
Edge-Based Multi-Touch Graph Exploration
Techniques

Project work thesis

Faculty of Computer Science

Otto von Guericke University of Magdeburg

by: Sebastian Schmidt

Course: Computervisualistik

Student number: 168650

Supervisors: Jun.-Prof. Raimund Dachselt
Otto von Guericke University of Magdeburg

Dr. Miguel A. Nacenta
University of Calgary

Prof. Dr. Sheelagh Carpendale
University of Calgary

Abstract
Node-links diagrams are a very common way to visualize datasets of different graphs
like friendships in social communities, flight maps or communication networks. In these
datasets nodes are often connected by a huge number of edegs, which leads to edge cross-
ings and edge congested areas, occluding nodes and further information underlying the
diagram. To allow exploring the graph despite those problems, several graph interaction
techniques approaches have been developed.
This thesis explains the adaption of such techniques for the use on a multi-touch tables.

Additionally I propose a new technique, developed using the new possibilities provided
by touch devices. All proposed techniques are designed for simultaneous use in one
application. A gesture set is suggested, allowing concurrent interaction on all techniques
without changing modes.
The implementation of an example application regrading different challenges in edge

drawing and the new field of gesture interaction is described. Significance and limitation
of the system are named and some outlines for future work into this research field are
given.

Zusammenfaßung
Netzwerk Diagramme bilden die Grundlager für die Darstellung von Graphen und können
Bekanntschaften in sozialen Gruppen, Karten von Flugrouten oder verschiedene Kom-
munikationsnetzwerke darstellen. Knoten in diesen Diagrammen haben oft eine hohe
Anzahl an Verbindungen untereinander. Dies führt zu Anhäufung und zunehmender
überschneidung von Kanten. Die Kanten überdecken dabei Knoten und weitere unter
der Visualisierung liegende Informationen. Um trotzdem eine Analyse dieser Daten zu
ermöglichen wurden verschiedene Interaktion-Techniken entwickelt.
Diese Studienarbeit beschreibt die Adaption dieser Techniken für die Nutzung an

Multi-Touch Tischen. Zusätzlich wurde eine weitere Interaktions-Technik, unter Berück-
sichtigung der neuen Möglichkeiten der neuen Eingabemedien, entwickelt. Alle gezeigten
Techniken können gleichzeitige und ohne Wechsel in verschiedene Modi in einer Applika-
tion genutzt werden.
Die Implementierung einer Beispiel Anwendung wird beschrieben und Problemstellun-

gen im Bereich Kantendarstellung und dem neuen Forschungsfeld der Gesten-Interaktion
werden erklärt. Bedeutung und Einschränkungen des Systems werden zusammenfaßend
genannt und Richtungen für eine weitere Entwicklung in der Forschung angedeutet.

II

Contents

1 Introduction 1
1.1 Definitions . 1
1.2 Motivation . 2
1.3 Graphs and the goals of graph exploration 2
1.4 Touch interfaces as new input devices . 3
1.5 Scope . 4
1.6 Overview . 4

2 Related Work 5
2.1 General graph exploring techniques . 5

2.1.1 Graph layout algorithms . 5
2.2 Distortion oriented techniques and EdgeLens 6
2.3 Edge manipulation techniques . 6
2.4 Touch techniques for interaction . 7

3 Interaction techniques in Cutting Edge 8
3.1 Interaction with nodes . 8

3.1.1 Moving nodes . 8
3.1.2 Tapping nodes . 8

3.2 TouchPlucking . 9
3.2.1 Single-Edge-Selection . 10
3.2.2 TouchPlucking in usage . 11

3.3 TouchPinning . 11
3.4 TouchStrumming . 12

3.4.1 Strumming on nodes . 13
3.4.2 Advantages of Strumming . 13

3.5 TouchBundling . 14
3.5.1 Bundling Interaction . 14

3.6 PushLens . 15
3.6.1 Interaction with PushLens . 16
3.6.2 Relevance of the PushLens . 16
3.6.3 The PushLens as general tool and lens idea 16

4 Development environment and Implementation 17
4.1 Frameworks . 17

4.1.1 Visualization Toolkit . 17
4.1.2 Touch toolkits . 17

III

4.2 Application architecture . 18
4.3 Gesture Recognition and interaction . 19

4.3.1 Single-Touch Gestures . 19
4.3.2 Multi touch gestures . 20

4.4 Gesture Interaction . 21
4.4.1 Single-touch interaction . 21
4.4.2 TouchBundle gesture interaction 22
4.4.3 PushLens gestures . 22

4.5 Drawing Curved Edges . 22
4.5.1 Subdivision splines . 23
4.5.2 Bezier Curves . 24

5 Conclusion and Future Work 30
5.1 Conclusion . 30
5.2 Future work . 30

IV

1 Introduction

Graphs have a very long history in mathematics, computer science and other fields.
They can represent a big variety of data and provide a good overview on the information
data, when shown in visualizations. The typical visual representation of a graph is the
known node link diagram, where the nodes represent an element and links or connections
between these element, are shown as edges.
The amount of data, behind these diagrams, tend to grow which causes the visu-

alization to get more complex and less understandable. Especially a growing number
of connections, leads to typical problems in overlapping of several graphical elements.
These problems complicate exploration of the data and makes it even impossible some-
times. Several techniques to minimize these issues and to allow an easy exploration have
been developed. However these techniques have been developed only for typical desktop
environments using mouse and keyboard input.
This thesis presents the adaption of such techniques for the use on touch devices, fo-

cused on Multi-Touch-Screen (MTS). The developed application allows interaction with
several exploration techniques and multiple elements at the same time.

1.1 Definitions

In this work I make use of several terms, which are not well defined in literature or used
in a wide spread of meanings; sometimes the commons use differs from research terms.
The given definitions are made in consideration of this work and the usage of these terms
might change in different contexts.
Gesture Considering Kurtenbach and Hulteen [11] "A gesture is a motion of the body

that contains information. Waving goodbye is a gesture. Pressing a key on a keyboard
is not a gesture because the motion of a finger on its way to hitting a key is neither
observed nor significant. All that matters is which key was pressed."
In this work a gesture is a specific movement of touch by one or multiple fingers on a

surface. The complete gesture is recognized by a touch enabled device and can be either
obvious like moving an object with touching and dragging it or rather abstract, as in
tapping the objects to remove it.
Interaction Technique Interaction techniques described in this work are always the

composition of a gesture and action in the graph visualization according to this action.
MTS A Multi-Touch-Screen (MTS) is a touch device, where the touch enabled surface

is a display screen.

1

Bridge In a mathematical graph a bridge is an edge, where removing this edge discon-
nects the graph.
Articulation Point An articulation point in a mathematical graph is a node, where the

graph is disconnected when removing this node.

1.2 Motivation

In our world, the amount of data grows continuously and for data analyses and ex-
ploration visualizing this data in diagrams is vital. On kind of data is related data
representing friendships in social communities, flights from one airport to another or
event people related to a product they bought once in the collection of selling companies.
For visualizing this relating data, graph diagrams have proven to provide good results
[6, 2]. However even these diagrams show their limitations, when a huge amount of data
has to be visualized. In heavily connected graph diagrams, we figure the problem of edge
congestion, which often made it hard, sometimes even impossible, to explore the data in
a fast and comfortable way. To solve such problems some tools and techniques for graph
exploration have been provided by the research community.
All of these tools and techniques have been designed for common desktop systems using

mouse and keyboard input. Looking into the last years touch enabled devices become
more and more common in usage and affordable for people. The goal of this work is to
combine the known techniques from desktop environments with touch technology and
to show new techniques which can hardly be done on desktop systems, or at least seem
more natural on touch enabled devices.

1.3 Graphs and the goals of graph exploration

Graphs play an important role in the field of information visualization for relationship
based datasets. Often graphs are shown as simple node-link diagrams. These can be maps
of streets in a navigation system or of bus and train routes in public transit. Another field
where graphs get more and more common are connections in social communities, where
an edge can represent a friendship or business relations. Some of these visualizations are
shown in 1.1.
Considering the wide field of domains, where graphs are used there is a huge variety

of tasks as well. Lee et.al. [19] proposed a Task Taxonomy on graph visualizations for
designing and evaluating new systems in this area; I want to present just a few in this
section and give real examples, some tasks are named again in the technique section 3 in
context of usage for the technique.
A very obvious task in graph visualization is revealing of two nodes are connected,

which can either be detecting if two people know each other in a social map or if I can
go from one town to another by plane with a single flight.
Sometimes it might be interesting to count the number of adjacent nodes to a specific

one, when looking for the number of relatives in a family tree regarding heritages or
looking for the number of flowers eaten by cows, which can be read out of a food chain.

2

People might not only want to observe direct neighborhoods in a graph, but go further
into the seconds third and more iterations, looking which friends do they friends have
and if they might know them as well. This applies to the flight map, when looking for
alternative routes and for UML diagrams, looking from how many classes the current
inherits. So far, these tasks have in common that they sound pretty simple and easy to
perform on most graph visualizations, like shown in figure 1.1 (a); but looking if there is
a flight between two specific places in figure 1.1 (b) is already much more difficult and
finding a friend of my friends in figure 1.1 (c) seems already impossible.

a b c

Figure 1.1: Three different type of data visualized using different layouts. Perceiving spe-
cific information becomes more difficult going from image (a) to (c). Sources
(by 18. July 2010):
(a) http://www.mvbnet.de/downloads/
pdf/MVB-Liniennetz_Anschlussverkehr_141209.pdf
(b) http://www.bigtravelweb.com/images/tam-l.jpg
(c) http://farm1.static.flickr.com/

Looking into these figure shows the problems which are to solve in graph visualiza-
tions, while tasks can get even more complex, looking into a communication network,
the observer often need to know, where are bridges and articulation points to avoid dis-
connection of parts of the network.
For social research a community network can be real joy, for them it is often interesting
where people tend to group, which shows as a cluster in the graph visualization.
Especially when thinking in economic ways it is often interesting to find the shortest
path, either if this mean getting from one Town to another without as few changes of
flights as possible, or finding the shortest path on the routes to another place or simply
the fastest way a data package should go through a TCP/IP network structure.

1.4 Touch interfaces as new input devices

Nowadays probably nobody would name the first multi-touch device as such. As in
general understanding, it is a simple keyboard where pressing two keys at the same
time, forces a reaction. Although these first beginnings of multi-touch interaction can
not be retrieved [3], the field got a new push in the last years, when the touch devices
transformed to touch-screens. Touch screens allow the changing of the direct interaction
surface; something not imaginable for a normal keyboard or mouse. This gets even more

3

useful, when the touch-screens get to multi-touch-screens (MTS), where not only one
touch can be recognized but all touched areas.
There are several approaches to enable screens for multi-touch recognition. The first

distinction has to be made in optical and capacitive devices. Optical devices use a camera,
which is mostly beneath the surface to record the hand interaction. It is necessary to
illuminate the surface for these cameras. To avoid problems with the visual scene on the
surfaces, the light and the camera works mostly with infrared light, which is not visible
for human eyes. However there are still problems, when bright infrared light, emitted by
the sun for example, hits the surface and is recorded by the camera. Capacitive touch
devices do not have to figure such problems, but are more expensive and more difficult
to produce, when used on big screens.

1.5 Scope

This work focuses on graph exploration techniques and not on creating or editing them.
This is caused by some research work which has been done on MTS and graph editing and
creation while I did my work and by the idea of just exploring data, while the information
itself is generated by algorithms out of existing environments.
Further the application deals mainly with edge manipulation, which is less explored

compared to pure node interaction and manipulation in terms of graph layout algorithmic.
The implemented techniques are designed to solve the less complex tasks presented in
section 1.3, because the more complex ones are often a composition of these.
The application is designed to show usage of multiple techniques at the same time

to show the possibilities multi-touch systems provides us; as well as it is designed to
allow multiple-user interaction. However these approaches where not the main goal of
my work, that is why I do not provide a fully new way of solving problems in this area.

1.6 Overview

The following chapters of this thesis are structured as follows.

Chapter 2 gives a short introduction into the field of graph exploration, with focus on
edge interaction and the research in multi-touch and gesture interaction.

Chapter 3 explains all techniques I designed and implemented into my example ap-
plication. The gestures used for each interaction technique are described in detail.

Chapter 4 provides a detailed explanation of the implementation of all techniques. Tech-
nical problems occurred in the design process and their solution are discussed.

Chapter 5 gives a summarization of this thesis and names some limitations in the devel-
oped approach. This chapters finishes with a prospectus of further advancements which
might be included into this project in future development.

4

2 Related Work

Graph visualization is not a new area of research. With the beginning of Graph theory
people have made node links diagrams. Even before this the first graphs have been
drawn, for example in Family trees. With the upcoming of computers and graphical
interfaces these visualizations were ported to this new medium. Computers do not only
allow to visualize given data, but also allow further interaction and editing. Because of
the growing data and the limitations of display size, research provides several further
visualization techniques.

2.1 General graph exploring techniques

2.1.1 Graph layout algorithms

As mentioned before one of the first approaches in graph visualization have been the
family trees in the middle ages. Several layout algorithms were developed [6, 2] and
evaluated in [5]. Some random layouts are illustrated in figure 2.1. Trees for example
represent a graph layouts easily to understand. They are showing a hierarchy of the data
starting a root and ending in leafs. To draw graphs in a tree layout the data has to be
analyzed in forehand and equivalence relations have to be found.

Figure 2.1: Different graph layouts, shown in [5].

Another common way to layout a graph is the orientation on the longest path. There-
fore the path has to be found and is drawn in one line. All other nodes and edges are
placed regarding their relation to this path. This approach is often used for graphs that
simulate processes.
For datasets where to nodes can not be ordered by a hierarchy or other information,

which is useful to layout them in a specific way, other algorithms have been developed.
Most based on force-feedback, the Fruchtermann-Reingold [9] layout for example.

5

2.2 Distortion oriented techniques and EdgeLens

To offer a better overview on graph data without moving nodes Sakar et.al. proposed
the fisheye view in graph application [23] based on the original fisheye from Furnas [10].
In this approach observing people can define a region of interest, in which nodes are
highlighted by increasing the size and decreasing the size of nodes outside this region.
Sakar proposed special algorithms for the fisheye on graphs where the nodes have a
geographical meaning.
Basing on distortion oriented techniques like the fisheye, Wong et.al. introduced Edge-

Lens [31], to avoid edge congestion. Like in the fisheye a region of interested can be
defined. But instead of changing the nodes, the Edge-Lens manipulations the edges in
this specific region of interest. The edges are bend away depending on the distance to
the center of the lens and the two nodes they are connected with, illustrated in figure
2.2 (2). This gives a better view on the data the user specifies as important, without
destroying the observers mental map of the graph in changing the size of the nodes or,
even worse, move their position.

2.3 Edge manipulation techniques

The Edge-Lens gives the potential to manipulate all edges in a specific region, but without
the possibility to manipulate one single edge. To give the user more control for interaction
Wong et.al. extended the Edge-Lens and proposed Edge-Plucking for graph exploring
[30]. It allows the plucking of a single edge like a strum of a guitar, by clicking and
dragging with a mouse. People gain more control on which edges are bend, but still are
able to clear a region with plucking all edges in there with a single gesture. Plucked edges
can be pinned at a position and stay out of the current region of interest. One example
is shown in figure 2.2 (1)

1 2

Figure 2.2: EdgePlucking (1) for mouse interaction as proposed in [30] and (2) a com-
parison of the bubble (a) and spline (b) approach of the EdgeLens [31].

Edge-Plucking lead to a bundling of edges, when a lot of edges are plucked and pinned
together, they behave like a bundle. An automatic approach for bundling of edges was
introduced by Danny Holten et.al. in [15]. Holten revealed, people using the Edge-
Bundling in an example application where very exited to use it in a real graph exploring
environment. An example application is shown in figure 2.3.

6

Figure 2.3: Edgebundling using different bundling strength ß, proposed in [15]

2.4 Touch techniques for interaction

Multi-Touch interfaces become common more and more, even in all day fields, for example
the Microsoft Surface [28] or the SMART table [26]. As Buxton et.al. showed that two
handed input allows the simultaneously interaction on different parameters [4]
Moscovich [20] spotted the advantages of multi-touch interaction and later Msocovich

et. al. [22] proved that interaction touching with two hands is more suitable for change
in multiple parameters and two touches from one hand are good for changing scale and
orientation. Moscovich et.al. [21] showed Multi-Touch enables more degrees of freedom
for direct interaction which can be used for scaling or rotating of objects on touch surfaces.
Fundamental research in usage of gesture interaction when using a touch enabled sur-

faces was done by Wobbrock et.al. [29]. He revealed out that people do prefer multi-touch
gesture where the count of touches does not matter. When interacting directly with
touches on a surface, people might expect a more realistic behavior. One was shown by
Agarawala et. al. with BumpTop [1] as a virtual desktop environment. They as well
propose small gestures for tossing objects.
In [7] Frisch et.al. presented a study to propose different multi- and single-touch tech-

niques for general graph editing. Although we decided to concentrate on manipulation of
edges, instead of graph editing, we use some of the proposed gestures. In the presented
analysis people used similar, sometimes even the same, gesture for different operations.
We think, these gesture have a common meaning on different objects, like the pinch
gesture for resizing an object. Later a set of interaction techniques for graph editing and
manipulation has been proposed [8].

7

3 Interaction techniques in Cutting Edge

In this chapter every interaction techniques is explained in detail. First the effects on the
graph visualization are explained, which is followed by a listing of all gesture available
for this technique. When available the composing of two techniques is mentioned and the
gesture for interaction are explained. For every technique one example is usage according
to the tasks listed in section 1.3 is expounded.
The presented techniques and gesture are presented as a set, already implemented in

an example application. They are designed to work in simultaneous action. This needed
to limitations in usage of technique or gesture, which are named as well.

3.1 Interaction with nodes

Although I focus on edge interaction in my work, interaction on nodes are a fundamental
feature for graph exploration and should not be neglected; simple touch techniques on
nodes are even necessary to enable specific features of edge interaction.

3.1.1 Moving nodes

Nodes can be moved by starting a touch on them and dragging them around. The nodes
are moved according to the movement of the finger, while all edges stay connected and
change their shape if they are applied to an edge interaction technique. With moving
one node, no other nodes are affected; however multiple nodes can be moved at the same
time.
Although the moving of nodes is not suitable, if there is specific information underlying

the position of nodes, it is a very powerful tool for graph exploration. Nodes which might
belong to a group can be located near to each other, so this approximates to the mental
idea of the observer and this information can be easier shown to other people.

3.1.2 Tapping nodes

It can be necessary to revert all edges of one node into their original shape. This can be
achieved by staying with a touching finger on a node for at least 1.5 seconds. All edges
adjacent to this node are highlighted and set straight not matter which edge interaction
techniques are applied. This state is held as long as the touch stays on the node and is
not dragged; once the finger drags the nodes this state is lost and the usual movement
of the node is enabled.
Setting the edges into a linear shape and highlighting them, can reveal connections

to other nodes, especially if there are techniques applied to the edges, which bend them

8

in a bundle with other edges. While the edges are highlighted no further interaction is
possible, which can be used to select edges not adjacent to this node and move them out
of the focus of view; but is the starting point for another interaction technique directly
used on edges and described in 3.2.1.
A short flicking gesture on a node causes another reaction of the adjacent edges, which

is highly related to an edge interaction technique and is described in section 3.4.1

3.2 TouchPlucking

Plucking an edge was first introduced by Wong et.al. in terms of EdgePLucking[30] but
was only performed in desktop interaction with mouse and keyboard. The technique is
very powerful and the basis technique for several further approaches described in this
work. Using TouchPlucking, people can "take" an edge and bend it according to the
position of the finger and the adjacent nodes, as shown in figure 3.1. The new shape
of the edge is a curve which starts and ends in the nodes and goes directly through the
finger of the touching person.

Figure 3.1: bending s single edge using TouchPlucking.

Plucking and edge can be started in different ways, each one has its advantages in
different purposes. Starting a touch directly on one edge, selects just this one and
enables it for plucking. The plucking is performed by dragging the finger away from
this position. This can be achieved with multiple edges as well, when starting a touch in
an edge congested area, or on a location where edges are crossing.
Another way to select multiple edges is, starting a touch on an empty space of the

visualization, neither on an edge or any other element. Dragging this touch through
edges collects them and bend them as in plucking a single edge. This technique select
only edges, which are not affected by any other technique so far, and other objects are
not affected in anyway. Although less precise, this indirect plucking enables selection of
a larger amount of edges. The difference of direct and indirect plucking are shown in
figure 3.2.

9

a b

Figure 3.2: Two different ways of selecting and plucking edges. In (a) one edge is selected
and plucked, which ignores other edges. Starting the touch offside any element
and dragging it, selects all crossed edges as in image (b).

3.2.1 Single-Edge-Selection

In Touch applications, we often face the so called "fat finger" problem, which is selecting
an interface element with a finger, where the element is much smaller than the touch
area. We faced this problem with a multi touch technique; where one touch starts on a
node and stays there for at least 1.5 seconds, which causes all connected edges to return
into their original shape, no matter if they are plucked or pinned. While keeping this
state, the edges cannot be plucked right away; but tracing along one edge selects it as in
direct plucking and further interaction is possible, shown in figure 3.3. As this technique
is for selection of a single edge, it is not possible to select more then one edge in one run.

Hold 1.5 sec

Figure 3.3: Plucking an edge out of a congested area. One finger touches a node for 1.5
seconds and a second one moves along the edge to select it.

Edges in a TouchPluck can be simply released with lifting the touch from the surface,
which leads the edges into their original position. In this way, TouchPluck provides a
fast way to explore the graph without changing the visualization permanently. However
there is a difference in edge behavior, when the TouchPluck is released near to another
touch, a pin or an edge bundle (3.3, 3.5). In that case the edges are assigned to the
second pluck, which is indicated by a visual highlighting at the forehand.

10

3.2.2 TouchPlucking in usage

TouchPlucking allows the observer to reveal connections of nodes and reduces cluttering
in areas of high edge congestion. Often it is not clear, if an edge goes through a node or
this node is connected by two different edges. With EdgePlucking this problem is solved
by plucking the edge, as shown in figure 3.4.

Figure 3.4: Revealing the adjacent of two edges using TouchPlucking.

3.3 TouchPinning

Although one of the main advantages of TouchPlucking is the not permanent change of
the graph, it is sometimes necessary to change the visualization for a longer period of
time, when further investigation is needed. For that the application provides a technique
called TouchPinning; which is highly related to TouchPlucking and is fixing plucked and
bended edges in their current position.
To gain this status a plucking touch stays at one location for at least 1.5 seconds and

when this touch is released afterwards the edges are already fixed and stable. The change
of state is highlighted with a small push pin as illustrated in figure 3.5.

Hold1.5 seca b

Figure 3.5: Fixing the shape of plucked edges using TouchPinning. The new state is
illustrated with a push pin.

Once a collection of edges is pinned, more edges can be assigned to this pin, with
plucking them near to it and releasing the finger, this works in the same way as the
combining two plucks, explained in TouchPlucking 3.2.1.

11

Further interaction with once pinned edges can be achieved with starting a new touch
directly on the pin. The edges then behave as if they were plucked directly, these edges
then can be released or pinned again. If a pin is not needed anymore, a small click
deletes it, with releasing all edges into their original position. I enabled the possibility
to pluck a single edges out of the pin as well, however at this point, we are facing the
"fat finger" problem again, so that the edge has to be plucked where it does not interfere
with another edge, which might be impossible.
TouchPinning allows a permanent change of the graph visualization, which allows

constancy for a longer exploration session, where some edges might be uninteresting for
a longer term; but instead of the case, when making them invisible, the connections
between nodes can still be revealed and with the option to pluck edges out of the bundle,
they are accessible at every time.
The TouchPinning is very useful for multi-user systems, it allows to show a selection of

edges in a bended state, without touching it every time, which would not only be unstable,
when people could not place their finger in the same position for a longer period of time,
but the arm of the touching finger, would occlude a lot of the visualization as well. This
applied especially in top-projected systems, where the arm of a static touching finger
would always reduce the visualization space.

3.4 TouchStrumming

TouchStrumming is another technique, related to TouchPlucking and takes advantage
of the saliency of human motion-perception to offer an alternative way to visualize the
connection of one or several edges. The metaphor behind the idea is a guitar string,
which is strummed with a finger. Instead of dragging and plucking edges it uses a short
“flick”-gesture. As expected the edges selected by this gesture are released immediately,
but do not move back into their original position slowly, they are going to vibrate for
some time, as shown in figure 3.6, where the amplitude and duration of the vibration
depends on the length of the flicking gesture.

Figure 3.6: Applying a strumming motion to an edge, using a short “flick”-gesture.

12

Edges can be strummed when they can be plucked, in fact TouchPlucking is the be-
ginning of a TouchStrumming action, just differentiated by the time and length of the
gesture. If an edge is strummed out of a TouchPinning or a TouchBundle it is not
assigned back into this again, but goes into its straight position.

3.4.1 Strumming on nodes

Strumming cannot only be assigned on edges, but on node as well. The nodes then is
moved back into its original position and all adjacent edges are strummed. The idea
is shown in figure 3.7. Despite strumming on edges, the maximum amplitude is not
assigned to the perpendicular line regarding the ending position of the touchpoint, but
goes along the edge. This simulates a movement of the vibration from the strummed
node, to its neighbors.

Figure 3.7: Using the same “flick”-gesture as for strumming edges on nodes, causes all
edges to strumm.

3.4.2 Advantages of Strumming

Strumming can be used to reveal nodes adjacent to a specific edge, like the example
in plucking where an edge goes through a node, strumming can reveal if these are two
adjacent edges or it is a single edge, which is not connected. Unlike in plucking, the
touching finger can be removed immediately after the gesture is performed, while the
strumming is still applied; which reduces occlusion of other elements of the visualization.
If a greater number of edges is bend already, strumming is easier to perceive by multiple
then a further plucked one.
When strumming on two nodes at the same time, other nodes, which are connected

to both of them, are easier to see and even subgraphs, which contain this nodes can
be perceive and shown in a fast way. While some of these tasks can also be solved by
a highlighting, strumming has further advantages. It can easily be applied to exiting
applications, without concerning existing coloring or highlighting of edges, which often
illustrates a specific meaning already. Despite color highlighting, strumming can be
perceived by color-blind people as well.

13

3.5 TouchBundling

Although TouchPlucking and its derivates are very powerful tools for interaction with
single and multiple edges, it can be necessary to combine edges, either to reduce cluttering
or to highlight the connections between groups of nodes, which was the original idea of
edge bundling, when it was proposed by Holten et.al. [15].
The gesture for TouchBundling is a two-touch interaction, where both touches move

into one direction and select edges, like a funnel, which are roughly perpendicular to the
line between both touches. One way to assign edges to a bundle is using this gesture on
a bunch of edges, where all edges which are directed similar as the movement, with a
range of ±30◦. The idea of bundling is shown in figure 3.8 (a). Another way using the
TouchBundle gesture, is bundling all edges of one or multiple nodes. This is achieved by
crossing the node with the described gesture. All adjacent edges are added immediately
to the bundle. Using the same graph as in figure 3.8 (a) , bundling on the nodes selects
on edge more, illustrated in (b) of the same figure.

a

b

Figure 3.8: Bundling edges using a two-touch gesture. The gesture is started on edges in
(a) and first crosses nodes, selecting all adjacent edges, in (b).

3.5.1 Bundling Interaction

Once the gesture is finished, the bundle is stable, but can be changed in position, by
dragging the endings of the bundling segment, which are the points, where all edges run
into each other. The shape can be altered as well, by using the TouchPlucking where

14

the bundle behaves similar to a single edge. Plucking a bundle is only possible in direct
plucking, but not with indirect plucking.
Adding further edges to a bundle is possible by plucking them near to an ending of

the bundling segment. Edges can be removed from a bundle, by simply plucking them at
a place, where the bundle is not started yet or by tapping on the adjacent node, which
releases all edges from this node and was earlier describes in section 3.1.2. The complete
bundle can be deleted, by using a short tapping gesture on the bundle itself.
Bundling can be used to reduce cluttering of edges in a specific region of the graph

visualization. Especially regarding subgraphs and other groups of nodes, the bundling can
reveal the number of connections. In my example application this is done by highlighting
the bundling depending of the number on edges it contains.
Like TouchPinning the TouchBundling technique is stable over a period of time, which

allows further exploration without occluding other elements of the visualization. Despite
the Pinning technique, a bundle does not spread the edges and looks more accurate.
This reduces the cluttering even more. TouchBundles even allow further interaction with
plucking and changing their position.
TouchBundling provides a good way perceiving bridges and articulation points in a

graph visualization. When multiple people working in a visualization, bundling is suitable
revealing these instances to others.

3.6 PushLens

The PushLens is a virtual circular object, which leads the edges to a behavior as if it
would be physical real in the graph visualization, the idea is derived from the EdgeLens
by Wong et.al. [31]. Edges intersecting the lens, but without an adjacent node inside the
lens are bent along the shape of the lens, which is shown in figure 3.9; edges connected
to at least one node inside of the lens are not affected by the lens. Plucked and pinned
edges are affected, but not when the pin or the plucking finger is inside the lens, this
is due to the fact, that the edges should stay connected to pin and touch, to keep the
mental connection.

Figure 3.9: A PushLens applied to a node in an edge congested area, showing the con-
nections of this node.

15

3.6.1 Interaction with PushLens

To avoid confusion in interaction with bundling a PushLens is created by starting a three
finger touch technique anywhere on the device. The PushLens is created immediately
and visualized by a circle around the three touches. Dragging these touches the lens is
moved around and with pinching them the lens can be resized.
Once the creating gesture for the PushLens is released, interaction using less touches

is possible. First the lens can be resized by another multi-touch gesture using at least
two fingers and the typical pinching gesture; dragging these fingers allows to move the
lens as well. The lens can be moved by a single touching finger as well, by starting the
touch on the lens border and dragging it.
This touch has to start on the border, because we allow the usage of other techniques

inside of the lens; in that way the observer can use plucking for example inside the lens,
when cluttering is reduced already. When a lens is not necessary anymore it can be
deleted by a short tapping gesture on the border, again this can not be done inside the
lens, to provide tapping on nodes inside the lens.

3.6.2 Relevance of the PushLens

The PushLens provides a powerful tool for more detailed graph exploration, when making
a PushLens containing a subgraph the subgraph can be analyzed without being disturbed
by edges not adjacent to this subgraph.
When analyzing nodes in an area congested by edges, the PushLens can be used

to focus a node to reveal the number of edges, which are adjacent. Further the lens
allows showing other visual information beneath an edge congested area, which can be
geographical information in a route map.

3.6.3 The PushLens as general tool and lens idea

As the PushLens is derived from the EdgeLens [31] approach, there are further lenses
on graph imaginable; research has already been done in this field [27] and should be
considered, when implementing a real life application for every day usage.
Gestures used for the PushLens should not only be seen as interaction with the lens,

but as proposal for general tool interaction. This excludes the creating gesture, if im-
plementing more than one tool. The differentiation in general interaction with graph
elements and tools could be the distinction of multi and single touch gestures.

16

4 Development environment and
Implementation

All techniques described in section 3 have been implemented in an example application.
This chapter explains the development process and the application design. After describ-
ing the development environment and used Frameworks, the way of gesture recognition
and interaction is explained. Upcoming problems in this areas and are named. Because
most techniques are based on edge manipulation, the drawing of edges is a major issue
and explained in detail.
Next to usual Desktop PC running Microsoft WindowsTM for programming, I had

access to two touch enabled tabletops. A Microsoft Surface TM[28] and a SMARTTM

table [26] where provided for development and evaluation of the application. Both tables
are quiped with a camera sensing infrared light, for touch tracking. As most of these
systems, the tables have the same limitations, recognizing false touches and losing the
tracking of a fast gesture.
The example dataset for the application was provided in the graphml file format [12].

A XML based file format for graph data. It is supported by several applications and
provided with an OpenSource License.

4.1 Frameworks

4.1.1 Visualization Toolkit

There are several visualization toolkits available. As basis for the example application
prefuse [14] was chosen. It allows a fast development of a performant node-link visu-
alization applications and smooth animations are easy to implement. Because prefuse
is designed for graph visualizations, it provides several libraries for reading graph data,
including the graphml file format.
Unfortunately development on prefuse stopped in 2008 and was ported to the flare

project [18] based on Flash. Still prefuse is a stable and easy to use framework, while
flare is just provided as an alpha version. Like most visualization toolkits today, prefuse
does not support touch interaction in its default configuration.

4.1.2 Touch toolkits

Touch devices are a quite young device group; until today there are just few uniform
ways to access the touch events like mouse events provided by different drivers. One
approach shows the TUIO library, which is a network protocol for sending touch events

17

based on a network protocol for sound. It is develop by Martin Kaltenbrunner in Austria
and is already used in some project concerning touch devices [16, 13]. Unfortunately this
protocol is not natively supported by Microsoft SurfaceTM or SMARTTM Table.
To gain access to touch events from both tables, I had access to an unpublished JavaTM

library, which provides access to them, as well as to events emitted by the TUIO proto-
col. The accessibility of TUIO events allowed testing the application using the desktop
computer and the TUIO Simulator, presented in [17].
The named library provides a listener interface, which can be accessed to receive all

touch events emitted from the clients. The touch events provide all data given from
the device. This differs for the devices and protocols, but always contains a location
and size of the touch. The library provides minor distinction for touch events, as for
example detecting a tapping touch or when a touch was dragged, but does not distinct
more complex gestures.

4.2 Application architecture

Providing an understandable and easy to extend programming structure the application
architecture is approximated to the MVC (Model-View-Controller) software design. The
MVC approach is not specified completely and is hard to apply when using new touch
recognition frameworks.
Received touches are analyzed in a TouchCalculator, which distinguishes multi from

single-touch events and converts all touch events into gesture events. All gesture events
are forwarded into a data structure read by an event-controller. This controller has
access to the model data and calculates all interaction of events with the underlying
data. TouchCalculator and Controller work as a Controller in terms of MVC.
Model and View consist of derivates from prefuse classes, which are extended and

adapted to accept gesture events bye the controller. Despite the idea of MVC, the View
does not provides the input events, because user interaction works completely on touch
library. As described in some MVC approaches the View reads most of the data to
visualize out of the model structure. An overview of the application structure is given in
figure 4.1.

Figure 4.1: The application structure showing most important parts. Light gray shows
threads and turquoise the model.

18

4.3 Gesture Recognition and interaction

One of the goals for application design was using simple and easy to understand gestures.
Because gesture recognition of such easy to perform gestures is less complex and do not
need a complex framework in background, I go without such a framework. This also
saves performance, because not every touch has to by analyzed by complex algorithms.
However it was sill necessary to distinguish multi-touch and single touch events, which

was detected using time and location difference of touches. If two or more touches are
started near by each other and at nearly the same time they are combined to a multi-
touch event, which then was evaluated for itself. This approach has its limitations, when
multiple people are working in the same area, but in most cases the system behaves as
expected. This is still a major problem in touch recognition; but like the named general
problems on camera based touch devices of false and losing touches not in the scope of
this work.

4.3.1 Single-Touch Gestures

For interaction just four single touch gesture have to be distinct:

• tapping

• permanent touch

• dragging

• flicking

Tapping is a short gesture, which is not moved and removed in the first 1.5 seconds. A
touch staying at one position for longer then the 1.5 seconds is named permanent touch.
When the touch is moved in the first 1.5 seconds and released before a long dragging is
performed it is a flicking gesture. Longer dragging is labelled as dragging. These gesture
states are for general understanding, while the system distinguished more states of a
gesture:

• touched, a touch just started

• pressed, a touch not moved for 1.5 seconds after starting it

• dragged, a touch moved in the first 1.5 seconds

• moved, a touch moved after being pressed or pushed

• clicked, a touch released without moving

• pushed, a touch staying at the same location for at least 1.5 seconds after being
moved

• flipped, a touch moved in the first 1.5 seconds, but not moved a long distance before
released

19

• released, a touch which is released from the device surface

An overview in relationship of these states gives figure 4.2 The distinction of pressed and
pushed touches is necessary, because of the single-selection, which can only be started
by a pressed touch on a node, not by a pushed.

Figure 4.2: Diagram showing the different states assigned to a single-touch gesture. Every
gesture starts as “touched” and ends either as “clicked”, “released”, or “flipped”.

4.3.2 Multi touch gestures

A Multi-Touch gesture in my application is defined by three different values. As named in
the gesture recognition, the number of touches is important. Further I assign a position
to the gesture, which is the evaluated center of all touches. To define a size of the
multi-touch gesture, I calculated the distance from this point to every single touch, this
I named the radius of the gesture. Position or center and the radius of a multi-touch
gesture describe a circle including all touches of this gesture.

20

Detecting a pinching gesture

Once a collection of touches is assigned as a multi-touch gesture, their radius is constantly
controlled and compared to the last known value. If this value differs more then 5% of
the original value it is set as a pinching gesture.

Detecting a TouchBundle gesture

Multi touch gestures are only used for interaction with lenses and bundles. Interaction
with bundles is performed with a very specific multi finger gesture and only in specific
conditions it is applicable for a bundle. That is why a multi touch gesture is tested for
the conditions in the first way:

1. the gesture has just two touches

2. the center of both touches is not inside a lens

3. no pinching gesture is recognized so far

4. after first movement of both touches, they move into the same direction, with a
variation of less than ±10◦.

If all three conditions are fulfilled the gesture is assigned as a bundling gesture, if one of
the tests fails, the gesture is set as lens interaction gesture. All further gesture events,
which are pinching and moving events, are send directly to the lens.

4.4 Gesture Interaction

4.4.1 Single-touch interaction

Once a touch gesture is started on an object, the gesture is assigned to the object and the
object to the gesture. One gesture can influence multiple objects, while an object can not
be influenced directly by multiple gestures. This is due to avoid an unexpected behavior
of the application for observing people. Edges however can be influenced by different
techniques, which is implicit by multiple gestures, for example using and TouchPlucking
and PushLens at the same time.
When starting a single touch gesture, it looks for available elements in the following

order:

1. PushBundles

2. PushLenses

3. PushPins

4. Nodes

5. Edges

21

Ordering the first three in this way is due to the size of intersection space they provide
in general, going from less to more. Regarding the "fat finger problem" it appears often
that a touch starting on a node intersects with edges as well, otherwise edges usually can
be selected easily outside the node area; that is why nodes are privileged before edges.

4.4.2 TouchBundle gesture interaction

Once the gesture is recognized as a TouchBundle interaction edges crossing the line
between both touches are tested, if they are along the movement direction of both touches,
with a variation of ±30◦, they are added to the bundle. Nodes are tested for intersection
with the line between both touches.
While the end of a bundle section is always set to the current center of the gesture,

positioning the starting point is more difficult and has to be distinct into two cases. As
long as no node has been crossed by the bundle it is set to the center, in the moment the
first edge is added to the bundle and can not be changed until the gesture is completely
finished.
Once one or multiple nodes are crossed by the bundling gesture, the center of all node

positions is calculated. The beginning of the bundle section is set on the line between
the center of both touches and this evaluated point, with a maximum distance to the
center of the nodes of 30 pixels. This value is set to a specific pixel length, which worked
quite well on both devices, because no equation working in all cases was found.

4.4.3 PushLens gestures

A multi touch gesture for the PushLens has to be tested if a new PushLens should be
created or changes are made to an existing one. An existing lens is assigned to this gesture
if the gesture position is located in an existing lens. The lens must not be assigned to
another gesture. If no existing lens is assigned, a new one is created for this gesture.
When a new lens is created the radius and position are set to the analog values for the
gesture.
Changes applied to an exiting edge are not set directly to radius and position of the

gesture, but relative to the last change of the gesture. This is, when the radius of a
gesture is doubled the radius of the lens is doubled as well, according to the radius the
lens hat before.

4.5 Drawing Curved Edges

As the application is focused on edge interaction and all techniques changes the shape of
edges in some way, it is necessary to have a proper basis for drawing shapes. Although
prefuse supports bended curves in by using bezier curves, it does not support multiple
curves.
I worked on two approaches, one supported by subdivision splines and the second by

bezier curves. The bezier curves worked much more sufficient in several cases. This let

22

me drop the subdivision approach, nevertheless I explain both approaches in this section
and name advantages and disadvantages. Starting with subdivision splines, I explain all
algorithms used for drawing edges in the application.

4.5.1 Subdivision splines

The idea of subdivision splines is to subdivide the lines of a curve into shorter lines and
illustrated in figure 4.3. The number of subdivisions can be set variable, which allows a
control of performance in comparison with quality of the visualization.

original curve

1. iteration

2. iteration

4. iteration

3. iteration

Figure 4.3: The idea of a subdivision spline applied to an edge plucked by a touch. The
original curve is shown brightly and the subdivision iterations are drawn
darker. The final curve goes not through the touching finger.

As can be seen in figure 4.3, the original algorithm does not let the line go through the
touching finger, because of the first dividing iteration, which flattens the curve. I solved
this problem, with adding a segment which has the position of the touch, is slightly longer
and parallel to the line between both nodes. Because this segment is just made smaller
but never completely removed ore repositioned, as shown in figure 4.4 the curve of the
edge always goes through the position of the touch.

original curve

1. iteration

2. iteration

4. iteration

3. iteration

Figure 4.4: Improved subdivision curve for TouchPlucking. The curve follows the touch,
achieved by a small line segment at the touch position.

This approach worked quite well, but in several tests subdivision splines showed an-
other problems Calculating the curves with more iteration, to gain better quality, only
a few edges could be plucked otherwise the number of frames per second decreased very
fast. This problem got even worse, when I started to animate the bending of edges for
TouchStrumming.

23

4.5.2 Bezier Curves

When facing the problems in performance using subdivision splines, I figured a native
implemented shape would solve this in a easy way. In Java such a given native shape are
the quadratic and cubic bezier curve. The bezier curve has another advantage. It is a
real bend curve and not approximated as the subdivision spline.
The idea of a bezier curve is based on is a parametric curve, where the cubic curve

is described with two ending points and two control points, as shown in figure 4.5. The
curve starts from the endings always going into the direction of the control points.

P0
P1

P2
P3

P0

P1

P2P3

Figure 4.5: Two bezier curves, illustrating the possibilities of drawing S- and C-shapes.
Endings of the Bezier curve are named P0 and P3; control points are P1 and
P2.

After some testing with bezier curve, the performance showed much better, but some
other problems had to be solved. The original shape class in Java has a strange inter-
section function, which returns true not only, when the intersection is in the curve, but
always if there is an intersection with the convex hull of the control and ending points.
Another problem is the description of the bezier curves, which is based on the two control
points, but not necessarily goes through them. Solving these problems is explained in
the following sections.

Intersection with other elements

Despite to subdivision splines I my application did not calculated the shape for the
parametric for itself, leaving this to Java. For intersection testing I use an approximation
of the bezier curve, calculating points on the curve and testing the lines between those
points for intersection with the other object.

Plucked Edge

Using bezier splines and setting the touch position for the control points, I faced the
same problem as for the original subdivision splines. The spline does not followed the
touch, illustrated in figure 4.6. To correct this error I hat to go into the bezier formula
and calculate the current control points out of it.

24

P1, P2

P3

P0

Figure 4.6: When using the touch position for the control points, the curve of the edge
does not goes through the touch.

The original formula for the cubic bezier curve is

B(t) = (1− t)3 ∗ P0 + (1− t)2t ∗ P1 + (1− t)t2 ∗ P2 + t3 ∗ P3

With P0 and P3 as ending positions, P1 and P2 as control points and B(t) as point on the
curve according to the parameter t, with 0 < t < 1. To solve the given problem I took
this formula and calculated the position for the control points, in a way that the curve
goes through the touch position PT . Setting both control points to the same position,
P1 = P2, and the touch position as the result of the equation, PT = B(t), the formula
can be reorder to:

P1 =
PT − (1− t)3 ∗ P0 − t3 ∗ P3

3 ∗ (t− t2)
To gain a Point for the control point P1 the parameter t has to be set to a specific value.
My first implementation used with t = 0.5 as a static value; and worked quite well. The
result is shown in figure 4.7.

PT

P1, P2

P3

P0

Figure 4.7: Drawing a bended edge using the bezier curve approach. The edge goes
through the touch position after calculating the control points.

Later I developed an equation for t, according to the distance to both endings of the
curve:

t = 0.5 + 0.4(
| ~PTP0|

| ~PTP0|+ | ~PTP3|
)− 0.2

Which calculates the value of t in the borders 0.3 < t < 0.7 and provides a more natural
shape of the curve near to the endings of the curve, as shown in figure 4.8.

25

0.1 < t < 0.9 0.3 < t < 0.7 t = 0.5

Figure 4.8: The bending of a curve, when the plucking touch is near an adjacent node.
Different values for t, showing different shapes of the curve. The best results
where achieved using the example in the middle.

Animation of the strumming

The curve for the strumming are drawn in the same way as for the plucking, only the
control point is not calculated out of the position of a plucking touch, but a point which
position is calculated as a continuous animation.
For the direct and indirect strumming, I took a maximum amplitude a, defined by

the length of the strumming vector ~sv which is calculated as the doubled vector between
PT , the last position of the touch and PP , the point on the straight edge curve, with
proportional distances to the endings of the edge as PT :

PP = P0 + ~P0P3 ∗
| ~PTP0|

| ~PTP0|+ | ~PTP3|
With P0 and P3 are the endings of the edge. The strumming vector is ~sv = 2∗PP −PT

and the amplitude a is a = | ~sv|. This amplitude is minimized linear based on the left time
before the strumming ends, to provide the sense of a real string, where the strumming
decreases over time as well; the duration of the strumming is set depending of the initial
value of the amplitude a.
The actual position of the strumming point PS is computed with:

PS = ~PTPP ∗ ca ∗ cos(step ∗ π ∗ 1.5 ∗ wav)

Where ca is amplitude decreasing over time and step is an over time linear increasing
value in the interval 0 < step < 1. This lead to ca = a ∗ (1− step).

When nodes are strummed the strumming of edges follows a curve itself, going from the
strummed node to the adjacent one. This movement is achieved by adding a movement
along the edge to the movement of PS explained above; in this case the amplitude is
not decreased. The strumming does not moves in the direction of the vector from PT to
the node, but orthogonal to the edge. With PSN as the source node, which had been
strummed and PTN as target node, the strumming moves along the vector ~eo⊥ ~PSNPTN .
PS is calculated by:

PS = (PSN + ~PSNPTN ∗ step) + ~eo ∗ a ∗ cos(step ∗ π ∗ 1.5 ∗ wav)

26

The curve the strumming point PS describes a cosines function along the edge, where the
edge is the abscissa. wav defines the number of wave it describes and a the amplitude,
which is the greatest distant to the edge.

Intersection and interaction with a PushLens

Once an EdgeLens is created I start the intersection control for edges. First I use the
general java shape function and if there is an intersection, I test if any node of the edge
is in the lens or maybe the touch or pin, bending the edge currently. Because I can not
directly test for intersection of the bezier curve with the circular shape of the EdgeLens
I first approximate the cubic curve again and test the single points for being inside the
shape of the lens, if at least one point is inside and one outside, I assign the lens to the
edge. The idea of drawing an edge around a lens is shown in figure 4.9, where important
points are named. The algorithmic approach is explained int the following paragraph.

P3a P3bP2b

P1bP0,PTP1a

P2a

Figure 4.9: The bending of an edge evoked by a PushLens and using bezier. P3a, P3b and
P0, PT are endings of the bezier curves. The control points are named P1a,
P2a, P1b, P2b.

When a lens intersects with an edge, even if this edge is bend or not, I calculate the
two intersection point, named P2a and P2b, with a slightly addition to the radius of the
lens. Between P2a and P2b, the edge is not drawn with the original shape, but with two
bezier splines, which approximate the shape of the lens. Both splines are drawn out of
four points. The first control points for each spline, named P3a and P3b, are located on
the line defined by P2a and P2b but going further away from the lens, one to each side.
The next point for a spline is computed from a vector ~a which is orthogonal to ~P2aP2b.
As the circle of the edge lens is divided into two segments of different size by P2aP2b, ~a
points away from the P2aP2g in the same direction as the smaller segment of the circle.
The length of ~a is defined by the height of the smaller segment with addition of a smaller
value, so the edge does not touches the lens directly. Further points for the splines named
P1a, P1b and P0 are calculated out of the given points and ~a:

P1a = ~a+ P2a

P1b = ~a+ P2b

27

P0 =
P1a + P1b

2

With these points computed, the bezier splines can be drawn using the point P0, P1a, P2a, P3a

and P0, P1b, P2b, P3b as shown in figure 4.9.

Computing the curve of an TouchBundle

The bundle itself is first drawn as straight line going from one bundle end to the other.
For the calculation of edge drawing these bundle ends are named P0a and P0b. From
these bundle endings every edge is drawn as a bezier spline to the connected node.
The spline from the bundle end to the nodes starts either in P0a or P0b, for the calcu-

lation is the same on each side we take P0 as one end of the spline. The second ending
is the position of the node and named P3. Control point P2 is the middle of P0 and P3:
P2 =

P0+P3
2 .

For calculation of the second control point we need a vector ~ab from one bundle end
to the other, ~ab = ~P0aP0b. This vector is shortened and added to the bundle ends for
computing the control points P1.

P1a = P0a − ~ab

and
P1b = P0b + ~ab

The control points are outside the bundle itself, but on the same line. This way the
edge seems as going out of the bundle line. The curve of one edge from a bundle to a
node is illustrated in figure 4.10. Drawing from the other end of the bundle to the other
nodes works the same.

P2

P1

P0

P3

Figure 4.10: Showing the bezier curve for a single edge from the end of a bundle (P0) to
the node.

As TouchBundles as well are enabled for plucking, although I had to change the way
of illustration. When an edge is plucked it ends into two nodes and it does not matter
in which slope the curve goes into the nodes. The curve of a plucked bundling ends in
P0a and P0b and has to have the same slope at this points as the original straight line.
Otherwise the visual curve of the edges would break at this point.
To solve this problem I used a similar approach as for the curves of an edge affected

by an EdgeLens. The curve of a plucked bundle consists of two separate curve, where
the position of the touch is one end both splines. On control point P2 calculated

28

P2a = PT − ~ab ∗ 0.2

for the one curve and

P2b = PT − ~ab ∗ 0.2

for the other. Where PT is the position of the touch plucking the bundle and on the
same position as P3. ~ab is the vector from P0a to P0b as explained before. The third
point is calculated by

P1a = P0a + ~ab ∗ 0.2

for the first and

P1b = P0b − ~ab ∗ 0.2

for the second curve. The fourth point is either P0a or P0b. This calculation is illus-
trated in figure 4.11

P3,PT

P1bP1a P0b

P2bP2a

P0a

Figure 4.11: The plucking of bundle, using two bezier splines. P0a and P0b are the endings
of the bundle.

29

5 Conclusion and Future Work

5.1 Conclusion

The presented work provides a set of new multi-touch interactions on node-link diagrams
exploration and analysis. Not all techniques are completely new, but transferred from
common desktop interfaces with single-point devices to multi-touch interactions. None
of the known techniques has been simultaneously used with another.
This concurrent usage of techniques gives greater power to the techniques themselves.

This shows the advantages of multi-touch devices, where people are able to perform
different gesture for different techniques at the same time; usage of different techniques
at the same time, is hardly imaginable on todays mouse based single point systems.
All techniques are focused on edge manipulation, which has been slightly ignored in

research so far. However the application shows the capabilities for edge manipulation,
which is located especially in strong interconnected graphs; an upcoming field, regarding
the increasing number of social and communication networks.
Still, the application shows that node interaction can not be ignored and even regarding

edge only interaction, interaction with nodes is often a basis for these technique, compare
the single-edge selection techniques 3.2.1.
The used gestures are simple and easy to remember, which shortens the training period

and allows a fast and intuitive interaction. However this approach has its limitations,
when including gestures and techniques in other applications, where a gesture might be
used for different interaction purposes.
Some of the proposed interaction techniques might not only be applicable to the domain

of graph interaction, but in other domains as well. Lenses are used in a wide variety of vi-
sualizations, as well as distortion oriented techniques, where the used interaction gestures
can be used in similar ways. A completely new approach is the TouchStrumming tech-
nique, using a touch gesture performing a natural behavior of elements. This technique
could possibly applied to a huge number of other domains, text editor where strumming
a word highlights all similar words as well, a feature often useful when writing longer
texts.

5.2 Future work

There exists several approaches for future development of the given work. Adding further
techniques for editing the graph structure in adding and deleting nodes and edges; for
this approach the complete gesture set has to be reconsidered and adapted. For there
is already an evaluation of gesture requested by users [7], this approach seems suitable,

30

even when using a change in mode is necessary.
Node interaction has been researched quite well, but this neither applies to node in-

teraction techniques on touch enabled devices nor the combination of node and edge
interaction in simultaneous interaction. I think, especially the second, is underdeveloped
because of limitations in given user interfaces and should be further looked at, when
developing new techniques.
The provided PushLens is just a small example of lenses for graph exploration, where a

wide variety exists [27]. Where this work shows the advantages of usage in multiple lenses
of one kind at the same time, this is a field where further advantages can be imagined.
Usage of lenses in augmented reality [25, 24] for graph exploration is a further field of
development.
Although there has been some positive feedback for the presented application, there

was no scientific evaluation which approves the benefits of the given techniques and
gestures.

31

Bibliography

[1] Anand Agarawala and Ravin Balakrishnan. Keepin’ it real: pushing the desktop
metaphor with physics, piles and the pen. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 1283–1292. ACM, New
York, NY, USA, 2006. ISBN 1-59593-372-7.

[2] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1998. ISBN 0133016153.

[3] W. Buxton. Multi-touch systems that i have known and loved.
http://www.billbuxton.com/multitouchOverview.html (17. July 2010). URL
http://www.billbuxton.com/multitouchOverview.html.

[4] W. Buxton and B. Myers. A study in two-handed input. In CHI ’86: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 321–326.
ACM, New York, NY, USA, 1986. ISBN 0-89791-180-6.

[5] Josep Díaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, 2002. ISSN 0360-0300.

[6] Peter Eades and Roberto Tamassia. Algorithms for drawing graphs: An annotated
bibliography. Technical report, Brown University, Providence, RI, USA, 1988.

[7] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. Investigating multi-touch
and pen gestures for diagram editing on interactive surfaces. In ITS ’09: Proceedings
of the ACM International Conference on Interactive Tabletops and Surfaces, pages
149–156. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-733-2.

[8] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. Diagram editing on inter-
active displays using multi-touch and pen gestures. In Proc. Diagrams ’10. Diagrams
’10, 2010.

[9] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991. ISSN 0038-0644.

[10] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 16–23. ACM, New York,
NY, USA, 1986. ISBN 0-89791-180-6.

[11] Kurtenbach G. and Hulteen E.A. Gestures in human-computer communication. The
Art of Human-Computer Interface Design, pages 309–317, 1990.

32

[12] GraphML Working Group. The graphml file format.
http://graphml.graphdrawing.org/ (14 July 2010). URL http://graphml.
graphdrawing.org/.

[13] Nui group. Community core vision. http://ccv.nuigroup.com/ (14 July 2010).

[14] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive
information visualization. In CHI ’05: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 421–430. ACM, New York, NY, USA,
2005. ISBN 1-58113-998-5.

[15] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 12:
741–748, 2006. ISSN 1077-2626.

[16] Martin Kaltenbrunner. reactivision and tuio: a tangible tabletop toolkit. In ITS
’09: Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, pages 9–16. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-733-2.

[17] Martin Kaltenbrunner and Ross Bencina. reactivision: a computer-vision framework
for table-based tangible interaction. In TEI ’07: Proceedings of the 1st international
conference on Tangible and embedded interaction, pages 69–74. ACM, New York,
NY, USA, 2007. ISBN 978-1-59593-619-6.

[18] UC Berkeley Visualization Lab. The flare visualization toolkit.
http://flare.prefuse.org/ (14 July 2010).

[19] Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel Fekete, and
Nathalie Henry. Task taxonomy for graph visualization. In BELIV ’06: Proceedings
of the 2006 AVI workshop on BEyond time and errors, pages 1–5. ACM, New York,
NY, USA, 2006. ISBN 1-59593-562-2.

[20] Tomer Moscovich. Multi-touch interaction. In CHI ’06: CHI ’06 extended abstracts
on Human factors in computing systems, pages 1775–1778. ACM, New York, NY,
USA, 2006. ISBN 1-59593-298-4.

[21] Tomer Moscovich and John F. Hughes. Multi-finger cursor techniques. In GI ’06:
Proceedings of Graphics Interface 2006, pages 1–7. Canadian Information Processing
Society, Toronto, Ont., Canada, Canada, 2006. ISBN 1-56881-308-2.

[22] Tomer Moscovich and John F. Hughes. Indirect mappings of multi-touch input using
one and two hands. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, pages 1275–1284. ACM, New
York, NY, USA, 2008. ISBN 978-1-60558-011-1.

[23] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. Technical
report, Brown University, Providence, RI, USA, 1991.

33

[24] Martin Spindler and Raimund Dachselt. Exploring information spaces by using
tangible magic lenses in a tabletop environment. In CHI EA ’10: Proceedings of
the 28th of the international conference extended abstracts on Human factors in
computing systems, pages 4771–4776. ACM, New York, NY, USA, 2010. ISBN 978-
1-60558-930-5.

[25] Martin Spindler, Sophie Stellmach, and Raimund Dachselt. Paperlens: advanced
magic lens interaction above the tabletop. In ITS ’09: Proceedings of the ACM
International Conference on Interactive Tabletops and Surfaces, pages 69–76. ACM,
New York, NY, USA, 2009. ISBN 978-1-60558-733-2.

[26] Philipp Steurer and Mani B. Srivastava. System design of smart table. In PERCOM
’03: Proceedings of the First IEEE International Conference on Pervasive Com-
puting and Communications, page 473. IEEE Computer Society, Washington, DC,
USA, 2003. ISBN 0-7695-1893-1.

[27] Christian Tominski, James Abello, Frank van Ham, and Heidrun Schumann. Fisheye
tree views and lenses for graph visualization. In IV ’06: Proceedings of the conference
on Information Visualization, pages 17–24. IEEE Computer Society, Washington,
DC, USA, 2006. ISBN 0-7695-2602-0.

[28] Josh Wall. Demo i microsoft surface and the single view platform. In CTS ’09:
Proceedings of the 2009 International Symposium on Collaborative Technologies and
Systems, pages xxxi–xxxii. IEEE Computer Society, Washington, DC, USA, 2009.
ISBN 978-1-4244-4584-4.

[29] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. User-defined
gestures for surface computing. In CHI ’09: Proceedings of the 27th international
conference on Human factors in computing systems, pages 1083–1092. ACM, New
York, NY, USA, 2009. ISBN 978-1-60558-246-7.

[30] Nelson Wong and Sheelagh Carpendale. Supporting interactive graph exploration
using edge plucking. In Proceedings of IS&T/SPIE 19th Annual Symposium on
Electronic Imaging: Visualization and Data Analysis. SPIE and IS&T, Bellingham,
WA and Kilworth Lane, VA, USA, 2007.

[31] Nelson Wong, Sheelagh Carpendale, and Saul Greenberg. Edgelens: An interactive
method for managing edge congestion in graphs. Information Visualization, IEEE
Symposium on, 0:7, 2003. ISBN 0-7695-2055-3.

34

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Studienarbeit in allen Teilen selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.
Alle wörtlich oder sinngemäß übernommenen Textstellen habe ich als solche kenntlich
gemacht.

Magdeburg, den 19.7.2010

Sebastian Schmidt

