Modeling with Rendering Primitives:
An Interactive Non-Photorealistic Canvas

Martin Schwarz* Tobias Isenberg*

Katherine Mason*

Sheelagh Carpendale™

Department of Computer Science, University of Calgary

Abstract

Non-photorealistic rendering has placed much emphasis on devel-
oping algorithms that determine the appearance of renditions. To
successfully deploy NPR rendering systems using these algorithms,
however, one has to consider how artists, illustrators, or lay peo-
ple can influence the created renditions. Many systems require a
cyclical process of parameter tweaking, rendering, and validation
before one is satisfied with the final rendition. We present an in-
teractive NPR canvas in which a user can construct a rendition with
pre-rendered primitives and modify these primitives using tools that
provide spatially explicit computational assistance. We call this ap-
proach modeling with rendering primitives. Our technique has the
advantage of algorithmic support for creating NPR renditions but
requires neither global parameter adjustments and re-rendering cy-
cles nor attribute changes on individually selected primitives. We
demonstrate the applicability of this interaction technique for the
creation of painterly rendering, pointillism, and decorative mosaics.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; [.3.m [Computer Graphics]:
Miscellaneous—Non-Photorealistic Rendering

Keywords: Interaction techniques, non-photorealistic rendering,
modeling with rendering primitives, stroke-based rendering.

1 Introduction

As the field of computer graphics matures, the methods to create
rich and subtle digital visuals continue to become more sophisti-
cated. These results range from increasingly realistic to a variety
of more expressive and abstract styles. Underlying this range of
results are two basic types of representations: vector-based or pixel-
based. A vector-based representation fairly readily affords subse-
quent adjustment but is somewhat limited in its ability to represent
visual richness due to its algorithmic character. A pixel-based rep-

*e-mail: {maschwar | isenberg | katherim | sheelagh} @cpsc.ucalgary.ca

resentation, in contrast, can be adjusted on a large scale (e. g., glob-
ally using image filters) or on a very small scale (i.e., per one or
a few pixels). Making changes to aspects of the pixel image in be-
tween these two extremes, however, is much more challenging and
raises many issues, including the selection of appropriate aspects
or regions that will make the desired change possible. Still, pixel
images afford a richness of visuals which makes them a desirable
choice. It is the problem of providing interactive freedom while
retaining as much visual richness as possible that we address.

While one could argue that any amount of richness is available if
one is prepared to place and color individual pixels, realistically
this interaction needs to happen on a more meaningful level. One
example is the use of common artistic primitives, such as brush
strokes, that represent elements of the depicted scene (e. g., leaves
of a tree or waves on water). This visual richness is apparent in
non-photorealistic rendering [Gooch and Gooch 2001; Strothotte
and Schlechtweg 2002], where many techniques simulate tradi-
tional media, artistic techniques, and illustrative styles, producing
astounding results. NPR research, however, tends to focus on the
algorithms needed to achieve a chosen style. Algorithms are com-
monly presented as a ‘black box’ to users of a system, allowing
interaction only through parameters, after which the rendering pro-
duces a result. This common lack of interactive intervention during
the rendering process may be part of the reason why NPR methods
have had only limited adoption within the artistic community. “In
my experience with non-photorealistic rendering, I am often frus-
trated by my inability to stop, reach into and tweak an automatic
process. To make painterly rendering techniques more useful for
production-quality work, we need to develop algorithms and inter-
faces that get the artist in the loop” [Seims 1999].

In this work, we focus on the interaction rather than developing sim-
ulations of traditional techniques. We contribute a new approach
for interactive image creation in which an image is constructed with
pre-rendered primitives through an interactive process that provides
spatially explicit computational assistance. We think of this pro-
cess of image construction as modeling with rendering primitives.
We demonstrate our approach using an interactive environment for
working with non-photorealistic rendering styles, such as painterly
rendering, pointillism, and decorative mosaics. The primitives can
be modified after having been created instead of being permanently
placed and parameterized.

We offer a range of methods that support interaction during the ren-
dering process enabling a wide variety of ways to create images.
Figure 1 shows an example, illustrating a possible use of our system.


http://www.martinschwarz.info.ms/
http://cpsc.ucalgary.ca/~isenberg/
http://cpsc.ucalgary.ca/~sheelagh/
http://cpsc.ucalgary.ca/
http://www.ucalgary.ca/
mailto:maschwar@cpsc.ucalgary.ca
mailto:isenberg@cpsc.ucalgary.ca
mailto:katherim@cpsc.ucalgary.ca
mailto:sheelagh@cpsc.ucalgary.ca
mailto:isenberg@cpsc.ucalgary.ca

(b) Background layer.

(d) Foreground layers added.

Figure 1: Walking through the creation of an example image.

First, we start by creating the background. In order to start from a
meaningful color distribution we load a source image to be used
as a basis (Figure 1(a)). Next, we interactively fill this first (back-
ground) layer with strokes. The created strokes are relatively large
and give the general color impression as well as direction of paint-
ing (Figure 1(b)). Then to provide more detail, smaller strokes are
added, again using the source image to determine the color distri-
bution. These strokes are interactively adjusted and manipulated to
achieve the desired effect. For example, the strokes in the sky were
given a more unified direction, the water another, and the spray was
portrayed using radial orientations in several places to express its
dynamic character (Figure 1(c)). Thus, in Figure 1(c)) we have a
reasonable image; however, the rising sun does not seems to have

the right visual impact. Since all strokes are still active, further ad-
justments to quantity, size, color, and orientation can be done until
the desired result is achieved (Figure 1(d)).

This walk-through illustrates our contributions: all strokes remain
interactive no matter what their characteristics or when they were
applied, any parameters can be adjusted interactively with imme-
diate visual response, and the visuals are rich rasterized textures
throughout the interaction. In addition, we can use a variety of
visual primitives (as many different types as desired) and new prim-
itives can continually be added or erased as individual primitives
or groups of primitives. That is, the work done on the image, while
being continually visually rich, does not become permanent; all can
still be interactively manipulated no matter how many primitives of
however many styles for whatever length of time.

The remainder of the paper is organized as follows. In Section 2
we review previous work in the areas of digital painting, NPR tech-
niques, and interaction with NPR. We then develop our concept for
supporting modeling with rendering primitives in Section 3. Based
on this concept, Section 4 introduces our system details and its im-
plementation aspects. In Section 5 we discuss artists’ reactions and
show example results. Finally, in Section 6 we conclude the paper.

2 Related Work

We start by contextualizing this research within recent digital paint-
ing systems and NPR techniques such as stroke-based rendering,
and then discuss closely related NPR interaction techniques such
as stylistic painting, interaction with strokes, and control of spatial
data structures.

Digital painting systems: These are very heavily employed today
in the creation of digital art. There are two major categories of sys-
tems: pixel-based (e. g., Adobe PhotoShop and Gimp) and vector-
based (e. g., Adobe Illustrator and Inkscape). Pixel-based systems
allow users to draw one stroke at a time using a variety of tools and
each stroke is rasterized and embedded in the canvas. In the sec-
ond category, users can also draw stokes but these are stored in a
parametrized (vector) form that is rasterized on-demand for display.
With respect to the representation of primitives, our approach can
be thought of as a hybrid of these two approaches. We take advan-
tage of the visual richness provided by pixel-based systems, but also
maintain all our rasterized primitives just as actively adjustable as
in vector approaches. Thus, we provide good visuals while working
and continued freedom for subsequent changes.

Stroke-based rendering: Our work makes use of higher-level
primitives as developed in NPR research. Such primitives include
brush strokes as in painterly rendering [Meier 1996; Hertzmann
1998; Park and Yoon 2004], pointillism [ Yang and Yang 2006], mo-
saic tiles [Hausner 2001; Elber and Wolberg 2003; Di Blasi and
Gallo 2005], and stipple points [Deussen et al. 2000; Secord 2002;
Schlechtweg et al. 2005]. Together these are commonly referred
to as stroke-based rendering [Hertzmann 2003] and most simulate
traditional techniques of artistic expression or illustrative depiction.
In addition, the boundaries of such traditional depiction have been
pushed by, e. g., dynamic primitives such as graftals [Smith 1984;
Kowalski et al. 1999; Markosian et al. 2000] which can algorithmi-
cally generate geometry in the rendering process depending on the
current view and other parameters.

Triggering algorithmic response: Hertzmann and Perlin [2000]
describe interaction with a NPR painting by affecting the video
stream that is used as input. The automatic NPR process then
paints over only those parts that have changed. Interaction on an
even more global level is possible by soliciting user input for rat-
ing a number of suggestions that a genetic algorithm has produced


http://www.adobe.com/products/photoshop/
http://www.gimp.org/
http://www.adobe.com/products/illustrator/
http://www.inkscape.org/

[Grundland et al. 2005; Collomosse 2006]. However, in these ap-
proaches the interaction is separate from the rendering process and,
thus, lacks the immediate visual feedback we provide.

Interactive stroke placement: Other examples that focus on in-
teractivity include systems that model the artistic painting process
by interactively applying strokes. For example, Curtis et al. [1997]
employ physical simulations to replicate the effects of watercolor
painting, which can then be used interactively to composite paint-
ings. Baxter et al. introduce an interactive painting system with
haptic feedback and a deformable 3D brush model [2001] as well
as a physically-based interactive model for paint [2004] that both
aim at creating a painting experience that comes close to the actual
painting process. In contrast to such methods that closely simu-
late real paint, Ryokai et al.’s I/O Brush [2004] captures real world
textures for use as strokes in digital painting. Other approaches con-
centrate on realizing three-dimensional painting techniques [Keefe
etal. 2001; Schkolne et al. 2001]. Our work is inspired by the imme-
diate visual feedback that all these approaches provide. In contrast
to such stylistic painting systems, however, we provide interaction
beyond the stroke placement: our primitives do not become perma-
nent and can be manipulated even after they have been placed.

Interaction with strokes: Some systems allow users to interact
with image elements after their placement. For instance, Salisbury
et al. [1994] provide interaction with strokes, allowing users to
adjust the number of strokes to be used and to change their wavi-
ness. Deussen et al. [2000] use brushes to interactively reposition
or resize stipples as well as create new ones or delete them. The
WYSIWYG-NPR system [Kalnins et al. 2002] allows changing the
rendering style by painting example strokes, which are then used as
templates for algorithmically stylizing other strokes. Negotiating
Gestalt [Mason et al. 2005] uses a multi-agent system to model the
image creation process as coalition forming, allowing users to take
direct control of agents or coalitions during the process. All these
systems step away from the typical ‘black box’ rendering approach
and their use of specialized tools to interact with image elements
has informed our own work. However, most are still limited in the
way they require selecting the elements with which to interact or
allow interaction only indirectly through agents.

Control through spatial data structures: Most closely related to
our work in terms of stroke control are Haeberli’s Paint by Num-
bers [1990], Salisbury et al.’s orientable textures [1997], Olsen et
al.’s [2005] interactive vector-fields, and the RenderBots system
[Schlechtweg et al. 2005]. Paint by Numbers uses a source im-
age and a canvas. One can brush the source image, resulting in
a stroke placed on the canvas using the location and color collected
from the source image. While this provides considerable creative
freedom, once the strokes have been placed, they have become part
of the image and are no longer accessible individually to change
their properties. In a related approach, Salisbury et al. [1997] al-
low users to paint the orientation of hatching strokes onto a 2D
image as well as to locally edit the tone. Based on these two values,
strokes from a stroke textures are oriented and drawn. While pro-
ducing print-quality results, the system is restricted to hatching and
the two types of input. Also, Salisbury et al. separate between an
interactive phase to specify the tone and orientation maps and the
non-interactive rendering phase so that users cannot immediately
see the results of their interactions. Olsen et al. [2005] use inter-
action with a separate vector-field in a similar way to control the
placement of painterly brush strokes. Finally, RenderBots combine
a multi-agent system with NPR rendering. Here, a user can brush
autonomous agents onto the canvas, which then read values from
a stack of G-buffers and change their behavior depending on these
values. Even though this technique opens new avenues for render-
ing, it is restricted in that it only uses pre-rendered buffers for in-
fluencing the agents’ actions and interaction through agents is still

indirect. However, we draw from these ideas of spatial control: the
source image in [Haeberli 1990] and the orientation maps in [Salis-
bury et al. 1997; Olsen et al. 2005] can be seen as buffers that store
information about the rendering process. By making these buffers
interactively adjustable at any stage we increase the control over
the rendering process and add new possibilities for the interactive
creation of non-photorealistic renditions.

3 Modeling with Rendering Primitives

We focus on the specific problem of providing interactive tech-
niques to create, adjust and manipulate NPR renditions. Effective
interaction techniques should ideally allow the artist to use their
personal taste and requirements to influence a particular rendition.
Also, it is essential to provide intuitive interactivity continual adjust-
ments, immediate visual feedback, and temporal coherence. Provid-
ing these aspects is challenging in many NPR systems due to the
nature of their rendering process, which can be roughly described
as follows. First, a model is constructed or chosen. Models may
include 3D geometry (e. g., CSG or 3D mesh representations), vol-
umetric data, or digital 2D images. Then, a rendering method is
chosen, usually also requiring the specification of a multitude of
parameters that affect the final rendition. Both of these first steps
are frequently interactive. However, after these choices are made,
the rendering process is started and typically proceeds without in-
terruption and as a consequence without interaction. The resulting
rendition can be modified in a post-processing step.! If the results
were not fully satisfying, it is possible to adjust the model and/or
the chosen parameterization and to restart the rendering.

In general, interactive influence on the outcome of the rendering
is only possible during modeling and parameterization. The algo-
rithmic processing itself has been defined by a programmer and
usually cannot be interrupted or changed while the model is being
rendered. While some systems support interactive creation of im-
ages in which users can interactively apply brush strokes, adjust-
ment is usually not possible once strokes have been set down. This
restriction of artistic input does not support our goal of continual
adjustments, immediate visual feedback, and temporal coherence
of interaction and rendering. By turning the complete rendering
process, as described above, into an interactive process with imme-
diate feedback, the user can choose to interrupt the rendering at
any point, choose new rendering styles, tweak brush strokes to in-
fluence the artistic impact, find brush stroke arrangements where
algorithmic approaches are unsuccessful, or experiment with how
rendering primitives are placed. This provides creative freedom at
all stages of the image production process is a worthwhile goal.

In order to achieve this goal we introduce the concept of modeling
with rendering primitives. A rendering primitive is defined as any
small part from which images can be created, including different
types of brush strokes such as lines, points, dabs, dots, mosaic tiles,
etc. In its simplest computational form, a rendering primitive can
be a pixel—a single cell in a rasterized digital image. In our inter-
active NPR canvas we use three types of rendering primitives: a set
of brush strokes as can be found in current paint systems, tiles to
construct decorative mosaics, and pointillist paint blobs. Modeling
with these primitives is supported in that one can continuously, cre-
ate, take apart, re-assemble and adjust, essentially building one’s
image out of a variety of rendering primitives.

Once different rendering primitives have been assigned to a spatial
location on a rendering surface, they form the model to be rendered.

'While some NPR techniques (e. g., those that use images as input) can
be seen as post-processing techniques, they can also be considered to follow
the above process: starting with an image as the model, they perform a
rendering process using this model to produce another image.



At this point our approach deviates from the standard iterative ren-
dering process in that it offers interactive support beyond global
parameter changes or localized interaction on pre-selected primi-
tives. We use mobile tools that have localized effects on the NPR
canvas to control the properties of rendering primitives in their re-
gions of influence. The type and spatial location of this algorithmic
support can be interactively changed throughout the rendering pro-
cess. This means that we can model with rendering primitives by
building and adjusting the model as the work progresses. Since
the primitives are fully rendered, the image takes form through the
interaction with them. This concurrent modeling and rendering is
essential: the model is created and constantly updated as rendering
primitives are generated, manipulated, and removed.

4 An Interactive NPR Canvas

To enable modeling with rendering primitives, our system requires:
(1) a mechanism that can efficiently support simultaneous manipu-
lation of many primitives, (2) tools to assign meaningful parame-
ters and useful interactions, (3) an interface to coordinate the tools,
and (4) efficient rendering techniques to maintain interactive frame
rates, which we will address in the following.

4.1 Affecting Primitive Properties

Affecting properties of a large number of primitives while main-
taining responsiveness of the system presents a challenge. As was
alluded to above and as is a common solution to graphic problems,
we use a stack of two-dimensional interactive buffers (i-buffers, as
opposed to static G-buffers) as the basic structure of our system to
address this issue. Each i-buffer holds information for the render-
ing such as color, orientation, shape, or movement. The informa-
tion is placed into the i-buffers interactively through tools which
locate the data spatially within the i-buffer. Therefore, a primitive
can determine how to render itself by looking up the data stored
in the i-buffers. This way it is possible to manipulate the proper-
ties of entire regions of primitives without having to select any of
them individually. I-buffers are maintained as a separate spatial data
structure that is easy to manipulate and fast to query. The respective
buffers are matrices of scalar values (e. g., for the size) or vectors
(e. g., for orientation and color), depending on the dimension of the
represented properties. An additional benefit of using this buffer
approach is that it incorporates improvements in interaction respon-
siveness [Isenberg et al. 2006].

In practice, there are two main categories of i-buffers that we main-
tain: persistent buffers and instantaneous buffers. Persistent buffers
represent actual property values such as color, size, orientation, and
shape. They exist for the entire run-time of the system and are
constantly updated in response to user interaction. Instantaneous
buffers, on the other hand, represent changes to properties that can-
not be maintained in persistent buffers. Such properties include
position and existence, since a primitive needs to exist at a position
in order to be able to query a buffer. Information in instantaneous
buffers, therefore, exists for one rendering step only and the buffer
is reset afterwards. For example, we may want to move primitives
in a region by a certain distance using a motion tool. A vector repre-
senting this motion could be rendered into a movement buffer and
primitives use that data to offset their position. It is, however, reset
after this frame’s animation has been completed so that primitives
do not keep moving even after the use of the motion tool is finished.

We support layering of strokes, inspired by the method artists em-
ploy to build their scenes from background to foreground. As
shown in the example in Figure 1, this allows us to isolate regions
on the canvas and to enable working with them independently. Lay-
ering requires that several stacks of buffers are used to control the

different layers of primitives. As we need only one active buffer
stack, we store the remaining inactive buffer stacks on the hard
drive, saving memory. This means that primitives in inactive lay-
ers can no longer read their properties from a buffer stack. This is
not necessary, however, since as long as they are inactive they are
not changing their properties. Thus, inactive primitives can just use
the properties from when they were last active and do not need to
query any data until they become active again.

4.2 Tools

Tools are the means by which the i-buffers are manipulated. This
manipulation, in turn, changes the behavior of the rendered primi-
tives. Similar to digital painting applications, they are inspired by
the brush-and-canvas metaphor from real painting. In contrast to
previous approaches, however, our tools manipulate primitives in-
directly by ‘painting’ into the above mentioned i-buffer stack. Our
system provides tools (and, therefore, buffers) to manipulate the
color, size, orientation, and shape (e. g., of pointillism dots) of ren-
dering primitives as well as to create, move, and delete them. To
make changes a tool renders new values into the respective i-buffer
according to the area it covers on the canvas. A gradual change
from the previous values on the perimeter of the tool’s influence
range is achieved using attenuation.

(a) Original color. (b) Small change. (c) Drastic change.

Figure 2: Affecting the color of primitives.

Color tool: Depending on its attenuation, the color tool mixes the
new color with the previous color values read from the color buffer
(Figure 2). The 3D color vector is represented using the painterly
Red-Yellow-Blue (RYB) model [Gossett and Chen 2004] instead of
the more common RGB model. RYB was chosen because it allows
color mixing that is inspired by what is expected from mixing pig-
ment colors. Primitives reading the RYB color from the buffer then
convert it to RGB for rendering.

(a) Strokes smaller. (b) Strokes larger.

Figure 3: Resizing elements.

Size tool: Similar to color, this tool changes the size of objects by
reducing or increasing the local size-buffer values (Figure 3).

Orientation and motion tools: These tools both have effects either
independent from or dependent on the tool’s motion while being
used (Figures 4 and 5). The orientation tool lines up primitives to
follow its motion path (Figure 4(a)) or imposes motion-independent
orientations (Figures 4(b) to 4(d)). Likewise, the motion tool forces



(a) Following the tool. (b) Radially.

(c) Circumpolar. (d) Randomly.

Figure 4: Changing primitive orientations interactively.

(a) Following the tool.

(b) Attraction.

(c) Repulsion.

Figure 5: Circular motion tool affects the position of primitives.

primitives to follow the movement of the tool (Figure 5(a)) or exerts
an attraction (Figure 5(b)) or repulsion (Figure 5(c)) force on prim-
itives with respect to the tool’s current position. Both are realized
by rendering 2D vector fields into the respective i-buffers.

Eraser tool: This tool slowly erases objects (Figure 6), support-
ing a slow thinning-out of regions on the canvas. For this purpose
it renders attenuated probabilities for objects to delete themselves
into the erase-buffer (curve in Figure 6(d)). Each primitive in turn
computes a random number in [0, 1] and compares it with the read
erasing probability to determine if it should delete itself (spikes in
Figure 6(d), the red ones pass the test and the corresponding objects

(d) Attenuated erasing with probabilities (curve) which are compared with
random numbers (spikes) computed by the objects (one row within the
erasing buffer shown; red spikes represent objects to be erased).

Figure 6: Gradual, attenuated erasing of elements.

are deleted). This way we can specify a parameterizable deletion of
primitives as well as a gradual change of the probability across the
surface covered by the erasing tool.

New strokes tool: This tool differs from others in that it does
not use i-buffers. Instead, it creates new primitives randomly dis-
tributed within its range, selected from a series of primitive types,
as densely or sparsely as specified by the user.

4.3 Interface Elements

In addition to the tools described above, our interface consists of
two more elements: (a) a canvas, where primitives are placed and
which holds the property buffers and (b) a palette to control the
tools, to specify what primitive properties to manipulate and with
what parameters. The communication between these is realized us-
ing a parameter-buffer (Figure 7) that maintains system state and

T OZ2ZOZOOOOO0 7
Parameter Buffer

’ Palette <> 4
Tool

v I I Canvas

E—————] Property Buffer Stack

Figure 7: Communication between interface elements.

tool settings data. Using a parameter buffer instead of direct com-
munication has the advantage that both tool and palette can be
treated as special primitives that also use buffer access to do their
communication. As the number of values needed for communica-
tion does not depend on the canvas size, the parameter buffer is the
only buffer that has a fixed size, usually much smaller than the rest
of the buffers. Primitives also read from the parameter buffer to
know about the current layering state, causing them to either read
from the regular buffer stack or to use their stored property values.

The palette as the control center (Figure 8) provides means for tool
selection and parameter specification (including tool size), commu-
nicating with the tools via the parameter buffer. The palette also
affords color mixing (Figure 8(a)). This process is initiated by drag-
ging color blobs from the perimeter to the inside (inspired by [Meier
et al. 2004]). Dropping one color onto a color blob already in the
mixing area causes them to mix and a bar with color gradients from

o]

(a) Color mixing. (b) Pie menu. (c) Slider.

Figure 8: Palette as a central control.



Figure 9: Wider strokes create an abstraction effect.

the original color to the mixed one is shown. Colors can now be
chosen from any point on the color blobs or gradients. The other
interface elements on the palette are represented by buttons, pie
menus (Figure 8(b); [Hopkins 1991]), and sliders (Figure 8(c)) to
enable click-less operation using only touch and move interactions.

4.4 Efficient Rendering and Performance

To maintain the system’s responsiveness, it is essential to render
efficiently. For our system this not only includes the rendering of
the primitives to the screen but also the rendering of values to the
property buffer stack. The former is realized through OPENGL, rep-
resenting the NPR strokes as semi-transparent textures, and pointil-
lism dots and decorative mosaics tiles as simple shapes. While it
would be possible to maintain the i-buffers in graphics memory
(to take advantage of hardware-accelerated rendering for this task),
the necessary read-backs from graphics memory for primitives to
look up i-buffers data would be expensive. Thus, we maintain the
i-buffers in main memory and use pre-computed stencils of tool val-
ues to facilitate fast i-buffer updates.

In practice, our system is able to manage a large number of prim-
itives simultaneously as well as allow interaction with them while
maintaining interactive rendering rates. We tested it both in a tra-
ditional desktop setting (1,400 x 1,050 pixels; 1.47 mega pixels) as
well as on a large (146 cm x 110 cm), high-resolution (2,800 x 2,100
pixels; 5.88 mega pixels) tabletop display that affords direct touch
input for interacting with the system. Both settings were driven
by the same 3 GHz dual core machine with 2 GB RAM and two
512MB nVIDIA GeForce 7900 GTX. Frame rates ranged from
177 fps (1K strokes) to 13 fps (16K strokes) in the desktop setting
and from 29 fps (1K strokes) to 8fps (16K strokes) for the table,
using 2562 mip-mapped textures each covering about 1282 pixels.

5 Using the Interactive NPR Canvas

Throughout the process of developing our system and after comple-
tion we asked our colleagues and four professional artists to evalu-
ate it. This section reports on the results of this informal evaluation
and presents additional examples created with our system.

5.1 Example Images

Figure 9 shows the use of quite broad strokes to create an abstract ef-
fect. To work out detail and to achieve a contrast to the bold strokes

Figure 10: Longer strokes bring out the water reflections well;
pointillism was used to portray the land part.

Figure 11: Pointillism using simple geometric shapes.

in the background we adjusted the size of the strokes interactively
in some regions. In contrast, Figure 10 uses long and thin strokes as
they capture the structure of the tiny waves on the water and, thus,
the character of the reflection quite well. The strokes were arranged
parallel to the water line to produce this effect. This example shows
the advantage of interactive stroke manipulation—it remains diffi-
cult for most automatic painterly rendering algorithms to reliably
find orientations for brush strokes in areas such as the smooth water
surface or a clear sky [Park and Yoon 2004].2 Since long strokes
caused undesirable artifacts in the trees and rocks, we used pointil-
lism strokes for this region instead, showing how to combine several
primitives. Figure 11 uses only pointillism blobs. Here, orientation
of the strokes in the background was adjusted such that it gives the
impression of a larger green plant, maybe a bush, behind the tiger
lily. Figure 12 shows the use of mosaic tiles which have been man-
ually oriented to indicate groups of the surrounding water plants
as well as features of the fish itself. Their distribution is based on
forces derived from a tile position buffer. Finally, Figure 13 shows
a painting created without a source image using colored leaves as

2Some researchers have addressed this problem of automatically deriv-
ing stroke orientations for areas with small gradient magnitudes including
Litwinowicz [1997] as well as Hays and Essa [2004]. Using interaction,
however, our technique offers more artistic freedom for this process.


http://www.opengl.org/

Figure 12: Decorative mosaics, tiles with shading effects.

Figure 13: Free-hand painting with leaves as primitives.

primitives, inspired by works by Andy Goldsworthy.

5.2 Comments from Artists

Artists using the program noted that it did not feel like a paint pro-
gram to them, rather it was an entirely new experience. One artist
said that it felt “like working with collage elements.” They liked the
effect that new strokes being added to the canvas “take on the range
of hue of the strokes already laid down below.” Loading images into
the color buffer caused “a subtle flow of hue with lots of variation
from stroke to stroke,” due to variance present in the color distribu-
tion of the loaded image and in the textures of the strokes. Artists
were intrigued by the effect that single strokes, if tossed across the
canvas, would “change hue along the way according to the land-
scape below. A kind of chameleon element. I liked that.” In general,
artists appreciated the possibility of influencing the properties of
elements on the canvas after these had been created, saying that it
“feels like an NPR filter that you can play with and change” and that
“the interactivity of the tool made working with it much more inter-
esting compared with traditional NPR filters.” One artist reported
that “the mobility of all the elements, as if suspended in some kind
of liquid surface is a rather unique aspect [...] but it is not like
the viscous surface of paint—more like a watery surface where the
individual elements retain their distinct edges (unlike watercolour
painting). Like life underwater ...” However, artists also felt that the
ability to draw a line is missing which will need to be added in the
future. Users also missed the option to create new stroke textures

themselves to be used in the program. In general, users initially
had some difficulty adjusting to the different paradigm of painting.
One comment was that it feels “something like trying to compose a
picture with feathers that keep moving about in the air” However,
after getting used to the new approach, people liked it and said that
it was easy to create images in a very short time.

‘We also received feedback from the artists about the interface, lead-
ing to several changes to incorporate their input and to address their
concerns. For example, the use of layers to separate regions from
one another and the ability to remove layers altogether were in-
cluded after comments from artists. Similarly, they suggested show-
ing inactive layers transparently to improve the understanding of the
active layer. The color mixing interface using drag-and-drop color
blobs was also improved according to requests from users.

6 Conclusion and Future Work

In summary, we have explored the creation of and interaction with
non-photorealistic rendering through an ‘adjust while observing’
approach—instead of ‘tweak, render, observe and tweak again.” As
our render process is instantaneous and our changes are local, we
make it possible to influence the primitives as they are assembled
on the canvas and to modify aspects as desired through fluid and
continuous interaction rather than by indirectly adjusting parame-
ters. Modeling with rendering primitives opens up possibilities for
interaction with the image generation process, making it possible
“to stop, reach into and tweak [the] automatic [rendering] process”
[Seims 1999]. We have presented a system that implements this ap-
proach and have explored how it enables artists to take control of
the image production process.

While our concept opens up possibilities for building tools that en-
able interaction directly with the rendering process, there are still
some limitations. The approach concentrates on small strokes so
that longer elements such as outlines are still difficult to generate.
In addition, the primitives read their properties from i-buffers which
leads to primitives changing as they are moved across the canvas.
This is caused by the indirect interaction with primitives through
buffers. A more direct way would be to include options for us-
ing only instantaneous buffers that just apply changes to the prop-
erties of elements which are otherwise maintained by the elements
themselves. Also, a more diverse set of tools could be explored.
This includes providing more or less algorithmic support (more
support could be given by applying image processing to small or
large i-buffer areas, e.g., using Gaussian blur or averaging vec-
tor field directions), representing other primitive properties (e. g.,
more/other parameters for shape control), and using other and/or
more powerful primitives (such as graftals to increase the power of
expression or primitives from pigment-based media such as water-
color). In this context, it would also be interesting to incorporate
larger primitives—rigid or flexible—that have more than one point
to query property buffers and which could be used to represent el-
ements such as outlines. Similarly it would be interesting to load
images into buffers other than the color buffer, including G-buffers
[Schlechtweg et al. 2005] and other images.

As we developed the system to be applicable to large displays with
multi-touch input, we would like to explore the use of multiple in-
puts in the interaction such as multi-finger painting. We are also
interested in the difference between using our system in traditional
desktop environments as compared to large, high-resolution, direct-
interaction tabletop or wall displays. Indirect ways of interaction by
showing the buffer that is being adjusted on a separate screen while
the rendering adjusts on the main screen may be similarly exciting.
Finally, the i-buffers are currently maintained at screen resolution.
As we use interpolation to query non-grid locations, smaller buffer



sizes may be beneficial to the system’s performance.

To conclude, we see our contribution as extending the types, style,
and temporal availability of interaction during the rendering pro-
cess, rather than in simulating a specific style. In fact, other stroke-
based NPR techniques could serve as input for our system, using
our interaction possibilities for providing possibilities for touch-up.
This way users can take advantage of the continual adjustments with
immediate visual feedback and temporal coherence that we provide.

Acknowledgments

We would like to thank our funding agencies Alberta Ingenuity, the
Canada Foundation for Innovation, the Informatics Circle of Re-
search Excellence, the Natural Sciences and Engineering Research
Council of Canada, and SMART Technologies for their support, the
artists for their comments, and Petra Neumann, Pauline Jepp, Uta
Hinrichs, and Annie Tat for their advice.

References

BAXTER, B., SCHEIB, V., LIN, M. C., AND MANOCHA, D. 2001. DAB:
Interactive Haptic Painting with 3D Virtual Brushes. In Proc. of SIG-
GRAPH 2001, ACM SIGGRAPH, 461-468.

BAXTER, W., WENDT, J., AND LIN, M. C. 2004. IMPaSTo: A Realistic,
Interactive Model for Paint. In Proc. of NPAR 2004, ACM Press, New
York, 45-56.

COLLOMOSSE, J. P. 2006. Supervised Genetic Search for Parameter Selec-
tion in Painterly Rendering. In Applications of Evolutionary Computing,
Springer-Verlag, Berlin, 599-610.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W,
AND SALESIN, D. H. 1997. Computer-Generated Watercolor. In Proc.
of SSIGGRAPH 1997, ACM Press, New York, 421-430.

DEUSSEN, O., HILLER, S., VAN OVERVELD, C., AND STROTHOTTE, T.
2000. Floating Points: A Method for Computing Stipple Drawings. Com-
puter Graphics Forum 19, 3 (Aug.), 40-51.

D1 BLaASI, G., AND GALLO, G. 2005. Artificial Mosaics. The Visual
Computer 21, 6 (July), 373-383.

ELBER, G., AND WOLBERG, G. 2003. Rendering Traditional Mosaics.
The Visual Computer 19, 1 (Mar.), 67-78.

GOOCH, B., AND GOOCH, A. A. 2001. Non-Photorealistic Rendering.
A K Peters, Ltd., Natick.

GOSSETT, N., AND CHEN, B. 2004. Paint Inspired Color Mixing and
Compositing for Visualization. In Proc. of InfoVis 2004, IEEE Computer
Society, Los Alamitos, 113-117.

GRUNDLAND, M., GIBBS, C., AND DODGSON, N. A. 2005. Stylized
Rendering for Multiresolution Image Representation. In Proc. of Human
Vision and Electronic Imaging X, SPIE/IS&T, Bellingham, 280-292.

HAEBERLI, P. 1990. Paint By Numbers: Abstract Image Representations.
ACM SIGGRAPH Computer Graphics 24, 3 (Aug.), 207-214.

HAUSNER, A. 2001. Simulating Decorative Mosaics. In Proc. of SIG-
GRAPH 2001, ACM Press, New York, 573-580.

HAYS, J., AND ESsA, I. 2004. Image and Video Based Painterly Anima-
tion. In Proc. of NPAR 2004, ACM Press, New York, 113-120.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly Rendering for Video
and Interaction. In Proc. of NPAR 2000, ACM Press, New York, 7-12.

HERTZMANN, A. 1998. Painterly Rendering with Curved Brush Strokes
of Multiple Sizes. In Proc. of SIGGRAPH 1998, ACM Press, New York,
453-460.

HERTZMANN, A. 2003. A Survey of Stroke-Based Rendering. IEEE Com-
puter Graphics and Applications 23, 4 (July/Aug.), 70-81.

HOPKINS, D. 1991. The Design and Implementation of Pie Menus. Dr.
Dobb’s Journal of Software Tools 16, 12 (Dec.), 16-26, 94.

ISENBERG, T., MIEDE, A., AND CARPENDALE, S. 2006. A Buffer Frame-
work for Supporting Responsive Interaction in Information Visualization
Interfaces. In Proc. of C° 2006, IEEE Computer Society, Los Alamitos,
262-269.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND
FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing Strokes Directly
on 3D Models. ACM Transactions on Graphics 21, 3 (July), 755-762.

KEEFE, D. F., ACEVEDO FELIZ, D., MOSCOVICH, T., LAIDLAW, D. H.,
AND LAVIOLA JR., J. J. 2001. CavePainting: A Fully Immersive 3D
Artistic Medium and Interactive Experience. In Proc. of I3D 2001, ACM
Press, New York, 85-93.

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L.,
BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F. 1999. Art-Based
Rendering of Fur, Grass, and Trees. In Proc. of SSIGGRAPH 1999, ACM
Press, New York, 433-438.

LITWINOWICZ, P. 1997. Processing Images and Video for an Impressionist
Effect. In Proc. of SIGGRAPH 1997, ACM Press, New York, 407-414.

MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., HOLDEN, L. S.,
NORTHRUP, J. D., AND HUGHES, J. F. 2000. Art-based Rendering
with Continouous Levels of Detail. In Proc. of NPAR 2000, ACM Press,
New York, 59-64.

MASON, K., DENZINGER, J., AND CARPENDALE, S. 2005. Negotiating
Gestalt: Artistic Expression by Coalition Formation between Agents. In
Proc. of Smart Graphics 2005, Springer-Verlag, Berlin, 103-114.

MEIER, B. J., SPALTER, A. M., AND KARELITZ, D. B. 2004. Interactive
Color Palette Tools. IEEE Computer Graphics and Applications 24, 3
(May/June), 64-72.

MEIER, B. J. 1996. Painterly Rendering for Animation. In Proc. of SIG-
GRAPH 1996, ACM Press, New York, 477-484.

OLSEN, S. V., MAXWELL, B. A., AND GOOCH, B. 2005. Interactive
Vector Fields for Painterly Rendering. In Proc. of GI 2005, A K Peters,
Ltd., Wellesley, MA, USA, 241-247.

PARK, Y. S., AND YOON, K. H. 2004. Adaptive Brush Stroke Generation
for Painterly Rendering. In Proc. of Eurographics 2004, Short Presenta-
tions, EUROGRAPHICS, Aire-la-Ville, Switzerland, 65-68.

RyokaAl, K., MARTI, S., AND ISHII, H. 2004. I/O Brush: Drawing with
Everyday Objects as Ink. In Proc. of CHI 2004, ACM Press, New York,
303-310.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND SALESIN,
D. H. 1994. Interactive Pen-and-Ink Illustration. In Proc. of SIGGRAPH
1994, ACM Press, New York, 101-108.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND SALESIN, D. H.
1997. Orientable Textures for Image-Based Pen-and-Ink Illustration. In
Proc. of SIGGRAPH 1997, ACM Press, New York, 401-406.

SCHKOLNE, S., PRUETT, M., AND SCHRODER, P. 2001. Surface Drawing:
Creating Organic 3D Shapes with the Hand and Tangible Tools. In Proc.
of CHI 2001, ACM Press, New York, 261-268.

SCHLECHTWEG, S., GERMER, T., AND STROTHOTTE, T. 2005.
RenderBots—Multi Agent Systems for Direct Image Generation. Com-
puter Graphics Forum 24, 2 (June), 137-148.

SECORD, A. 2002. Weighted Voronoi Stippling. In Proc. of NPAR 2002,
ACM Press, New York, 37-44.

SEIMS, J. 1999. Putting the Artist in the Loop. ACM SIGGRAPH Computer
Graphics 33, 1 (Feb.), 52-53.

SMITH, A. R. 1984. Plants, Fractals, and Formal Languages. ACM SIG-
GRAPH Computer Graphics 18, 3 (July), 1-10.

STROTHOTTE, T., AND SCHLECHTWEG, S. 2002. Non-Photorealistic

Computer Graphics. Modeling, Animation, and Rendering. Morgan
Kaufmann Publishers, San Francisco.

YANG, H.-L., AND YANG, C.-K. 2006. A Non-Photorealistic Rendering of
Seurat’s Pointillism. In Advances in Visual Computing, Part 2, Springer-
Verlag, Berlin, 760-769.


http://www.albertaingenuity.ca/
http://www.innovation.ca/
http://www.icore.ca/
http://www.icore.ca/
http://www.nserc-crsng.gc.ca/
http://www.nserc-crsng.gc.ca/
http://smarttech.com/
http://doi.acm.org/10.1145/383259.383313
http://doi.acm.org/10.1145/383259.383313
http://doi.acm.org/10.1145/987657.987665
http://doi.acm.org/10.1145/987657.987665
http://dx.doi.org/10.1007/11732242
http://dx.doi.org/10.1007/11732242
http://doi.acm.org/10.1145/258734.258896
http://dx.doi.org/10.1111/1467-8659.00396
http://dx.doi.org/10.1007/s00371-005-0292-4
http://dx.doi.org/10.1007/s00371-002-0175-x
http://doi.acm.org/10.1145/558817
http://doi.ieeecomputersociety.org/10.1109/INFOVIS.2004.52
http://doi.ieeecomputersociety.org/10.1109/INFOVIS.2004.52
http://dx.doi.org/10.1117/12.596817
http://dx.doi.org/10.1117/12.596817
http://doi.acm.org/10.1145/97879.97902
http://doi.acm.org/10.1145/383259.383327
http://doi.acm.org/10.1145/987657.987676
http://doi.acm.org/10.1145/987657.987676
http://doi.acm.org/10.1145/340916.340917
http://doi.acm.org/10.1145/340916.340917
http://doi.acm.org/10.1145/280814.280951
http://doi.acm.org/10.1145/280814.280951
http://dx.doi.org/10.1109/MCG.2003.1210867
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.ieeecomputersociety.org/10.1109/C5.2006.4
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/566654.566648
http://doi.acm.org/10.1145/364338.364370
http://doi.acm.org/10.1145/364338.364370
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/311535.311607
http://doi.acm.org/10.1145/258734.258893
http://doi.acm.org/10.1145/258734.258893
http://doi.acm.org/10.1145/340916.340924
http://doi.acm.org/10.1145/340916.340924
http://dx.doi.org/10.1007/11536482_9
http://dx.doi.org/10.1007/11536482_9
http://dx.doi.org/10.1109/MCG.2004.1297012
http://dx.doi.org/10.1109/MCG.2004.1297012
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/1089508.1089548
http://doi.acm.org/10.1145/1089508.1089548
http://doi.acm.org/10.1145/985692.985731
http://doi.acm.org/10.1145/985692.985731
http://doi.acm.org/10.1145/192161.192185
http://doi.acm.org/10.1145/258734.258890
http://doi.acm.org/10.1145/365024.365114
http://doi.acm.org/10.1145/365024.365114
http://dx.doi.org/10.1111/j.1467-8659.2005.00838.x
http://doi.acm.org/10.1145/508530.508537
http://doi.acm.org/10.1145/563666.563685
http://doi.acm.org/10.1145/964965.808571
http://doi.acm.org/10.1145/544522
http://doi.acm.org/10.1145/544522
http://dx.doi.org/10.1007/11919629_76
http://dx.doi.org/10.1007/11919629_76

(b) Background layer.

Figure 10: Longer strokes bring out the water reflections well;
pointillism was used to portray the land part.

(c) Middle layers added.

(d) Foreground layers added.

Figure 1: Walking through the creation of an example image.

Figure 9: Wider strokes create an abstraction effect. Figure 13: Free-hand painting with leaves as primitives.



	Introduction
	Related Work
	Modeling with Rendering Primitives
	An Interactive NPR Canvas
	Affecting Primitive Properties
	Tools
	Interface Elements
	Efficient Rendering and Performance

	Using the Interactive NPR Canvas
	Example Images
	Comments from Artists

	Conclusion and Future Work

