is called a proxy geometry.
Ideally, with respect to the traditional modeling paradigm of separating
shape from appearance, the shape of the proxy geometry should not have
any influence on the final image, because only the appearance, i.e. the
texture, is important.

The conceptually simplest example of proxy geometry is a set of
view-aligned slices (quads that are parallel to the viewport, usually also
clipped against the bounding box of the volume, see Figure 3.2), with
3D texture coordinates that are interpolated over the interior of these
slices, and ultimately used to sample a single 3D texture map at the cor-
responding locations. 3D textures, however, often incur a performance
penalty in comparison to 2D textures. This penalty is mostly due texture
caches which are optimized for 2D textures.

One of the most important things to remember about the proxy ge-
ometry is that it is intimately related to the type of texture (2D or 3D)
used. When the orientation of slices with respect to the original volume

Polygon Slices 2D Textures Final Image
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Figure 4.8: Slice based volume rendering using 2D textures. This form of rendering
breaks down when the planes becomes perpendicular with the viewing direction. To
support all views three different volumes are used. [25]

ACM SIGGRAPH 2004 25

which can efficiently be performed on modern graphics hardware. Tex-
ture mapping operations basically interpolate a texture image to obtain
color samples at locations that do not coincide with the original grid.
Texture mapping hardware is thus an ideal candidate for performing
repetitive resampling tasks. Compositing individual samples can eas-
ily be done by exploiting fragment operations in hardware. The major
question with regard to hardware-accelerated volume rendering is how
to achieve the same – or a sufficiently similar – result as the ray-casting
algorithm.

In order to perform volume rendering in an object-order approach, the
resampling locations are generated by rendering a proxy geometry with
interpolated texture coordinates (usually comprised of slices rendered as
texture-mapped quads), and compositing all the parts (slices) of this
proxy geometry from back to front via alpha blending. The volume data
itself is stored in 2D- or 3D-texture images. If only a density volume is
required, it can be stored in a single 3D texture with each texel corre-
sponding to a single voxel. If the volume is too large to fit into texture
memory, it must be split onto several 3D textures. Alternatively, volume
data can be stored in a stack of 2D textures, each of which corresponds
to an axis-aligned slice through the volume.

There are several texture-based approaches which mainly differ in the
way the proxy geometry is computed.

Polygon Slices Final Image3D Texture

Figure 3.2: View-aligned slices used as proxy geometry with 3D texture mapping.

Polygon Slices 3D Texture Final Image
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Figure 4.9: Slice based rendering using view aligned slices allows the volume to be ren-
dered from any angle. 3D Texture mapping must be supported for view aligned slic-
ing. [25]
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The first approach to texture slicing involved storing a volume in many 2D textures

and rendering the slices in sorted order (see Figure 4.8). Since the slices were aligned

with the volume, three copies of the texture were needed depending on the viewing angle;

visible popping occurred when switching between these volumes.
ACM SIGGRAPH 2004 103
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Figure 18.3: Modified slice axis for light transport.

when light intensity is stored at a coarse resolution and interpolated
during the observer rendering phase. The visual consequences are blurry
shadows, and surfaces that appear too dark due to the image space high
frequencies introduced by the transfer function.

A simple and efficient alternative was proposed in [52]. First, rather
than creating a volumetric shadow map, an off screen render buffer is uti-
lized to accumulate the amount of light attenuated from the light’s point
of view. Second, the slice axis is modified to be the direction halfway
between the view and light directions. This allows the same slice to be
rendered from point of view of both the eye and light. Figure 18.3(a)
demonstrates computing shadows when the view and light directions are
the same. Since the slices for both the eye and light have a one to one
correspondence, it is not necessary to pre-compute a volumetric shadow
map. The amount of light arriving at a particular slice is equal to one
minus the accumulated opacity of the slices rendered before it. Naturally
if the projection matrices for the eye and light differ, we need to main-
tain a separate buffer for the attenuation from the light’s point of view.
When the eye and light directions differ, the volume is sliced along each
direction independently. The worst case scenario is when the view and
light directions are perpendicular, as seen in Figure 18.3(b). In the case,
it would seem necessary to save a full volumetric shadow map which can
be re-sliced with the data volume from the eye’s point of view providing
shadows. This approach also suffers from attenuation leakage resulting

© YYYY ACM, Inc. Included here by permission.

Figure 4.10: Half-Angle slicing accumulates lighting information at the same time ren-
dering the volume. The half-angle between the light vector l and view vector v always
provides a valid plane s shared by the two views. Rendering switches between back–
to-front and front-to-back rendering depending on the lighting direction. [51]

Once 3D texture mapping became available, the next logical progression was to use

clipped view aligned polygons to render the volume (see Figure 4.9 ). Now only one copy

of the volume was needed, and smooth transitions between all views were provided by

hardware trilinear texture sampling. One initial drawback of this technique was variable

performance depending on the viewing angle. Early graphics hardware stored textures

linearly in memory, so performance would suffer when not viewing the volume along the

z axis. New hardware has solved this problem by storing textures in a swizzled memory

lay-out in which neighboring pixels are store together in memory.

More advanced illumination techniques have also been implemented using slice-based
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volume rendering. Half-angle slicing [51] accumulates lighting information using slicing

in tandem with rendering (Figure 4.10). By using the half-angle between the light and

view vectors, lighting can be accumulated using the same slice planes. Shadows as well

as approximate sub-surface scattering can be supported with half-angle slicing.

4.6.3 Ray-Casting

The other approach to volume rendering treats each pixel as a ray which is computed

independently, rather than iterating all rays together in image space slices (see Figure

4.11). Ray-casting has always been a popular CPU algorithm for high-quality volume

rendering, but has only become popular on the GPU recently due to the added flexibility

of recent GPUs. Basic GPU ray-casting involves using a cube to represent the volume

and performing the ray-casting in several passes (see Figure 4.12). Basic optimizations

to GPU ray-casting involved using the CPU to generate proxy geometry that encloses

the visible parts of the volume better than a simple cube (see Figure 4.12).

50 Course 28: Real-Time Volume Graphics

eye

rays

view plane

Figure 5.3: Ray casting. For each pixel, one viewing ray is traced. The ray is
sampled at discrete positions to evaluate the volume rendering integral.

Figure 4.11: Ray-casting renders the volume using a dedicated ray for each pixel. Samples
need not lie on the same plane, so equidistant sampling is possible.
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Figure 4.12: GPU iso-surface ray-casting. Ray entry and exit points are stored by ren-
dering a cube which represents the volume. The front (a) and back (b) faces are rendered
and stored in textures. In a subsequent pass a ray is cast from the front face to back face
until the iso-surface is found (c). Lighting is performed in a fourth pass (d).

Figure 4.13: Image from [89] of data specific proxy geometry used to optimize GPU
ray-casting. The volume is broken into cubes which are tested for visibility on the CPU
and then uploaded to the GPU each time the transfer function or iso-surface is changed.



Chapter 5

Acceleration Using Hierarchical Frustum Casting

This chapter introduces one of the main contributions of this thesis, which is a novel

method for accelerating ray-casting using a technique we call hierarchical frustum cast-

ing. This chapter also reviews additional relevant literature. We first discuss general

approaches to optimization, followed by architecture specific optimizations and then ray-

casting specific optimizations. We then turn to our technique and discuss the reasoning

behind and the implementation details of our approach.

5.1 Introduction

Since the interaction of light needs to be evaluated at all the positions in the 3D vol-

ume, direct volume rendering quickly becomes a very computationally intensive task. To

understand how many operations are required let’s look at an example. With a typical

screen resolution of 10242, a reasonable volume size of 5123 and a frame rate of 30FPS,

a brute force ray-caster would need to perform over 30 billion compositing operations per

second (30 ·10242 ·512 ·2). Even a very basic compositing step requires many lookups into

memory and many calculations. Just to compute the gradient, for example, we would

need 6 tri-linear memory lookups (using central differencing). This alone would require

over 1.5 trillion memory accesses per second! ( 30 · 10242 · 512 · 2 · 6 · 8 ).

With such high computational costs, building an interactive volume renderer would

be an insurmountable task without serious optimizations. As such, much work has been

focused on improving the performance of both off-line and interactive volume rendering

methods. We first look at how one should approach such an optimization problem, as

56
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well as at the GPU specific constraints that must be considered. We then turn to our

optimization approach which utilizes multi-pass coherent ray-casting to achieve drastic

performance increases without requiring complex CPU/GPU interaction.

5.2 Approaches to Optimization

Algorithmic optimizations usually fall into two overlapping groups. Architectural opti-

mizations and input specific optimizations. Architectural optimizations seek to maximize

the performance of an algorithm given the constraints of a given hardware architecture,

while input specific algorithms make key assumptions about the input data and then ex-

ploit these assumptions for performance gains. A sophisticated system will be optimized

for the given architecture and have several input specific algorithms to choose from that

can be chosen based on the input. A given input specific algorithm may even perform

worse on certain types of input due to the extra overhead incurred to exploit a given

assumption, but this can be mitigated by applying a detection step and choosing which

algorithm is appropriate for the input. A classic example of this is Brent’s method [10]

for root finding, where three different root finding methods are applied depending on the

output of a simple analysis of the input function.

In a worst case dataset for volume rendering, every voxel will have a distinguishable

contribution in the final image. This sets the worst case performance for all volume

rendering algorithms, and currently only architectural optimizations can improve this

worse case. Thankfully, common datasets are far from this worst-case, having many data

specific properties that can be exploited for performance gains. The most common data

specific property is spatial coherence (also called data locality). Architecturally speaking,

cache coherence and branching coherence are very important.
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5.2.1 Spatial Coherence

Spatial coherence refers to neighboring voxels tending to have similar scalar values which

results in large regions with similar appearance and large regions of empty space. In

medical data, as little as 1% and rarely more than 60% of voxels contain visible data [88].

When only translucent or opaque iso-surfaces are rendered rarely more than 5% percent

of voxels are visible before rays become fully saturated or exit the volume. Spatial

coherence is usually exploited through use of hierarchical 3D data structures such as a

kd-trees, octrees, macro cells, bounding volume hierarchies (BVHs), or the 3D distance

transform. Fast traversal algorithms similar to bresenham’s line drawing algorithm [11]

can be used for volumes [1], octrees [63] and distance fields [17] to quickly skip empty

space and find surface intersections.

In volume rendering it is undesirable to have large preprocessing steps each time the

iso-surface or transfer function is changed and thus variants of the above algorithms that

store min-max bounds [21] or Lipschitz bounds [95] can be used which are independent of

transfer function changes. Lipschitz bounds store the maximum image gradient in a cell,

while min-max bounds store the minimum and maximum image values. Unfortunately

when using a distance transform one must still recalculate the distance field after the

transfer function changes, but there are linear time algorithms [27] and methods to

compute them quickly on the GPU [20,85].

5.2.2 Cache Coherence

Cache coherence refers to how an algorithm accesses memory. Generally speaking, al-

gorithms which access contiguous memory locations will perform much better than al-

gorithms that thrash back and forth between distant memory cache blocks. GPU ar-

chitectures have evolved to take advantage of the similar memory access patterns of

neighboring pixels. Neighboring pixels are computed in lock step with each other us-
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ing the same instruction pointer, rather than executing one pixel’s calculations before

starting the next pixel. When this group of neighboring pixels accesses memory, all the

accesses are performed at the same time and likely access the same location, resulting

in much better cache coherence. CPU ray tracing algorithms have in the past had poor

cache coherence since neighboring rays tend to traverse the same voxels or tree nodes,

but at different times.

CPU ray tracing cache coherence has been addressed recently with research into

coherent ray tracing methods [102]. Coherent ray-tracing increases cache coherence while

taking even greater advantage of spatial coherence. This is achieved by tracing large

groups of neighboring rays (called packets) at the same time, rather than waiting for one

ray to finish before moving on to the next. The result achieved is very similar to what is

natively supported in GPU architectures in terms of cache coherency. In addition to cache

coherence, work can often be amortized across the entire packet. For example, empty

space skipping can be performed for the entire packet, instead of for every individual ray.

Reshetov et al. [83] use frustum tracing and SIMD optimized frustum-box culling to cull

kd-tree nodes for large multi-resolution groups of rays. Wald et al. [103] use coherent

grid traversal (CGT) to drastically accelerate ray tracing (see figure 5.1). Coherent grid

traversal has been extended to coherent octree traversal (COT) by Knoll et al. [52] for

CPU based first-hit iso-surface rendering and extended for particle ray tracing by Gribble

et al. [44].

5.2.3 Branching Coherence

Branching coherence is also very important for GPU methods and refers to how neigh-

boring pixels behave in loops and branches. While the GPU supports four-wide SIMD

instructions like on x86 and Cell architectures, there is also an inter-pixel ‘SIMD width’

in which neighboring pixel threads share the same instruction pointer. This width ranges
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Figure 5.1: Illustration of coherent grid traversal (CGT) on the CPU. Neighboring rays
(a) usually traverse mostly the same cells (colored blue) ); computating these rays indi-
vidually results in incoherent memory access and redundant instructions. CGT picks the
major ray axis k of the packet and creates an axis aligned bounding frustum (b) in the
u,v plane. This frustum encloses all rays in the packet. Traversal of the frustum involves
traversing two rays (min, max). Using SIMD instructions one traversal step takes only
one SIMD add and one SIMD float-to-int conversion. A 2D loop then checks the cells
bounded by the min/max cells at each step. Some unneeded cells are checked due to the
loose bounding box approximation (colored in red).

from 16 on the latest models (NVIDIA 8000 series and ATI 2000 series) to much higher

on older models. While this arrangement tends to provide improved cache coherence

and improves arithmetic throughput by dedicating more transistors to number crunch-

ing operations, it also trades off single pixel branching performance. Essentially, this

results in arithmetic units sitting idle unless there are enough pixels executing the same

instruction.

As an illustrative example, consider a simple if-then-else block that contains 10 in-

structions in the if-block and 10 instructions in the else-block. If all neighboring pixels

execute only the if-block, then the else block can be skipped resulting in 100% efficiency.

However, if only one pixel in the group requires the else block, this will result in both

the if-block and the else-block being executed for the entire group of pixels, resulting

in only 50% utilization of the arithmetic units. If each of these if/else-blocks contain

a nested if-then-else block then efficiency will drop to 25%. One can see how the large



61

throughput of the GPU can quickly be consumed by inefficient branching operations.

For this reason, Horn et al. [41] found branching coherence to be the main bottleneck for

their single pass kd-tree GPU ray tracer. As pixels diverged down the KD-tree, all the

neighboring pixels needed to follow all the paths taken by neighboring rays, drastically

reducing performance.

5.3 GPU Volume Rendering

While advanced coherent approaches are being utilized on the CPU to increase perfor-

mance, GPU based approaches have typically relied on brute force approaches that rely

solely on the increased arithmetic throughput of the GPU. More advanced ray tracing ap-

proaches that utilize hierarchical data structures have so far suffered from major branch

performance issues resulting in performance similar to, or only slightly faster than, CPU

approaches.

While ray-casting is becoming the standard approach for both CPU and GPU ap-

proaches, the GPU has had a much more diverse history. The first hardware accelerated

methods for volume rendering were proposed by Cullip and Neumann [76] and Cabral et

al. [14]. They represent the volume as a 3D texture or a stack of 2D textures, and resam-

ple onto viewport aligned planes called proxy geometry. Successive planes are rendered

using back-to-front compositing. Texture based approaches have been refined several

times in recent years [26,51].

Although a very flexible and useful algorithm, it is also hard to optimize, often result-

ing in consistent worst-case performance even when most of the volume is empty or not

visible. Although much more difficult to optimize than ray-casting, a few optimizations

have been proposed [49,88].

To avoid the extra costs, GPU ray-casting approaches have also been presented.
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Krueger and Westermann [55] propose a method to accelerate volume rendering based on

early ray termination and space-skipping. Their algorithm uses alternating ray-casting

and empty space skipping passes using a min-max macro-cell grid. Roettger et al. [84]

propose a ray-casting system which avoids low quality 8 bit frame buffer blending and a

method for artifact free volume clipping. Hadwiger et al. [34] and Scharsach [89] propose

a combined approach to empty space skipping using object order bounding geometry and

adaptive sampling, as well as advanced deferred shading [94].

5.4 Coherent GPU Frustum-Casting

We now turn to our optimization approach which utilizes multi-pass coherent frustum-

casting to achieve drastic performance gains. Our technique is advantageous in that it

requires no CPU/GPU communication, and is based purely on ray-casting. The extra

steps required can even be implemented as custom compositing operations, making it

possible to implement our method within an existing ray-casting system using the outputs

from empty space skipping passes as inputs to ray-casting.

As mentioned above, most existing acceleration techniques rely on a combination of

CPU pre-preprocessing and CPU proxy-geometry extraction. While proxy geometry is

rarely used on the CPU, the reason it is used frequently on the GPU is that GPUs

have been designed to be very efficient at taking a group of unorganized triangles and

rasterizing them in depth correct order onto the screen. By extracting a shell that

encapsulates the visible data in a volume and drawing this using the conventional pipeline,

you can effectively find the entry/exit point of each ray, quickly skipping past large empty

parts of the volume.

Unfortunately, finding the proxy geometry shell has always been performed on the

CPU since until recently GPUs could not generate geometry on the fly. This results in
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a more complex rendering architecture and adds the potential for pipeline stalls as the

new geometry is uploaded to the GPU. It also doesn’t allow for skipping any internal

space in the volume as the depth buffer can only be use to find either the front or back

of the shell.

Our goal was to achieve similar or better performance than proxy geometry solutions

using a ray-casting only approach. Unfortunately, recent GPU ray-tracing results have

shown less than optimal performance for standard kd-tree and octree traversal algorithms

on the GPU, commonly citing poor branching performance [41]. In addition to using ray-

casting, we also wished to take advantage of the recent work in coherent traversal, since

it seems wasteful for tens or even hundreds of rays to traverse the same empty voxels.

Again, unfortunately techniques like coherent-grid-traversal require a complex 2D loop

to check all the cells within a packet frustum at each step(see figure 5.1). Although there

haven’t been any GPU implementations of these methods, it seems likely they would also

exhibit poor branching performance without major modifications.

To alleviate complex branching issues mentioned above, we decided to pursue alter-

natives that fit more readily into the GPU’s memory and execution model. We settled

on a multi-pass technique that is implemented as a simple for-loop with no additional

branches. Unlike traditional tree based traversal techniques, our technique doesn’t re-

quire a stack, which is the primary source of complicated branching in ray traversals [41].

Additionally, we don’t require complex looping to check the cells in our frustum traversal.

The multiple passes in our algorithm are used to move from coarse packets of rays to

fine packets of rays and finally to individual rays that perform the final compositing. We

will first describe a custom data structure we created to allow for easy casting of large

packets of rays through empty space. We will then describe how our acceleration uses a

new technique called coherent frustum casting to very quickly cast through empty space

and converge on the visible parts of the volume very quickly.
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5.4.1 The Overlapped Min-Max Octree

The thrust of our approach is to use a new data-structure that alleviates the problems

in ray-tracing and coherent ray-tracing approaches and lets us reap the benefits of these

approaches without the drawbacks. The new data-structure is a modified octree that

makes casting large packets of rays much easier.

a) b)

Figure 5.2: Illustration of ray-casting vs ray-traversal. Casting has no notion of the of
the grid structure and simply samples at a fixed interval. This results in missing an occu-
pied octree cell (a). Ray-traversal often uses a cell traversal algorithm like Bresenham’s
algorithm [11] until the ray reaches an occupied cell (b). Every grid cell touched by the
ray is sampled, thus no occupied cells are missed.

We observed that while advanced ray-tracing algorithms tend to be slow on the GPU,

ray-casting fits very nicely into the GPU’s memory and execution model (see figure 5.2.

Thus, our approach alters the octree data-structure to allow for casting of entire packets

at once, rather than tracing of ray packets as in [83, 103]. Although definitions vary

and there is often overlap in their definitions, ray-casting or ray-marching is usually

defined as consecutive sampling along a ray at fixed intervals. Conversely, ray-traversal

(which is usually part of ray-tracing) involves explicitly intersecting the ray with planes

or cells, such that the step size changes at each step. Casting fits very nicely into the

GPU execution model as it comes down to very repetitive texture sampling operations.

However, acceleration approaches based on standard octrees require more complicated
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ray-traversals, such that no octree cells are missed.

In order to allow for casting of an entire packet of rays, we designed a new data-

structure that we call the overlapped min-max octree or OMMO (see figure 5.3). At

each cell in the OMMO, we store the minimum and maximum value contained within

that cell as well as within a user defined border or overlap around the cell. The overlap

is important, as it can give a guarantee that there is no visible data within a certain

distance from a sample location, no matter where the sample is taken. The result is that

an entire packet of rays can be cast using one representative ray in the center of the

packet, so long as the width of the packet is lower than the overlap in the octree (see

next section).
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Figure 5.3: Calculation of the second level of the overlapped min-max octree (OMMO).
(a) A normal min-max octree stores the minimum and maximum values within a given
cell. (b) The overlapped min-max octree adds an overlap of specified size when computing
the minimum and maximum values. Here an overlap of one cell is use, but we found two
cells to be effective. The overlap is clamped (blue cell) at edges of the volume.
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5.4.2 Frustum Casting

We will now describe how we utilize the OMMO to greatly accelerate skipping over empty

regions of the volume. The idea behind our approach comes from adapting the sphere

tracing algorithm [36]. Sphere tracing assumes there is a dense distance field describing

the distance of the closest visible surface to that point. As demonstrated in figure 5.4, the

number of samples required to converge on a surface is drastically reduced using sphere

tracing.

a) b)

Figure 5.4: Illustration of sphere tracing compared to normal ray-casting. Traditional
ray-casting uses many redundant samples of empty space while approaching a surface
(a). Sphere tracing converges on the surface using only a few samples (b).

Unfortunately, there are many drawbacks to using a distance field in practice. The

primary drawback is that the distance field must be recomputed every time the visible

surface changes. In a medical visualization setting, the iso-surface or transfer function are

often being altered. Although fast algorithms have been devised to calculate a distance

field, none of them approach real-time for the size of a common medical dataset.

Our approach tries to keep the advantages of having a distance field while removing

the requirement that it be updated each time the transfer function changes. We also

address the ability to cast an entire group of rays at once. Although the overlapped min-

max octree doesn’t give us an accurate distance to the surface, it does provide a lower
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a) b) c)

Figure 5.5: Illustration of frustum casting. Ray-Casting has no notion of the of the
grid structure, resulting in a missed occupied cell (a). An overlapped min-max sample
guarantees a minimum step distance from any sample taken within a min/max cell (b).
We use this minimum distance to cast an entire frustum of up to 256 rays at once(c).

bound on the distance based on the amount of overlap and the sampling location within

the octree. Figure 5.5 demonstrates an overview of how our algorithm uses samples from

the min-max octree to guarantee that no visible cells are missed while casting, and then

extends this to an entire packet of rays bounded by a frustum. We call this technique

frustum casting.

While figure 5.5 demonstrates the idea behind frustum casting, we will now demon-

strate how to calculate the exact distances and step sizes depending on the overlap,

sampling location and frustum width of a packet of rays. Given the sampling location,

we can very quickly calculate a lower bound on the distance to the surface. In the event

that there is no visible material in the OMMO cell, we can find the distance to the closest

border of the OMMO cell as follows:

R = minx,y,z(w − abs(round(s)− s)) (5.1)

Where w is the half-width of OMMO cell and s is the location where the sample was

taken, assuming nearest neighbor sampling and that OMMO cells are centered on a grid
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at every integer. Given this radius R, of empty space around the sampling location, we

can now determine a safe step distance for one ray (which is just R) or for many rays,

given some information about the frustum bounding those rays.

When casting a large frustum of rays together, we wish to insure that none of the rays

in the packet will hit any visible material during a large step. Given the radius R from

above, this now becomes a simple problem of determining the step size that results in

the corners of the frustum intersecting with the bounding sphere that we know is empty.

Figure 5.6 illustrates this calculation for orthogonal and perspective projections.
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Figure 5.6: When casting only one ray (a), the step size d is equal to the radius R
of empty space. In frustum casting a conservative step size must be used to insure no
rays exit the sphere. For orthogonal projection (b), we calculate the step size based
on the half-width w of the packet and R using Pythagorean theorem. For perspective
projection (c) we would have to solve a quadratic equation to find d at every step, so we
simply approximate the step size assuming the step size from orthogonal projection and
subtracting a small epsilon ε.

5.4.3 Hierarchical Frustum Casting

Now that we have devised a method to cast large packets of rays (or frustums) through

empty space, we describe how we also apply this technique in multiple passes to progress
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from large packets to small packets and finally into individual rays.

Multi-pass GPU algorithms are used for a few reasons in GPU programming. The

two main reasons are as an alternative to costly branching operations, and to pass output

of one stage of the algorithm to another stage. Stages are usually defined to break an

algorithm into groups of repetitive operations with well defined inputs and outputs. In

our case, each pass of the algorithm casts a specific size of ray packets, and the output is

the distance at which those packets intersect visible material. Each successive pass uses

smaller packets which start where the larger packet left off (Figure 5.7). These passes can

be visualized as grey-scale images representing the depth reached by each packet (Figure

5.8).

Figure 5.7: Illustration of multi-pass frustum casting with two frustum casting passes
(blue and red) followed by ray-casting (a). The output from each pass are saved in a
buffer as input to the next pass. In 3D, each blue and red frustum would represent 256
and 16 rays respectively.

As described above, we can now cast large packets of rays through the overlapped

min-max grid by simply sampling and adjusting the step size based on some very simple

calculations. By using multiple passes, we can also work from very large coarse packets, to

finer packets and finally to individual rays. One remaining issue we have yet to discuss

is how we choose which level of the octree to use. Each level in the octree will only

facilitate up to a certain step size based on the overlap used in that level. Optimally we
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Figure 5.8: Each pass from figure 5.7 can be visualized as a grey scale image representing
depth. The top-left and top-right images represent the first two passes of 256 and 16 ray
packets respectively. The bottom-left represents the final depth of the iso-surface, and
the bottom-right represents represents the final rendered image using a single iso-surface
rendering with phong lighting and ambient occlusion.
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would like to start at a higher level in the octree initially to facilitate larger step sizes,

until we get closer to the surface (like in a standard octree traversal). While we could

add extra logic to traverse up and down the tree, this would result in requiring a stack

or at minimum extra branching operations.

To avoid complicating the casting procedure, we instead devised a new way of deciding

which octree level should be used. Rather than traversing the tree and letting the octree

level determine the step size, we reverse this and instead chose a reasonable step size and

let that step size determine the octree level needed to achieve that step size. As we can
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Figure 5.9: Illustration of how the step size varies according to the packet’s size. Since
this is a quadratic relationship, the step size decreases slowly at first (a,b) but very
quickly as the packet size approaches to the sphere’s radius (c).

see in figure 5.9, as the packet width increases relative to the size of OMMO cell, the

maximum step size decreases until it finally reaches zero. Thus, we choose the octree

level based on the packet size. Contrary to the intuition that we should try to maximize

the step distance by choosing a higher octree level, we actually try at all times to choose

the lowest octree level possible. The reason for this is, while a higher octree level may

provide a larger potential step size, it also increases the chances that visible material will

be found in the min-max range and that the entire packet will have to terminate and

break into smaller packets. Thankfully, by grouping rays into very large packets, the

large width of the packet will result in a choice of a high octree level. Thus, large packets
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will take large steps and smaller packets will take smaller but more accurate steps that

get closer to the final surface.

Since the octree cells (and the amount of overlap) increase by powers of two at each

level, the formula for choosing the octree level is quite simple. In fact, since the octree

is stored in a mip-mapped 3D texture on the GPU, we use hardware accelerated texture

sampling instructions to make the choice of octree level for us. Assuming we want a

minimum step size of d and have an overlap percentage of O, we can calculate the octree

level that provides this step size from figure 5.9 and the Pythagorian theorem as follows:

level = dlog2(

√
d2 + w2

O
)e (5.2)

Conveniently, the mip-map level computed automatically by graphics hardware is a sim-

ilar calculation:

level = round(log2(max(dx, dy)) (5.3)

where dx and dy are also usually computed automatically as the partial derivatives of

the texture coordinates relative to screen space coordinates, but can also be specified

explicitly. Recall from figure 5.9 that the minimum step size should be specified relative

to the packet half-width. We therefore let:

d = αw (5.4)
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Then, by simplifying and reducing to the form of equation 5.3 we get:

level = dlog2(

√
α2w2 + w2

O
)e (5.5)

= dlog2(

√
(α2 + 1)w2

O
)e

= round(log2(w

√
α2 + 1

O
) + 0.5)

= round(log2(βw)) ( let β =
√

2

√
α2 + 1

O
)

Thus by letting dx = dy = βw the hardware will compute the correct octree level to

guarantee a step size of α times the packet width from the current location. Since α and

O are constant for the duration of the ray-cast we can pre-calculate β as a constant for

the pixel program. At this point we could determine the level of the octree, the amount

of overlap and apply equation 5.1 to find the exact safe step distance, but all these extra

instructions can only increase the step size by a maximum factor of two (assuming overlap

equal to or greater than the cell size). Instead, we found it was much faster to let the

hardware compute everything for us and simply use the minimum step size.

We then need only keep track of the frustum half-width of the packet (w). Conve-

niently, the packet width either stays the same in the case of an orthogonal projection,

or increases linearly as the ray travels away from the origin of a perspective projection.

To generalize this calculation, we calculate the initial frustum width from the distance

between neighboring rays at the ray origin (eye, or front plane), and calculate the rate of

change of the frustum width from the difference in the direction vectors of neighboring

rays. This is very simple on the GPU using the derivative instructions, which compute

the partial derivative of any value relative to the screen x and y coordinates.
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Program 3 Shader code for casting a packet through the OMMO

Initialize Ray Packet (Frustum)

...

//Calculate half-width of frustum cast by this pixel

float rayHalfWidth = length( ddx( rayOrigin.xyx ) ) * SQRT_2 / 2.0;

float rayHalfWidthRate = length( ddx( rayDirection.xyz ) ) * SQRT_2 / 2.0;

//Store width/rate in position/direction w coordinate

rayPos.w = rayHalfWidth;

rayDirection.w = rayHalfWidthRate;

...

Cast Ray Through OMMO

...

while ( !rayFinished )

{

...

stepLength = rayPos.w * alpha;

rayPos += rayDir * stepLength;

dx = rayPos.w * beta;

rayFinished |= IsVisible( texture3dGrad( OMMO, rayPos.xyz, dx, dx ) );

...

}

...

5.4.4 Accelerating the Min-Max Visibility Test

Until now we have assumed that given the minimum/maximum value and an arbitrary

transfer function that we can easily test whether a given cell contains any visible voxels.

While there are existing approaches to perform this test in the literature, they have

been designed to work with proxy geometry solutions. As such we came up with a few

extra alternatives to compute this test very quickly that trade-off time, accuracy and

pre-computation time. We will briefly discuss these alternatives here. See figure 5.10.

The only approach we found in the literature involves creating a one-bit 2D lookup

table indexed by the minimum and maximum values (figure 5.10c). Using this approach,
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every time the transfer function is changed the lookup table must be recomputed and

uploaded to the GPU. The min/max visibility test then becomes a simple lookup into

the table using the min/max as indices. Obviously, even though there is only one bit

for each combination of min/max values, this results in a massive texture if an accurate

range of 12-bit or 16-bit values is to be used. In addition, if ray-casting is to be used

rather than proxy geometry, this entire texture must be uploaded to the GPU every time

the transfer function is changed.

Beginning with this technique, the first thing we addressed was eliminating the large

2D lookup table, and subsequent CPU/GPU bottleneck of uploading a large texture to

the GPU. As a first step, we noted that the min/max visibility test is equivalent to

checking if the sum of the alpha values in the [min,max] range of the transfer function is

non-zero. This is obvious as any non-transparent value will result in a non-zero sum, and

indicates that there is non-transparent material in that range. To quickly find the sum

of the [min,max] range, we used a common data structure called the summed-area-table

(SAT), or integral function. The value in the summed area table is simply the sum of all

values before it in the function itself:

SAT (x) =
x∑

x′=0

f(x′) (5.6)

Using the integral function, the sum or average over any range can be computed as:

Sum(x1, x2) = SAT (x2)− SAT (x1) (5.7)

Ave(x1, x2) =
SAT (x2)− SAT (x1)

x2 − x1

(5.8)

Thus, using the SAT, we can replace one lookup into a large 2D texture by two lookups

into a very small 1D lookup texture (figure 5.10) . While this method worked very well,
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it introduced an extra texture lookup in the inner loop of the ray-caster. To even further

reduce the computation time, we created an approximate approach that performed almost

identically to the SAT but required only one lookup.
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Figure 5.10: For a given transfer function(a), and a min/max cell(b), the min/max
visibility test is usually performed with a one-bit 2D lookup table(c). To save memory,
speed and pre-computation time, we have devised two new techniques. We use either two
lookups into an SAT lookup table (d) or one bilinear lookup into a mip-mapped transfer
function(e).

To reduce the visibility test to one memory lookup, we looked at the effect of mip-

mapping the transfer function. The result of mip-mapping a texture is a hierarchy of

images that are each half the size of the last. Mip-maps are usually used to reduce

aliasing of texture lookups when a triangle becomes smaller and smaller on the screen.

Furthermore, mip-mapping is built into the GPU pipeline and adds no extra cost when

sampling. The mip-map is usually chosen automatically based on the local gradient (rate

of change) of the texture coordinates in screen space. The mip-map is chosen such that
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neighboring pixels in the chosen mip-map will be large enough to enclose the texture

region occupied by a screen pixel.

To reduce the visibility test to one bilinear lookup, we simply chose our sample care-

fully such that:

x =
Max+Min

2
(sample location) (5.9)

dx = Max−Min (texture coordinate gradient) (5.10)

mip = dlog2(dx)e (mip-map - computed by hardware) (5.11)

The result will be a linear blend of two values which enclose the entire [min,max] range

of the transfer function. The ratio of the linear interpolation is irrelevant as we only need

to know that every value in the range contributed to the final value. If any non-zero

alpha is found in the range then the value of the lookup with be non-zero and we know

that the space is occupied. It should be noted that although this sample encloses the

[min,max] range, it is also inaccurate by as much as 50% of the range, resulting in some

false-positive visibility tests. Thankfully this inaccuracy grows as the range grows, so

that there is only a large error when the range of image values is very large. In this case

there is very likely be something visible anyway, and we found the overall effect of this

error to be negligible with the mip-map lookup always outperforming both the 2D lookup

and the SAT lookup. If a mip-map lookup is to be used exclusively, we can optimize

this lookup even further by storing x and dx (average and difference) directly instead of

storing the min and max values and computing x/dx.

One remaining issue that should be mentioned is numerical precision. Both the SAT

test and the mip-map test require sufficient precision in order to work. Otherwise a

small non-zero alpha value can be lost when it is blended with many other values. To

address this, for both approaches we use 16bit precision to represent the 8bit transfer
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Program 4 Final code for visibility test using a mip-mapped transfer function. This
takes only one memory lookup and a few instructions, or simply one memory lookup if
ave/diff are stored directly instead of min/max.

bool IsVisibleMinMax( float min, float max )

{

float ave = (min + max) * 0.5;

float diff = max - min;

return texture2dGrad( sampler, ave , diff, diff ) != 0.0;

}

bool IsVisibleAveDiff( float ave, float diff )

{

return texture2dGrad( sampler, ave , diff, diff ) != 0.0;

}

function values. Another alternative is to pre-preprocess the alpha values into a binary

representation of visible or invisible (1 or 0) since we don’t care about the specific opacity

when skipping empty space.
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5.5 Results

While the final result of optimizations is improved performance for a given image, this is

slightly complicated to measure, as different data-sets have different amounts of empty

space and benefit differently from empty space skipping. Since any empty space skipping

procedure is likely to increase performance substantially on most data-sets, we thought

it would be informative to measure both the increase in performance, as well as the total

time spent on the empty space skipping passes themselves. This is especially informative

in difficult cases where little can be done to improve performance. In such situations

space skipping optimizations can result in a performance decrease equal to the overhead

incurred by the additional space skipping steps. In some prior work this time can account

for as much as 30% of the frame time in algorithms while are already costly such as DVR.

We have chosen a few views to highlight both the best and worst case rendering per-

formance. Table 5.11 shows the total rendering time with and without our optimizations

as well as the total time spent in the empty space skipping passes. It is important to

note that the empty space skipping passes never exceed 2ms (500fps), which we feel is a

reasonable cost even if it results in no speed-up in a worst-case dataset. Figure 5.12 illus-

trates the results in a few graphs. As we expect, rendering performance is consistently

improved by a factor of around 15 times with the exception of views with large amounts

of internal empty space.
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Skin Bone Vasculature Air

81

Empty Space Skipping Time (milliseconds)
View 16x16 Packets 4x4 Packets 16x16 + 4x4 Packets

Skin < 0.5ms (2000fps) 1.5ms (670fps) < 1.0ms (1000fps)
Skull < 0.5ms (2000fps) 1.6ms (630fps) < 1.0ms (1000fps)

Vasculature < 0.5ms (2000fps) 2.2ms (450fps) < 1.0ms (1000fps)
Air < 0.5ms (2000fps) 1.5ms (670fps) < 1.0ms (1000fps)

Table 5.1: Performance for basic iso-surface ray-casting using our approach.

Iso-Surface Rendering Time (milliseconds)
View Not Optimized Optimized Speedup

Skin 115.5ms (8.7fps) 7.5ms (133fps) 15.4x
Skull 130.9ms (7.7fps) 8.1ms (123fps) 16.2x

Vasculature 201.3ms (5.0fps) 11.1ms (90fps) 18.1x
Air 110.4ms (9.1fps) 7.5ms (133fps) 14.7x

Table 5.2: Performance for basic iso-surface ray-casting using our approach.

DVR Rendering Time (milliseconds)
View Not Optimized Optimized Speedup

Skin 190.2ms (5.2fps) 12.6ms (79.3fps) 15.3x
Skull 220.0ms (4.5fps) 12.9ms (77.5fps) 17.2x

Vasculature 362.8ms (2.8fps) 30.3ms (33.1fps) 12.0x
Air 410.3ms (2.4fps) 186.7ms (5.5fps) 2.2x

Table 5.3: Performance for basic iso-surface ray-casting using our approach.
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Vasculature 201.3ms (5.0fps) 11.1ms (90fps) 18.1x
Air 110.4ms (9.1fps) 7.5ms (133fps) 14.7x

Table 5.2: Performance for basic iso-surface ray-casting using our approach.

DVR Rendering Time (milliseconds)
View Not Optimized Optimized Speedup

Skin 190.2ms (5.2fps) 12.6ms (79.3fps) 15.3x
Skull 220.0ms (4.5fps) 12.9ms (77.5fps) 17.2x

Vasculature 362.8ms (2.8fps) 30.3ms (33.1fps) 12.0x
Air 410.3ms (2.4fps) 186.7ms (5.5fps) 2.2x

Table 5.3: Performance for basic iso-surface ray-casting using our approach.
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Empty Space Skipping Time (milliseconds)
View 16x16 Packets 4x4 Packets 16x16 + 4x4 Packets

Skin < 0.5ms (2000fps) 1.5ms (670fps) < 1.0ms (1000fps)
Bone < 0.5ms (2000fps) 1.6ms (630fps) < 1.0ms (1000fps)

Vasculature < 0.5ms (2000fps) 2.2ms (450fps) < 1.0ms (1000fps)
Air < 0.5ms (2000fps) 1.5ms (670fps) < 1.0ms (1000fps)

Table 5.1: Performance for basic iso-surface ray-casting using our approach.

Iso-Surface Rendering Time (milliseconds)
View Not Optimized Optimized Speedup

Skin 115.5ms (8.7fps) 7.5ms (133fps) 15.4x
Bone 130.9ms (7.7fps) 8.1ms (123fps) 16.2x

Vasculature 201.3ms (5.0fps) 11.1ms (90fps) 18.1x
Air 110.4ms (9.1fps) 7.5ms (133fps) 14.7x

Table 5.2: Performance for basic iso-surface ray-casting using our approach.

DVR Rendering Time (milliseconds)
View Not Optimized Optimized Speedup

Skin 190.2ms (5.2fps) 12.6ms (79.3fps) 15.3x
Bone 220.0ms (4.5fps) 12.9ms (77.5fps) 17.2x

Vasculature 322.8ms (3.1fps) 34.0ms (29.4fps) 9.5x
Air 410.3ms (2.4fps) 186.7ms (5.5fps) 2.2x

Table 5.3: Performance for basic iso-surface ray-casting using our approach.
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Figure 5.11: Performance tables for our empty space skipping passes, iso-surface ren-
dering and DVR rendering for the skin, bone, vasculature and air views. Empty space
skipping time is especially noteworthy. Performance is generally improved by at least
1500% except in cases where there is significant internal empty space. It was difficult to
measure GPU times under 1ms, thus we have provided upper bounds only when this is
the case. These tests were all performed on a GeForce 8800 card.
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Figure 5.12: Illustrative graphs from the results in figure 5.11. Iso-surface rendering
performance is consistently improved since there is no internal empty space. DVR im-
provement drops off in data where large amounts of internal empty space is present.
These tests were all performed on a GeForce 8800 card.
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5.6 Discussion

We have presented a novel approach to optimizing GPU ray-casting which addresses

many of the concerns with prior GPU empty space skipping approaches. Rather than

simply porting existing ray-tracing algorithms to the GPU - which have shown to very

poorly utilize the GPU’s total arithmetic throughput - we approached the problem by

adapting algorithms that are known to perform well on the GPU to the new problem of

empty space skipping.

Compared to optimization approaches which have become very complicated and re-

quire large amounts of CPU/GPU communication, our approach runs entirely on the

GPU and can fit into a conventional ray-casting system by simply adding a few extra

shaders and one extra volume texture (the OMMO). By utilizing all possible hardware

accelerated instructions, the empty space skipping shaders used in our system boil down

to just a few carefully chosen instructions. We have also presented several optimizations

to transfer function lookups and min-max visibility tests which will benefit many other

approaches as well.

The one area we wished to address further was the issue of skipping over large amounts

of internal empty space. We found that we could easily gain another 2-4X speedup for

shell-like datasets by inserting empty space skipping instructions into our main composit-

ing shaders. However, since this cost is directly associated with each compositing ray,

rather than being amortized over large groups of rays, we found this had a considerable

impact on worst-case performance. However, as discussed in section 5.2 this cost can

potentially be mitigated by adding a detection step and choosing the most appropriate

method.

We also looked briefly into extending coherent frustum casting to find regions of empty

space within the volume. We found this to be the most promising approach, but found
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this also had a large impact on worst-case performance, as the entire volume needs to be

searched for empty internal regions, instead of just stopping at the first visible cell. This

time is largely wasted if volume is largely opaque and compositing rays actually terminate

near the surface. Again, a detection step could be employed to turn this feature on or

off, but we would like to investigate adding a conservative ray-termination step into the

frustum casting passes that would prevent this wasted effort while still providing the

same benefits.



Chapter 6

Dynamic Ambient Occlusion and Soft Shadows

This chapter discusses one of the main contributions of this thesis, which is a novel

method for approximating dynamic ambient occlusion and soft shadows in iso-surface

volume rendering. This chapter also reviews additional relevant literature. We first

discuss the importance of shadows on our perception, followed by a review of current

shadowing methods for volume rendering. We then turn to our technique and discuss

the reasoning behind and the implementation details of our approach. We conclude this

chapter with a discussion of our technique and future work. This chapter was the basis

of a publication for Volume Graphics 2008, which can be found in Appendix A.

6.1 Motivation

Cast shadows are known to play a key role in human perception of the 3D world. The

first thorough analysis of shadows was likely performed by Leonaro Da Vinci [101] (see

figure 6.1). The early work of Lambert is also worth mentioning for its description

of the geometry underlying shadows [58]. To qualitatively understand the importance

of shadows in our perception of the world, several studies and experiments have been

conducted to understand how shadows shape our perception and understanding of a

scene. Through these experiments, the importance of shadows has been demonstrated

in understanding the position, size and geometry of both the shadow caster and shadow

receiver (see figures 6.2 and 6.3). Hubona et al. [43] discuss the role of shadows in general

3D visualization. Wanger et al. [105] study the effect of shadow quality on the perception

of object relationships. Kersten et al. [47] demonstrate that adjusting the motion of a

84
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Figure 6.1: Left/Center: Early study of shadows by Leonardo da Vinci [101]. Right:
Study of the geometry of shadows by Lambert [58].

shadow can dramatically effect the apparent trajectory of a shadow casting object. For

the interested reader, a comprehensive discussion of real-time geometry based shadowing

algorithms with references to their perceptual importance can be found in [37].

These experiments have convincingly established the importance of shadows in com-

puter graphics applications. Since then, advances in computer graphics technology and

the development of consumer graphics processing units have made real-time 3D graphics

a reality. However, incorporating shadows and especially realistic soft shadows into these

applications still remains difficult and has generated a large amount of research effort.

The most traditional method of computing shadows is with ray tracing using a point

light source. Using this method, a ray is traced from each surface point back to the

point light that illuminates the surface. If an object obscures the path of the ray, the

surface is rendered without the light’s contribution. Unfortunately, shadows from simple

point sources produce stark discontinuities which aren’t present under normal lighting

conditions. The depth cues provided also vary depending on the viewing direction. For

example, if the camera location aligns with the light location all the shadows become

hidden behind the objects and no extra cues are provided. Methods such as shadow
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Figure 6.2: Illustration of the importance of shadow in perceiving relative position. With-
out shadows an object appears to float above the ground at an unknown distance; shadows
clarify the relative locations [37].

Figure 6.3: Illustration of the importance of shadows in perceiving structure. With
shadows the shape of the ground becomes clear [37].
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maps [107] and shadow volumes [18] can be used to accelerate point-lighting in real-time

applications and produce similar results.

More realistic shadows are provided with more complex models such as ambient oc-

clusion or global illumination. It has been shown that these realistic approaches provide

better perception of many shapes than with simple point lighting. Ambient occlusion

simulates light arriving equally from all directions or “light on a cloudy day” and is also

referred to as uniform diffuse lighting. Global illumination simulates lighting from com-

plex area light sources as well as diffuse inter-reflections and caustics. While there have

been methods to compute good approximations of these lighting methods for a long time,

traditional methods have always had very high computational costs. Usually the calcula-

tion involves a monte-carlo simulation of hundreds or even thousands of rays as opposed

to the single ray used for a point or directional light source (see figure 6.4). In order

N

p

Figure 6.4: Left: Illustration of calculating ambient occlusion using monte-carlo ray-trac-
ing. Rays are chosen randomly in the hemisphere above a surface point. The percentage
of occluded rays represents ambient occlusion. Right: Example using 36 randomly dis-
tributed rays. Notice the noise artifacts due to under-sampling.

to capture these effects in interactive applications, many methods based on the theory

of light transfer have been developed to enable the pre-computation of ambient occlu-

sion and diffuse inter-reflection. Some even allow for arbitrary modification of light and
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camera parameters. However, the application of these approaches to changing geometry

requires a new pre-computation for any change.

To address these limitations, approximations have been proposed which are not

strictly physically motivated, but lead to visually convincing and plausible results while

remaining feasible to compute in real-time. For example, Bunnell et al. [13] represent

geometry as a hierarchical tree of discs for which simple form factors can be calculated

to approximate occlusion. Shanmugam et al. [92] and Mittring et al. [73] even go so far

as to compute occlusion entirely from the depth buffer as a post-process (see figure 6.5).

While these approximate methods are far from physically correct, they add a surprising

amount of realism and accurate depth cues to the scene.

Figure 6.5: Left: Dynamic ambient occlusion from [13] using a hierarchy of discs to
represent geometry. Right: Screen-space ambient occlusion, which uses only the depth
buffer [73]. Although both methods are not physically correct they produce plausible
results which still improve the depth perception of the scene.

6.2 Shadows in Volume Rendering

Due to the added computational complexity involved with computing shadows most

medical volume rendering applications will only utilize a local illumination model due

to its low computational cost. This involves illuminating the volume using one or more
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point light sources. In a local lighting model the light at each point in the volume is

calculated as the sum of diffuse and specular components calculated from a bidirectional

reflectance distribution function (BRDF) model. A BRDF model such as the popular

Blinn-Phong model [7] provides a means to calculate the amount of locally reflected light

based on the directions of the light source, L, the viewer, V , and the surface normal (or

gradient), N .

Local illumination methods provide good perceptual cues to the orientation of a

surface within the volume, due to the diffuse N · L term. Surfaces are bright if lit from

directly above, and dark if illuminated from a steep angle. However, as discussed above

local illumination methods provide poor cues to the relationships between neighboring

surfaces. It can be difficult to tell whether a neighboring surface is above or below an

adjacent surface. Due to the extra perceptual information they can provide, adding

shadows to real-time volume rendering applications has resulted in significant research

effort.

Unfortunately, these efforts are complicated by the fact that different volume ren-

dering methods exist and have an impact on how and when light can be propagated.

As already discussed, the two primary volume rendering styles are iso-surface and direct

volume rendering (DVR), while the two primary volume rendering methods are texture

slicing and ray-casting. Simple point light shadows are easily added to iso-surface ray-

casting by casting an extra ray from the surface point back to the light. Soft shadows,

and shadows within DVR ray-casting have proven much more difficult. A number of more

advanced lighting techniques have been developed for slice-based DVR using a technique

called half-angle slicing [51]. Half-angle slicing keeps track of rays from both the light’s

and eye’s point of view and advancing them on the same slicing plane. The algorithm

cleverly switches between front-to-back and back-to-front compositing depending rela-

tive angle of the view and light vectors. Unfortunately, slice-based renderers are known
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to suffer from several rendering artifacts and are very difficult to optimize. Conversely,

ray-casting is known to produce artifact free images and, as we have shown, can be

optimized.

To maintain the quality and performance benefits of ray-casting, considerable research

effort has been spent on incorporating efficient lighting algorithms into ray-casting en-

gines. Stewart et al. pre-compute diffuse ambient lighting which they call vicinity shad-

ing in a separate volume which is used as a lookup during iso-surface rendering [96].

They accelerated the computation using a 3D version of Bresenham’s line drawing algo-

rithm [11]. Wyman et al. and Banks et al. furthered this technique by pre-computing or

lazily computing global illumination lighting in a separate volume [5,108]. Unfortunately,

pre-computed lighting effects can result in significant aliasing artifacts (see Figures 6.7,

6.8 and 6.6) unless at least twice the original resolution is used, resulting in an 8X-100X

memory footprint depending on the type of pre-computed lighting [108]. Hadwiger et

al. [33] pre-compute deep shadow maps that represent a compressed attenuation curve

from the light’s point of view and can represent area light sources. Unfortunately, these

maps must be recalculated and compressed each time the light is moved or transfer

function is altered.

Very recently, approximate lighting techniques are also starting to show up in volume

rendering research. Desgranges et al. use a summed area table of the volume’s opacity to

quickly perform variable width blurring operations to approximate ambient occlusion [22].

Unfortunately the summed area table must be recomputed whenever the transfer function

or isosurface is changed. Ropinski et al. compute approximate ambient occlusion by

quantizing all the possible combinations of neighboring voxels such that they can apply

the transfer function dynamically [86]. This method can approximate ambient occlusion

as well as color bleeding but suffers from a lengthy compression process and quantization

artifacts during rendering.
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6.3 Pre-Computed Volume Lighting

One of the key insights in our research was the identification of an inherent flaw in trying

to naively pre-compute volume lighting in a separate volume. While one would expect

the Shannon-Nyquist sampling rate of pre-computed lighting should be related to the

resolution of the original volume, we demonstrate that it is actually related to the local

image gradient at each voxel, making it significantly more difficult to pre-compute. Figure

6.7 demonstrates how ambient occlusion can change rapidly at neighboring image voxels,

while figure 6.8 formalizes why this is happening and presents a worst case. Essentially,

the number of iso-surfaces passing through a given voxel is related to the dynamic range

of the image and the gradient magnitude at each voxel, rather than the resolution of

the original voxel as one might expect, and the number of iso-surfaces determines the

Shannon-Nyquist sampling rate.

Figure 6.6: These images depict the result of aliasing when using a volume to pre-com-
pute lighting (from [96, 108] respectively). This tends to occur in areas of high gradient
magnitude, since those areas contain the most iso-surfaces.
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Figure 6.7: Illustration of how aliasing occurs in pre-computed volume lighting. Neigh-
boring sampling locations can have highly different occlusion. The dotted lines indicate
the iso-surfaces that are used to calculate occlusion for neighboring voxels. Aliasing
occurs when trying to interpolate between occlusion for such different surfaces.
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Figure 6.8: Illustration of a worse case volume where almost no resolution would be
sufficient to eliminate aliasing; the one-voxel-thick red circle contains all iso-surfaces.
The small graphs indicate the occlusion for the range of iso-surfaces at those locations.
Our key insight is that the adequate sampling rate for pre-computed lighting is based on
the local image gradient rather than the resolution of the image. The idea behind our
technique is to try to approximate these occlusion graphs at each voxel.
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6.4 Filterable Occlusion Maps

While we could utilize these insights into pre-computed lighting to design a better method

for pre-computation, our goal is to take it a step further and also drastically accelerate

the calculation of volume ambient occlusion. While meshes are stored in a sparse format

as a collection of vertices and triangles, volumes are stored in a 3D image grid which is

suitable for a host of image processing operations and volume measurements that aren’t

possible on meshes. Our goal is to very quickly preprocess the volume in such a way that

we can quickly extract information about the number of occluding voxels without having

to traverse hundreds or thousands of rays. Generally speaking, we wish to replace the

geometric definition of ambient occlusion with a statistical approximation that can be

computed using image-processing operations. We have focused on computing ambient

occlusion in iso-surface rendering, but we explain how this method can be used in direct-

volume rendering as well.

6.4.1 Ambient Occlusion

Recall from equation 4.5 that volume rendering integral used in most applications uses

only local reflectance q(p) to represent the light leaving a given point p in the direction

of the eye. In order to account for complex occlusions from neighboring structures we

would like to replace this with a new term q′(p) that takes into account the irradiance

arriving at a surface from all angles. This can be represented as:

q′(p) = q(p) ·
∫

Ω

L(ω)dω (6.1)

where L(ω) is the radiance arriving from direction ω, and Ω is the set of directions above

the surface point (where N · ω > 0 and N is the surface normal). Since we are interested

in the diffuse reflection of the incoming irradiance, a cosine-weighted contribution of
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incoming radiance is often used:

q′(p) = q(p) ·
∫

Ω

N · L(ω)dω (6.2)

In this case L(ω) is represented as a vector with magnitude equal to the radiance. This

equation can be approximately evaluated using ray casting by discretizing the domain Ω

into k sectors of equal solid angle ∆ω.

q′(p) ≈ q(p) ·
k∑
i=0

N · L(ωi)∆ω (6.3)

Since we have chosen to focus on an iso-surface model, computing L(ωi) is heavily sim-

plified. If a ray ever enters the iso-surface then it immediately becomes fully occluded.

After an occluding iso-surface is found, we can proceed to evaluate the amount of occlu-

sion using an all-or-nothing method or a partial occlusion method. In the all-or-nothing

method L(ωi) = 0 when ωi hits an occluding voxel. Otherwise, L(ωi) = 1. In the partial

occlusion method L(ωi) uses the unobstructed distance to the first occlusion to determine

the amount of occlusion using a basic linear or quadratic fall off function. The partial

occlusion method works better in completely occluded spaces or tight spaces where the

all-or-nothing method would result in complete occlusion.

6.4.2 Neighborhood Approximations

Computing the integral mentioned above would require casting many rays. Instead, we

would like to make use of the discretized nature of the volume to compute occlusion.

The basic assumption we rely on in doing this is that the percentage of occluding voxels

surrounding the surface provides a good approximation to the percentage of rays that

would be occluded while traversing through the same space. While this is not strictly

correct in all cases, it is a commonly used assumption in approximate techniques [92] [73]
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where real-time performance is required.

Under this assumption, we can now define occlusion using the neighborhood around

a surface point and define the irradiance at a point p as:

1

|V |
∫
V

L′(v)dv (6.4)

Here, V is a volume above the surface we are evaluating, L′(x) is now simply a binary

function of the iso-surface c defined as:

L′(x) =


1 if x ≤ c (not occluding),

0 otherwise (occluding).

(6.5)

By discretizing the volume into k voxels we can express this discretely as:

k∑
i=0

L′(vi)∆v (6.6)

Whereas the ray-based approximation from equation 6.3 is dependent on a hemisphere

of angles Ω, our approximation in 6.6 is dependent only on a hemispherical or spherical

volume V which lies above a surface point (see figure 6.9).

6.4.3 Filterable Occlusion Maps

While our new definition of occlusion allows us to determine the amount of occlusion

using a simple neighborhood around a surface point, computing this directly by testing

each voxel in the region would still be prohibitively expensive. We note here that one

voxel of a conventional volume data-set can only represent the image value at that one

location. If we instead had knowledge of a distribution of values in a spherical region

surrounding each point, we could do one test against the distribution instead of one



96

N

p

N

p

Figure 6.9: Occlusion is calculated using the percentage of the a region that is within the
iso-surface (grey area). Left: Hemispherical regions. Right: Spherical regions. Different
sizes can be combined to better localize occlusions.

test for every voxel. The optimal function for performing this test is the cumulative

distribution function (CDF). If we think of a region as a distribution of values X, the

CDF is defined as:

CDF (x) = P (X ≤ x) =
∑
xi≤x

P (X = xi) =
∑
xi≤x

p(x) (6.7)

Given this CDF function we can determine the exact percentage of voxels that are in-

side/outside the iso-surface in the region. If we look at the properties of the CDF, we

can see it is actually equivalent to our new definition of ambient irradiance from equation

6.6. Unfortunately, while pre-computing CDF functions for each spherical region would

allow us to lookup the occlusion with one lookup, the memory required to store all these

CDFs uncompressed would be monumental.

Thankfully, by reducing the ambient occlusion problem to storing and evaluating

a CDF, we can make use of a lot of research from a slightly different domain. Shadow

mapping algorithms [107] are faced with the exact same comparison problem when testing



97

an object’s depth against a shadow map. In fact a soft shadow technique known as

percentage closer filtering [82] performs a brute force depth test against a region in the

shadow map which is identical to the test described in equation 6.6. The only difference

is that the shadow map region is in 2D and the volume region is in 3D (see figure 6.10).

N
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Reciever           .

Occluder

{Filter Region

Occlusion
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Shadow Mapping Ambient Occlusion

Figure 6.10: Comparison of the soft shadow mapping problem to our ambient occlusion
problem. Left: In shadow mapping, we want to determine the percentage of non-oc-
cluding shadow map texels (greater than or equal to our reciever depth). Right: In our
ambient occlusion approximation we wish to determine the percentage of non-occluding
voxels (less than the iso-value). Both can be determined using the CDF of the filter
region.

6.4.4 Variance Occlusion Maps

We have chosen to use a technique described by Donnelly et al. [23] to represent a distribu-

tion of image values and approximately query the CDF. To very compactly approximate

a distribution, they store only the first two moments of the distribution: the image value

and the squared image value. The advantage of this representation is that it can approx-

imate the average of several distributions by averaging the moments. This means that

the image may simply be blurred to generate a distribution centered at each pixel, where

the blurring/filtering kernel represents the image region that will be represented by the
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distribution.

As in [23] we can describe these two moments M1 and M2 as:

M1 = E(x) =

∫ ∞

−∞
xp(x)dx (6.8)

M2 = E(x2)=

∫ ∞

−∞
x2p(x)dx (6.9)

We can then calculate the mean µ and variance σ2 of the distribution:

µ = E(x) = M1 (6.10)

σ2 = E(x2)− E(x)2 = M2 −M1 (6.11)

Since the variance gives us a measure of the width of the distribution, we can place a

bound on how much of the distribution can be found a certain distance away from the

mean. Chebychev’s inequality states this bound precisely as:

P (x ≤ t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(6.12)

Donnelly et al. further demonstrate that while this only provides an upper bound on the

CDF, it is very accurate in the case of a bi-modal distribution containing only two image

values d1 and d2. This occurs in shadow maps when there is one occluding object at d1

and one partially occluded object at d2. We have found that this is also very often the

case in volume data sets where different materials are represented by different iso-values.
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In this case we have:

µ = E(x) = pd2 + (1− p)d1 (6.13)

E(x2) = pd2
2 + (1− p)d2

1 (6.14)

σ = E(x2)− µ2 = pd2
2 + (1− p)d2

1 − (pd2 + (1− p)d1)2 (6.15)

= (p− p2)(d2 − d1)2 (6.16)

When we test d2 against µ and σ using equation 6.12 we get:

pmax(d2) =
σ2

σ2 + (d2 − µ)2
(6.17)

=
(p− p2)(d2 − d1)2

(p− p2)(d2 − d1)2 + (pd2 + (1− p)d1 − d2)2
(6.18)

=
(p− p2)(d2 − d1)2

(p− p2)(d2 − d1)2 + (1− p)2(d2 − d1)2
(6.19)

=
p− p2

1− p (6.20)

= p (6.21)

In this simple bi-modal case, the inequality becomes an equality and gives the exact

percentage of d2 in the region, which is the same result as the CDF. This represents the

percentage of occluding voxels in the shadow map region and can be used to calculate

the amount of irradiance. Of course this becomes less accurate as the distribution takes

different forms, but it provides a surprisingly good approximation in many data-sets,

especially when only a small region of the volume is considered.

To verify that this approximation is valid, we analyzed a number of data-sets (see

figure 6.11). We found that in medical data-sets, CT values were heavily clustered around

three clusters correlating to air, soft tissue, and bone. We found that non-medical data-

sets such as the stanford bunny data-set were even more clustered, having almost entirely
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bi-modal distributions. However, MRI data-sets and distance-field data-sets were much

less clustered and thus the variance test will be less valid for these types of data. Other

filterable approximations may still apply however (see section 6.7).
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Figure 6.11: Histograms of volume data-sets. We found CT data tends to be heavily
clustered and works well with our technique. Top-Left: Stanford Bunny CT. Top-Right:
Head CT. Bottom-Left: Signed Distance Field. Bottom-Right: Head T1 Weighted MRI

6.5 Implementation

6.5.1 Preprocessing

As a preprocessing step, we create a new volume containing the two moments of the

distribution (value and value squared). We then perform separable convolutions with

gaussian kernels to generate local distributions centered at each voxel. Storing many of



101

these volumes would take a large amount of memory, so we chose to double the gaussian

kernel size at each iteration and down-sample by a factor of two at each iteration. This

allows us to store the entire variance ambient map in a mip-mapped two channel floating-

point texture. Since we are interested in fairly large filter regions, we also found that

we could easily get away with starting at half the resolution of the original volume or

even smaller resolutions if only low frequency occlusions are required. At half resolution

variance ambient map is roughly 0.6X the size of the original volume including mip-maps.

6.5.2 Blurring Kernel

As discussed above, by representing our occlusion regions using a filterable representa-

tion, we can generate occlusion distributions using a simple image blur. An important

optimization used in our approach is the choice of blurring kernel we used to generate

occlusion distributions.

While we would normally want to use a hemispherical filter region with cosine and

distance weighted occlusion region, this would require a complicated non-separable blur-

ring process based on the surface normal at each voxel. Since the surface normal can

change rapidly, this representation would also suffer from aliasing artifacts under linear

interpolation of neighboring samples (see figure 6.12). This becomes especially apparent

when lower resolution volumes or mipmaps are used.

Our approach uses a novel method which doesn’t store the occlusion values at the

surface, but rather offset from the surface. We accomplish this by using a radially

symmetric kernel and offsetting the occlusion sampling location from the surface along

the surface normal. This reduces aliasing while still allowing high-frequency changes

in the surface normal. It also allows us to preform a separable blur which reduces the

complexity of the blur from n3 · v to n · v where n is the radius of the occlusion region

and v is the number of voxels. Alternatively we can also perform the blur in the fourier
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Figure 6.12: Illustration of different blurring kernels. (a) While a hemisphere is normally
used to search for occluders, it can result in artifacts due to the interpolation of very
different occluding regions. (b) By using a spherical kernel and offsetting the sampling lo-
cation from the surface, the correct normal is used to determine the angle of the occlusion
region.

domain with a complexity of vlnv. The hemispherical blur can’t be performed in the

fourier domain because it is spatially varying.

The only drawback of our approach is that the occlusion weighting becomes slightly

more concentrated in the direction of the surface normal. However since a cosine weighted

distribution does this anyway, we found this approximation to work very well. Being able

to adjust the surface normal during interactive rendering also allows us to perform some

other interesting effects like averaging the normal and view vector to get view dependent

ambient occlusion.

6.5.3 Rendering

During interactive rendering, we first search to the iso-surface and then perform a bi-

nary search to refine the surface location. We then calculate the gradient using central-

differencing to perform local lighting. We also use the gradient to calculate offsets for

querying the variance ambient map. Since many isosurfaces tend to fall on partial-
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Figure 6.13: Illustration of our dynamic ambient occlusion and soft shadow algorithms.
The isovalue is chosen one half of a voxel behind the isosurface. Ambient occlusion
requires only 3-4 samples of different sizes in the direction of the surface normal. Soft
shadows requires one ray cast in the direction of the light. In both cases the occlusion
sample with the most occlusion is chosen.

volumes where one material meets another, we take an extra sample one half of a voxel

under the surface in the direction of the gradient (see figure 6.13) and use this sample as

the isovalue to evaluate the amount of occlusion in the variance occlusion map. In the

case of ambient occlusion we can evaluate four instances of equation 6.12 in parallel (one

sample from the first 4 mip levels) and then take the maximum occlusion value. In the

case of soft shadows, we cast a ray four steps at a time evaluating equation 6.12 until the

ray leaves the volume. To simulate soft shadows from area light sources, the mip level

can be varied as it travels towards the light.

6.6 Results

All of the images in this section were generated on a Mac Book Pro with a single NVIDIA

GeForce 8800 GTS. Figure 6.14 shows 4 offset occlusion samples from seperate mip-levels

in the occlusion map. Figure 6.15 shows the combined result with diffuse local lighting.
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Figure 6.17 shows soft shadows calculated with one ray combined with ambient occlusion.

Figure 6.14: Occlusion sampled from the first 4 levels of the occlusion map. These are
combined by taking the maximum occlusion (minimum irradiance).
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Figure 6.15: Top Left: Combined occlusion from figure 6.14. Top Right: Simple diffuse
lighting. Bottom: Diffuse combined with ambient occlusion.



106

Figure 6.16: Top Left: Approximate soft shadows using only one ray. Top Right: Diffuse
lighting with shadows. Bottom: Diffuse lighting, ambient occlusion and soft shadows.
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Figure 6.17: Top Left: Approximate soft shadows using only one ray. Top Right: Diffuse
lighting with shadows. Bottom: Diffuse lighting, ambient occlusion and soft shadows.
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Figure 6.18: Top Left: DVR. Top Right: DVR with ambient occlusion. Bottom: DVR
with ambient occlusion and local phong lighting. If transparency is intended to provide
detail-in-context rather than specify transparency to incoming light, then our occlusion
method is still useful within DVR. We also found it useful to adjust the shadow contri-
bution based on transparency.
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Rendering Time (in milliseconds)
Dataset Phong AO HS SS

Engine (2563) 7.1 7.4 19.1 25.2
CTHead1 (5122x256) 7.8 8.2 26.4 30.3
CTHead2 (5123) 8.0 8.3 32.5 37.0

Table 6.1: Rendering time using phong, ambient occlusion(AO), hard shadows(HS) and
soft shadows(SS)

Preprocessing Time (in milliseconds)
Dataset CPU GPU

Engine (2563) 170 8.6
Small Head (5122x256) 678 34.5
Big Head (5123) 1524 74.1

Table 6.2: Preprocessing time on the CPU and GPU

Another possible avenue of future research would be to utilize the insights we have

presented to more accurately store physically accurate pre-computed lighting. To most

efficiently remove artifacts, an occlusion function should be stored for each voxel, rather

than trying to increase the spatial resolution of the pre-computed volume (as presented

in [100]). Interestingly, the same shadow mapping approaches can be used to compress

physically accurate lighting as well, making our work apply in both cases.

To support more lighting effects, we found that adjusting the offset of the spherical

distribution produced very interesting effects similar to subsurface scattering, but we

were unable to do this because the variance test would begin to behave incorrectly as

the mean of the distribution approached the isovalue. Other approximations such as

Convolution Shadow Maps show promise in eliminating this problem and allowing for

arbitrary queries of the distribution.

Figure 6.19: Rendering time using phong, ambient occlusion(AO), hard shadows(HS)
and soft shadows(SS) using a GeForce 8800 card.
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presented to more accurately store physically accurate pre-computed lighting. To most

efficiently remove artifacts, an occlusion function should be stored for each voxel, rather

than trying to increase the spatial resolution of the pre-computed volume (as presented

in [100]). Interestingly, the same shadow mapping approaches can be used to compress

physically accurate lighting as well, making our work apply in both cases.

To support more lighting effects, we found that adjusting the offset of the spherical

distribution produced very interesting effects similar to subsurface scattering, but we

were unable to do this because the variance test would begin to behave incorrectly as

the mean of the distribution approached the isovalue. Other approximations such as

Convolution Shadow Maps show promise in eliminating this problem and allowing for

arbitrary queries of the distribution.

In conclusion, we believe that filterable occlusion maps can provide a very quick way

to approximate complex volumetric lighting effects, and can be applied to solve a host of

problems with pre-computed or dynamic volume lighting.
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Figure 6.20: Preprocessing time on the CPU and GPU using a GeForce 8800 card.
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6.7 Discussion

We have presented a novel method for generating approximate iso-surface ambient oc-

clusion and soft shadows. Compared with other approaches which may require hours or

days of pre-computation time and suffer from aliasing and/or quantization artifacts, our

approach can load a dataset within seconds and has very good runtime performance.

Since we have reduced the ambient occlusion problem to the same sampling prob-

lem faced by shadow map filtering, a good direction for future research will be to apply

newer shadow filtering methods to reduce the memory footprint and improve on the

statistical approximation. Convolution Shadow Maps (CSMs) [2] , Exponential Shadow

Maps (ESMs) [3], Layered Variance Shadow Maps (LVSMs) [59] and Exponential Vari-

ance Shadow maps (EVSMs) [59] are potential candidates. These approaches should also

work for datasets with more complex datasets such as MRI, although there is a memory

and performance tradeoff with each approach.

Another possible avenue of future research would be to utilize the insights we have

presented to more accurately store physically accurate pre-computed lighting. To most

efficiently remove artifacts, an occlusion function should be stored for each voxel, rather

than trying to increase the spatial resolution of the pre-computed volume (as presented

in [108]). Interestingly, the same shadow mapping approaches can be used to compress

physically accurate lighting as well, making our work apply in both cases.

To support more lighting effects, we found that adjusting the offset of the spherical

distribution produced very interesting effects similar to subsurface scattering, but we

were unable to do this because the variance test would begin to behave incorrectly as

the mean of the distribution approached the isovalue. Other approximations such as

Convolution Shadow Maps show promise in eliminating this problem and allowing for

arbitrary queries of the distribution.
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In conclusion, we believe that filterable occlusion maps can provide a very quick way

to approximate complex volumetric lighting effects, and can be applied to solve a host of

problems with pre-computed or dynamic volume lighting.



Chapter 7

Conclusion

While chapters 5 and 6 have discussed future work in their respective areas within med-

ical imaging and volume rendering, this chapter serves to reach general conclusions and

summarize the contributions made in this thesis.

Interactive 3D medical visualization is an effective way to gain new insight and interact

with a medical image, and is crucial to enabling many new important medical techniques

such as surgical simulation, image guided surgery and virtual endoscopy. Medical visual-

ization can be improved by addressing three key factors: diagnostic quality, interactivity

and realism. This work contributes to the field in several ways.

7.1 Image Quality

To achieve very high quality images without common volume rendering artifacts, we

designed our software from the ground up with our own version of pre-integrated transfer

functions based on mip-maps, and a fast cubic b-spline filtering method which fully

utilizes built in GPU hardware for tri-linear texture sampling. While prior work has

achieved these enhancements in only final non-interactive rendering modes, our optimized

implementations, as well as empty space skipping optimizations, allow us to enable these

features during an interactive session.

7.2 Interactivity

To improve interactive frame rates drastically we have presented a novel method to cast

dozens or even hundreds of rays through large regions of empty space. We have combined

113
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the positive aspects of coherent ray-tracing but achieved them by designing our algorithm

from the ground up in a GPU friendly way. The resulting hierarchical frustum casting

algorithm and a new data structure called the overlapped min-max octree (OMMO) can

be implemented entirely on the GPU with no complicated CPU/GPU communication.

This allows for seamless editing of the transfer function while maintaining constant real-

time frame rates, and can easily be supported in any ray-casting engine.

7.3 Realism

To improve image quality and add realism and depth cues, we have designed a new algo-

rithm for approximating ambient occlusion and soft shadows. Previous techniques based

on physically correct ambient occlusion have required hours or days of pre-computation

time, and suffer from several artifacts which can only be fixed by increasing the pre-

computed lighting resolution to unreasonably high levels. We have identified the inher-

ent flaw in trying to pre-compute volume lighting, which is that the image gradient,

rather than image resolution, determines the Shannon-Nyquist sampling rate for pre-

computed lighting. Our work demonstrates how this can be overcome, through storage

of an approximate occlusion function at every image voxel. We also go further however,

and demonstrate how an approximate occlusion function for iso-surfaces can be designed

using simple image sampling methods found in shadow mapping algorithms. Our tech-

nique’s pre-computation step achieves real-time rates, potentially allowing our technique

to be used in surgical simulation applications where the image volume is constantly

changing.
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7.4 Putting it All Together

To summarize our contributions, Figure 7.1 puts together a set of images captured from

one session in our software using only one CT scan. Generating high quality, illustrative

images such as these has been one of the inspirations in choosing this field of research

and we hope that our contributions will one day make a difference for real physicians

and patients.
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a) b) c)

d) e) f)

g) h) i)

j) k)

Figure 7.1: A set of of images generated from one session using our software to illustrate
the contributions of this thesis. These are all taken from a single CT scan by enabling the
features we have implemented and by modifying the transfer function. Images a,b,c,d
and e illustrate choosing surfaces of interest while f combines two transfer functions
(d and e). Images g,h, and i illustrate our ambient occlusion algorithm for DVR and
iso-surface rendering. Images j and k illustrate our high quality b-spline interpolation
when diagnosing ischemic stroke.
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Abstract
Volumetric data sets are often examined by displaying isosurfaces, surfaces where the data or function takes on
a given value. We propose a new method for rendering isosurfaces at interactive rates while supporting dynamic
ambient occlusion and/or soft shadows and requiring minimal pre-computation time. By approximating the occlu-
sion in a region as the percentage of occluding voxels in that region, we reduce the ambient occlusion problem to
the same problem faced in soft shadow mapping algorithms. In order to quickly extract the number of occluding
voxels in an image region, we propose representing distributions using filterable representations such as vari-
ance shadow maps or convolution shadow maps. By choosing different sampling patterns from these maps we can
dynamically approximate ambient occlusion and/or soft shadows.

1. Introduction

Cast shadows are known to play a key role in human percep-
tion of the 3D world. To qualitatively and quantitatively un-
derstand the importance of shadows in our perception of the
world, several studies and experiments have been conducted
to understand how shadows shape our perception and under-
standing of a scene. Through these experiments, the impor-
tance of shadows has been demonstrated in understanding
the position, size and geometry of both the shadow caster
and shadow receiver. Hubona et al. [HSBW99] discuss the
role of shadows in general 3D visualization. Wanger et al.
[Wan92] study the effect of shadow quality on the perception
of object relationships. Kersten et al. [KMK94] demonstrate
that adjusting the motion of a shadow can dramatically effect
the apparent trajectory of a shadow casting object. For the in-
terested reader, a comprehensive discussion of real-time ge-
ometry based shadowing algorithms with references to their
perceptual importance can be found in [HLHS03].

The most traditional method of computing shadows is
with ray tracing using a point light source. Using this
method, a ray is traced from each surface point back to
the point light that illuminates the surface. If an object ob-
scures the path of the ray, the surface is rendered without
the light’s contribution. Unfortunately, shadows from sim-
ple point sources produce stark discontinuities which aren’t

present under normal lighting conditions. The depth cues
provided also vary depending on the viewing direction. For
example, if the camera location aligns with the light loca-
tion all the shadows become hidden behind the objects and
no extra cues are provided. Methods such as shadow maps
[Wil78] and shadow volumes [Cro77] can be used to acceler-
ate point-lighting in real-time applications and produce sim-
ilar results.

More realistic shadows are provided with more complex
models such as ambient occlusion or global illumination. It
has been shown that these realistic approaches provide bet-
ter perception of many shapes than with simple point light-
ing. Ambient occlusion simulates light arriving equally from
all directions or "light on a cloudy day" and is also referred
to as uniform diffuse lighting. Global illumination simulates
lighting from complex area light sources as well as diffuse
inter-reflections and caustics. While there have been meth-
ods to compute good approximations of these lighting meth-
ods for a long time, traditional methods have always had
very high computational costs. Usually the calculation in-
volves a monte-carlo simulation of hundreds or even thou-
sands of rays as opposed to the single ray used for a point or
directional light source (see figure 1).

In order to capture these effects in interactive applications,
many methods based on the theory of light transfer have
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N

p

Figure 1: Left: Illustration of calculating ambient occlusion
using monte-carlo ray-tracing. Rays are chosen randomly in
the hemisphere above a surface point. The percentage of oc-
cluded rays represents ambient occlusion. Right: Example
using 36 randomly distributed rays. Notice the noise arti-
facts due to under-sampling.

been developed to enable the pre-computation of ambient
occlusion and diffuse inter-reflection. Some even allow for
arbitrary modification of light and camera parameters. How-
ever, the application of these approaches to deformable ge-
ometry is much more constrained and thus usually requires
a new pre-computation for any deformation.

The goal of our work is to drastically accelerate the cal-
culation of volume ambient occlusion by taking advantage
of the image based representation of medical volume data
sets. While meshes are stored in a sparse format as a col-
lection of vertices and triangles, volumes are stored in a 3D
image grid which is suitable for a host of image processing
operations and volume measurements that aren’t possible on
meshes. Our goal is to very quickly preprocess the volume in
such a way that we can quickly extract information about the
number of occluding voxels without having to traverse hun-
dreds or thousands of rays. Generally speaking, we wish to
replace the geometric definition of ambient occlusion with a
statistical approximation that can be computed using image-
processing operations.

This paper is structured as follows. In the next section we
will discuss the related work with a focus on volume illumi-
nation methods. In order to approximate the occlusion for a
point on an iso-surface, we query from a very compact repre-
sentation of the distribution of values in the region above the
surface. This is discussed in section 3. The implementation
and some special considerations are discussed in section 4
and our results are discussed in section 5 before concluding
in section 6 .

2. Related Work

Levoy and Cabral presented some of the first work on light
transport for volumetric data sets and accelerated render-
ing using texture mapping [Lev90] [CCF94]. Max extended
the optical models for direct volume rendering to include
shadowing, single scattering an multiple scattering effects

[Max95]. Max states that lighting from neighboring struc-
tures are important in volume rendering. Due to the added
computational complexity involved with computing com-
plex lighting effects most medical volume rendering appli-
cations only utilize a local illumination model due to its
low computational cost. This involves illuminating the vol-
ume using one or more point light sources. In a local light-
ing model the light at each point in the volume is calcu-
lated as the sum of diffuse and specular components cal-
culated from a bidirectional reflectance distribution func-
tion (BRDF) model. A BRDF model such as the popular
Blinn-Phong model [Bli77] provides a means to calculate
the amount of locally reflected light based on the directions
of the light source, L, the viewer, V , and the surface normal
(or gradient), N.

Local illumination methods provide good perceptual cues
to the orientation of a surface within the volume, due to the
diffuse N · L term. Surfaces are bright if lit from directly
above, and dark if illuminated from a steep angle. However,
as discussed above local illumination methods provide poor
cues to the relationships between neighboring surfaces. It
can be difficult to tell whether a neighboring surface is above
or below an adjacent surface. Due to the extra perceptual in-
formation and realism they can provide, adding shadows and
complex lighting to real-time volume rendering applications
has resulted in significant research effort.

Unfortunately, these efforts are complicated by the fact
that different volume rendering methods exist and have an
impact on how and when light can be propagated. The
two primary volume rendering styles are iso-surface and di-
rect volume rendering (DVR), while the two primary vol-
ume rendering methods are texture slicing and ray-casting.
Simple point light shadows are easily added to iso-surface
ray-casting by casting an extra ray from the surface point
back to the light. Soft shadows, and shadows within DVR
ray-casting have proven much more difficult. A number of
more advanced lighting techniques have been developed for
slice-based DVR using a technique called half-angle slic-
ing [KPHE02]. Half-angle slicing keeps track of rays from
both the light’s and eye’s point of view and advancing them
on the same slicing plane. Unfortunately, slice-based ren-
derers are known to suffer from several rendering artifacts
and are very difficult to optimize. Conversely, ray-casting
is known to produce very high quality images and is much
more easily optimized.

To maintain the quality and performance benefits of ray-
casting, considerable research effort has been spent on in-
corporating efficient lighting algorithms into ray-casting en-
gines. Stewart et al. pre-compute diffuse ambient lighting
which they call vicinity shading in a separate volume which
is used as a lookup during iso-surface rendering [Ste03].
They accelerated the computation using a 3D version of Bre-
senham’s line drawing algorithm. Wyman et al. and Banks
et al. furthered this technique by pre-computing or lazily
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computing global illumination lighting in a separate vol-
ume [WPH06] [BB08]. Unfortunately, pre-computed light-
ing effects can result in significant aliasing artifacts (see fig-
ure 2) unless twice the original resolution is used, resulting
in an 8X-100X memory footprint depending on the type of
pre-computed lighting [WPH06]. Hadwiger et al. [HKSB06]
pre-compute deep shadow maps that represent a compressed
attenuation curve from the light’s point of view and can rep-
resent area light sources. Unfortunately, these maps must be
recalculated and compressed each time the light is moved or
transfer function is altered which is undesirable for an inter-
active application.

To address some of the above limitations, approximations
have been proposed which are not strictly physically moti-
vated, but lead to visually convincing and plausible results
while still being feasible in real-time. For polygonal models,
Bunnell et al. [Bun05] represent geometry as a hierarchical
tree of discs for which simple form factors can be calcu-
lated to approximate occlusion. Shanmugam et al. [SA07]
and Mittring et al. [Mit07] even go so far as to compute oc-
clusion from the depth buffer as a post-process. While these
approximate methods can be far from physically correct,
they add a surprising amount of realism and accurate depth
cues to the scene. In volume rendering, Desgranges et al.
use a summed area table of the volume’s opacity to quickly
perform variable width blurring operations to approximate
ambient occlusion [DP07]. Unfortunately the summed area
table must be recomputed whenever the transfer function
or isosurface is changed. Ropinski et al. compute approxi-
mate ambient occlusion by quantizing all the possible com-
binations of neighboring voxels such that they can apply the
transfer function dynamically [RMSD∗08]. This method can
approximate ambient occlusion as well as color bleeding but
suffers from a lengthy compression process and quantization
artifacts during rendering.

3. Algorithm Overview

3.1. Ambient Occlusion

The lighting model used in most applications uses only lo-
cal reflectance to represent the light leaving a given point
p in the direction of the eye. In order to account for com-
plex occlusions from neighboring structures we would like
to replace this with a new term that takes into account the
irradiance arriving at a surface from all angles. This can be
represented as: Z

Ω
L(ω)dω (1)

where L(ω) is the radiance arriving from direction ω, and Ω
is the set of directions above the surface point (where N is
the surface normal and N ·ω > 0). Since we are interested
in the diffuse reflection of the incoming irradiance, a cosine-

Figure 2: Illustration of pre-computing volume lighting:
Neighboring sampling locations can have highly different
occlusion. In order to capture these high frequencies a
higher resolution must be used for pre-computed lighting ef-
fects.

weighted contribution of incoming radiance is often used:Z
Ω

N ·L(ω)dω (2)

In this case L(ω) is represented as a vector with magnitude
equal to the radiance. This equation can be approximately
evaluated using ray casting by discretizing the domain Ω into
k sectors of equal solid angle ∆ω.

k

∑
i=0

N ·L(ωi)∆ω (3)

Since we have chosen to focus on an iso-surface model,
computing L(ωi) is heavily simplified. If a ray ever enters
the iso-surface then it immediately becomes fully occluded.
After an occluding iso-surface is found, we can proceed to
evaluate the amount of occlusion using an all-or-nothing
method or a partial occlusion method. In the all-or-nothing
method L(ωi) = 0 when ωi hits an occluding voxel. Other-
wise, L(ωi) = 1. In the partial occlusion method L(ωi) uses
the unobstructed distance to the first occlusion to determine
the amount of occlusion using a basic linear or quadratic fall
off function. The partial occlusion method works better in
completely occluded spaces or tight spaces where the all-or-
nothing method would result in complete occlusion.
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3.2. Neighborhood Approximation

Computing the integral mentioned above would require cast-
ing many rays. Instead, we would like to make use of the dis-
cretized nature of the volume to compute occlusion. The ba-
sic assumption we rely on in doing this is that the percentage
of occluding voxels surrounding the surface provides a good
approximation to the percentage of rays that would be oc-
cluded while traversing through the same space. While this
is not strictly correct in all cases, it is a commonly used as-
sumption in approximate techniques [SA07] [Mit07] where
real-time performance is required.

Under this assumption, we can now define occlusion us-
ing the neighborhood around a surface point and define the
irradiance at a point p as:

1
|V |

Z
V

L′(v)dv (4)

Here, V is a volume above the surface we are evaluating,
L′(x) is now simply a binary function of the iso-surface c
defined as:

L′(x) =

{
1 if x≤ c (not occluding),
0 otherwise (occluding).

(5)

By discretizing the volume into k voxels we can express this
discretely as:

k

∑
i=0

L′(vi)∆v (6)

Whereas the ray-based approximation from equation 3 is de-
pendent on a hemisphere of angles Ω, our approximation in
6 is dependent only on a hemispherical or spherical volume
V which lies above a surface point (see figure 3).

N

p

N

p

Figure 3: Occlusion is calculated using the percentage of
the a region that is within the iso-surface (grey area). Left:
Hemispherical regions. Right: Spherical regions. Different
sizes can be combined to better localize occlusions.

3.3. Filterable Occlusion Maps

While our new definition of occlusion allows us to deter-
mine the amount of occlusion using a simple neighborhood
around a surface point, computing this directly by testing

each voxel in the region would still be prohibitively expen-
sive. We note here that one voxel of a conventional volume
data-set can only represent the image value at that one loca-
tion. If we instead had knowledge of a distribution of values
in a spherical region surrounding each point, we could do
one test against the distribution instead of one test for ev-
ery voxel. The optimal function for performing this test is
the cumulative distribution function (CDF). If we think of a
region as a distribution of values X , the CDF is defined as:

CDF(x) = P(X ≤ x) = ∑
xi≤x

P(X = xi) = ∑
xi≤x

p(x) (7)

Given this CDF function we can determine the exact percent-
age of voxels that are inside/outside any iso-surface in the
region. If we look at the properties of the CDF, we can see it
is actually equivalent to our new definition of ambient irra-
diance from equation 6. Unfortunately, while pre-computing
CDF functions for each spherical region would allow us to
lookup the occlusion with one lookup, the memory required
to store all these CDFs uncompressed would be monumen-
tal.

Thankfully, by reducing the ambient occlusion problem to
storing and evaluating a CDF, we can make use of a lot of re-
search from a slightly different domain. Shadow mapping al-
gorithms [Wil78] are faced with a similar comparison prob-
lem when testing an object’s depth against a shadow map.
In fact a soft shadow technique known as percentage closer
filtering [RSC87] performs a brute force depth test against a
region in the shadow map which is identical to the test de-
scribed in equation 6. The main difference is that the shadow
map region is in 2D and the volume region is in 3D (see fig-
ure 4). A significant amount of recent research has focussed
on representing distributions in compact filterable forms.

N

p

Filter
Region Occlusion

Reciever           .

Occluder

{Filter Region

Occlusion

p

Shadow Mapping Ambient Occlusion

Figure 4: Comparison of the soft shadow mapping prob-
lem to the approximate ambient occlusion problem. Left: In
shadow mapping, we want to determine the percentage of
non-occluding shadow map texels (greater than or equal to
our reciever depth). Right: In our ambient occlusion ap-
proximation we wish to determine the percentage of non-
occluding voxels (less than the iso-value). Both can be de-
termined using the CDF of the filter region.
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3.4. Variance Occlusion Maps

We chose to use a technique described by Donnelly et al.
[DL06] to represent a distribution of image values and ap-
proximately query the CDF. To very compactly approximate
a distribution, they store only the first two moments of the
distribution: the image value and the squared image value.
The advantage of this representation is that it can approx-
imate the average of several distributions by averaging the
moments. This means that the image may simply be blurred
to generate a distribution centered at each pixel, where the
blurring/filtering kernel represents the image region that will
be represented by the distribution. As in [DL06] we can de-
scribe these two moments M1 and M2 as:

M1 = E(x) =
Z ∞
−∞

xp(x)dx (8)

M2 = E(x2)=
Z ∞
−∞

x2 p(x)dx (9)

We can then calculate the mean µ and variance σ2 of the
distribution:

µ = E(x) = M1 (10)

σ2 = E(x2)−E(x)2 = M2−M1 (11)

Since the variance gives us a measure of the width of the dis-
tribution, we can place a bound on how much of the distri-
bution can be found a certain distance away from the mean.
Chebychev’s inequality states this bound precisely as:

P(x≤ t)≤ pmax(t)≡
{

1 if t ≤ µ ,
σ2

σ2+(t−µ)2 otherwise
(12)

Donnelly et al. further demonstrate that while this only pro-
vides an upper bound on the CDF, it is very accurate in the
case of a bi-modal distribution containing only two image
values d1 and d2. This occurs in shadow maps when there is
one occluding object at d1 and one partially occluded object
at d2. We have found that this is also very often the case in
volume data sets where different materials are represented
by different iso-values.

In this simple bi-modal case, the inequality becomes an
equality and querying equation 12 with d2 gives the exact
percentage of d2 in the region, which is the same result as
the CDF. This represents the percentage of occluding voxels
in the region. Of course this becomes less accurate as the dis-
tribution takes different forms or the query differs from d2,
but it provides a surprisingly good approximation in many
data-sets, especially when only a small carefully chosen re-
gion of the volume is considered.

To verify that this approximation is valid, we analyzed a
number of data-sets (see figure 5). We found that in medi-
cal data-sets, CT values were heavily clustered around dif-
ferent materials such as air, soft tissue, and bone. We found
that non-medical data-sets such as the stanford bunny data-
set were even more clustered, having almost entirely bi-

modal distributions. However, MRI data-sets and distance-
field data-sets were much less clustered and thus this tech-
nique will be less valid for these types of data.
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Figure 5: Histograms of volume data-sets. We found CT
data tends to be heavily clustered and works well with
our technique. Top-Left: Stanford Bunny CT. Top-Right:
Head CT. Bottom-Left: Signed Distance Field. Bottom-
Right: Head T1 Weighted MRI

3.5. Handling Arbitrary Isosurfaces

Unfortunately, even though our data is clustered such that
distributions tend to be bimodal, there is no limitation on the
isovalue that is chosen by the user. Thus isosurfaces can fall
anywhere in between d1 and d2. As the isovalue moves to-
wards the mean of the distribution it becomes less accurate.
We found this to be a major drawback of this representation
but found that it could still be quite useful if the region is
chosen carefully (see section 4) .

4. Implementation

4.1. Preprocessing

As a preprocessing step, we create a new volume contain-
ing the two moments of the distribution (value and value
squared). We then perform separable convolutions with
gaussian kernels to generate local distributions centered at
each voxel. Storing many of these volumes would take a
large amount of memory, so we chose to double the gaussian
kernel size at each iteration and down-sample by a factor of
two at each iteration. This allows us to store the entire vari-
ance ambient map in a mip-mapped two channel floating-
point texture. Since we are interested in fairly large filter
regions, we also found that we could easily get away with
starting at half the resolution of the original volume or even
smaller resolutions if only low frequency occlusions are re-
quired. At one half resolution the variance ambient map is
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roughly 0.6X the size of the original volume including mip-
maps if a two channel 32-bit floating point texture is used.

4.2. Blurring Kernel

It is worthwhile to discuss the choice of blurring kernel we
used to generate distributions. While we would normally
want to use a hemispherical filter region with cosine and
distance weighted occluders, this would require a compli-
cated non-seperable blurring process based on the surface
normal of each voxel. Since the surface normal can change
rapidly, this representation would suffer from aliasing arti-
facts under linear interpolation of neighboring samples (see
figure 6). This becomes especially apparent when lower res-
olution volumes or mipmaps are used. By using a radially
symmetric kernel and offsetting the sampling location from
the surface location we can eliminate this aliasing while still
allowing high-frequency changes in the surface normal. The
one drawback is that the occlusion becomes slightly more
concentrated in the direction of the surface normal. Being
able to adjust the surface normal during interactive render-
ing allows us to perform some other interesting effects like
averaging the normal and view vector to get view dependent
ambient occlusion. Anisotropic spacing can be supported by
varying the width of the kernel.

  Occluder
Interpolation

Offset
Samples

   Normal
Interpolation

Quantized
 Normals

 Local
Samples

Figure 6: Illustration of different blurring kernels. While a
hemisphere is normally used to search for occluders, it can
result in artifacts due to the interpolation of very different
occluding regions. By using a spherical kernel and offsetting
the sampling location from the surface, the correct normal is
used to determine the angle of the occlusion region.

4.3. Rendering

During interactive rendering, we first search to the iso-
surface and then perform a binary search to refine the sur-
face location. We then calculate the gradient using central-
differencing to perform local lighting. We also use the gra-
dient to calculate offsets for querying the variance ambient
map. Since many isosurfaces tend to fall on partial-volumes
where one material meets another, we take an extra sample
one half of a voxel under the surface in the direction of the
gradient (see figure 7) and use this sample as the isovalue

to evaluate the amount of occlusion in the variance occlu-
sion map. In the case of ambient occlusion we can evaluate
four instances of equation 12 in parallel (one sample from
the first 4 mip levels) and then take the maximum occlusion
value. In the case of soft shadows, we cast a ray four steps
at a time evaluating equation 12 until the ray leaves the vol-
ume. To simulate soft shadows from area light sources, the
mip level can be increased logarithmically as it travels to-
wards the light.

N

P

Occlusion
 Samples

Isovalue 
Sample

Ambient Occlusion

P

Occlusion
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Isovalue 
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Soft Shadows
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Figure 7: Illustration of our dynamic ambient occlusion and
soft shadow algorithms. The isovalue is chosen one half of a
voxel behind the isosurface. Ambient occlusion requires only
3-4 samples of different sizes in the direction of the surface
normal. Soft shadows requires one ray cast in the direction
of the light. In both cases the occlusion sample with the most
occlusion is chosen.

5. Results

All of the images and timings in this section were generated
on a Mac Pro with a single NVIDIA GeForce 8800 GTS.
Figure 8 shows 4 offset occlusion samples from separate
mip-levels in the occlusion map. Figure 9 shows the com-
bined result with diffuse local lighting. Figure 10 shows soft
shadows calculated with one ray combined with ambient oc-
clusion.

5.1. Performance

Preprocessing the volume simply involves blurring and
down sampling the volume. We used a 5x5x5 separable
gaussian blur to generate variance volumes. This processing
can be greatly accelerated on the GPU. Since we are dealing
with iso-surfaces, lighting can be calculated as a post pro-
cess, independent of volume size. The one exception is our
soft shadow algorithm which requires an extra ray to be cast
until it exits the volume or becomes fully occluded.

6. Conclusion and Discussion

We have presented a novel method for generating approxi-
mate isosurface ambient occlusion and soft shadows. Com-
pared with other approaches which may require hours or
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Figure 8: Occlusion sampled from the first 4 levels of the occlusion map. These are combined by taking the maximum occlusion
(minimum irradiance) or average occlusion.

Figure 9: Left: Combined occlusion from figure 8 using maximum occlusion. Center: Simple diffuse lighting. Right: Diffuse
combined with ambient occlusion.

Figure 10: Left: Approximate soft shadows using only one ray. Center: Diffuse lighting with shadows. Right: Diffuse lighting,
ambient occlusion and soft shadows.

Figure 11: Left: DVR. Center: DVR with AO. Right: DVR with AO and local phong lighting. If transparency is intended to
provide detail-in-context rather than specify transparency to incoming light, then our occlusion method is still useful within
DVR. We also found it useful to adjust the shadow contribution based on transparency.
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Preprocessing Time (in milliseconds)
Dataset CPU GPU
Engine (2563) 170 8.6
Small Head (5122x256) 678 34.5
Big Head (5123) 1524 74.1

Table 1: Preprocessing time on the CPU and GPU

Rendering Time (in milliseconds)
Dataset Phong AO HS SS
Engine (2563) 7.1 7.4 19.1 25.2
CTHead1 (5122x256) 7.8 8.2 26.4 30.3
CTHead2 (5123) 8.0 8.3 32.5 37.0

Table 2: Rendering time using phong, ambient occlu-
sion(AO), hard shadows(HS) and soft shadows(SS)

days of pre-computation time and suffer from aliasing and/or
quantization artifacts, our approach can load a data set within
seconds, has very good performance and doesn’t suffer from
the aliasing of pre-computed lighting techniques.

We found the most serious limitation of our work to be the
statistical approximation provided by the first two moments.
We found that adjusting the offset of the spherical distribu-
tion produced very interesting effects similar to subsurface
scattering, but we were often unable to do this because the
variance test would begin to behave incorrectly as the mean
of the local distribution approached the isovalue.

In conclusion, we believe that filterable occlusion maps
can provide a very quick way to approximate complex light-
ing effects, but if it is to be used in practice a better CDF ap-
proximation will be needed. We are currently investigating
Convolution Shadow Maps since they represent the entire
CDF and aren’t restricted to bi-modal distributions.

References

[BB08] BANKS D. C., BEASON K.: Fast global illumi-
nation for visualizing isosurfaces with a 3d illumination
grid. Computing in Science and Engg. 9, 1 (2008).

[Bli77] BLINN J. F.: Models of light reflection for com-
puter synthesized pictures. In SIGGRAPH ’77 (New York,
NY, USA, 1977), ACM, pp. 192–198.

[Bun05] BUNNELL M.: GPU Gems 2. Addison-Wesley,
2005, ch. Dynamic Ambient Occlusion and Indirect
Lighting.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated
volume rendering and tomographic reconstruction using
texture mapping hardware. In VVS ’94. (New York, NY,
USA, 1994), ACM, pp. 91–98.

[Cro77] CROW F. C.: Shadow algorithms for computer
graphics. SIGGRAPH Comput. Graph. 11, 2 (1977).

[DL06] DONNELLY W., LAURITZEN A.: Variance
shadow maps. In I3D ’06 (New York, NY, USA, 2006),
ACM, pp. 161–165.

[DP07] DESGRANGES P. E. K.: Us patent application
2007/0013696 a1: Fast ambient occlusion for direct vol-
ume rendering, 2007.

[HKSB06] HADWIGER M., KRATZ A., SIGG C., BÜH-
LER K.: Gpu-accelerated deep shadow maps for direct
volume rendering. In GH ’06 (New York, NY, USA,
2006), ACM, pp. 49–52.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F.: A survey of real-
time soft shadows algorithms. Computer Graphics Forum
22, 4 (dec 2003), 753–774.

[HSBW99] HUBONA G., SHIRAH G., BRANDT M.,
WHEELER P.: The role of object shadows in promoting
3-d visualization, 1999.

[KMK94] KERSTEN D., MAMASSIAN P., KNILL D.:
Moving Cast Shadows and the Perception of Relative
Depth. Tech. Rep. 6, Max Planck Institute for Biologi-
cal Cybernetics, T§bingen, Germany, jun 1994.

[KPHE02] KNISS J., PREMOZE S., HANSEN C., EBERT

D.: Interactive translucent volume rendering and proce-
dural modeling. In IEEE Vis (2002), pp. 109–116.

[Lev90] LEVOY M.: Efficient ray tracing of volume data.
ACM Trans. Graph. 9, 3 (1990), 245–261.

[Max95] MAX N.: Optical models for direct volume ren-
dering. IEEE Vis. 1, 2 (1995), 99–108.

[Mit07] MITTRING M.: Finding next gen: Cryengine 2.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses (New
York, NY, USA, 2007), ACM, pp. 97–121.

[RMSD∗08] ROPINSKI T., MEYER-SPRADOW J.,
DIEPENBROCK S., MENSMANN J., HINRICHS K. H.:
Interactive volume rendering with dynamic ambient
occlusion and color bleeding. Eurographics 27, 2 (2008).

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. In SIG-
GRAPH ’87 (New York, NY, USA, 1987), ACM.

[SA07] SHANMUGAM P., ARIKAN O.: Hardware acceler-
ated ambient occlusion techniques on gpus. In I3D (New
York, NY, USA, 2007), ACM, pp. 73–80.

[Ste03] STEWART A. J.: Vicinity shading for enhanced
perception of volumetric data. In IEEE Vis (10 2003).

[Wan92] WANGER L.: The effect of shadow quality on the
perception of spatial relationships in computer generated
imagery. In SI3D ’92 (New York, NY, USA, 1992), ACM.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. SIGGRAPH 12, 3 (1978), 270–274.

[WPH06] WYMAN M.-C., PARKER M.-S., HANSEN S.
M.-C.: Interactive display of isosurfaces with global illu-
mination. IEEE Vis 12, 2 (2006), 186–196.

c© The Eurographics Association 2008.


