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Visualization Viewpoints Editor: 
Theresa-Marie Rhyne

Ontologies in Biological Data Visualization

In computer science, an ontology is essentially 
a graph-based knowledge representation in 
which each node corresponds to a concept and 

each edge specifi es a relation between two con-
cepts. Concepts can encompass a variety of real-
world entities and abstractions such as names, 
objects, events, ideas, and types. Relations can en-
compass different unidirectional or bidirectional 
associations, including connectivity, hierarchy, 
membership, functional mapping, and causation. 
Ontologies often feature additional information 
such as node and edge attributes; formal-logic 
operators; structural groupings for defi ning sets, 
rules, and systems; and temporal changes of at-
tributes, topologies, and structures.

As computational models, ontologies have been 
used extensively in artifi cial intelligence, natural-
language processing, and Web sciences. A number 
of specifi cation languages (for example, OWL, the 
Web Ontology Language) have been developed for 
encoding ontologies. (For the URL for OWL and 
other resources mentioned in the article, see the 
“Related Resources” sidebar.) Among the many 
disciplines in which visualization plays a signifi -
cant role, biology has embraced ontologies pur-
posefully and energetically.

Here, we examine the potential impact of ontol-
ogies’ increasing presence in research on biologi-
cal data visualization, considering both technical 
challenges and opportunities for new research di-
rections. We have two ultimate goals:

■ Support ontology developers, data curators, and 
data analysts with advanced visualization tech-
niques.

■ Stimulate new research programs for developing 
knowledge-assisted visualization1 by using on-
tologies as knowledge representations.

Because ontological development has progressed 
much further in biology than in many other dis-
ciplines, biological data visualization offers an 
exceptional application fi eld for ontology-based 
visualization research.

Ontologies in Biology
Biology is notoriously nonquantitative. In con-
trast to the law-like equations of physics, scientifi c 
claims in biology (especially molecular biology) of-
ten hypothesize the existence of specifi c entities, 
functions, and relationships among them. Fur-
thermore, the deep evolutionary interconnected-
ness of all living things means that hypotheses 
and evidence regarding them in one area of biol-
ogy are often relevant to hypotheses about ap-
parently quite distant aspects of biology. This 
problem is particularly acute now that we have 
the technology to easily and cheaply determine the 
chemical sequence of a genome (which contains 
or encodes most of the central biological entities), 
without the complementary ability to help people 
understand these complex, multifaceted functions 
and relationships.
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To make this problem more concrete, consider a 
long-standing, fundamental hypothesis: homolo-
gous genes in different organisms have conserved 
(that is, identical or very similar) functions. Ho-
mologous genes arose from a common ancestor; 
genes with very similar sequences are likely ho-
mologous. Genomic sequencing makes determin-
ing molecular homology straightforward. There’s 
also an enormous amount of scientific literature 
that (among other things) makes claims about the 
functions of millions of different genes in thou-
sands of organisms. The combination of these 
factors should have enabled the testing of the 
conserved-function hypothesis.

Unfortunately for biologists, statements about 
gene functions are in hundreds of thousands of 
long, complex journal articles written in human 
language. Although the data needed to test this 
hypothesis is clearly in the literature, the difficulty 
of extracting all that information and putting it 
in a form that facilitates testing makes the task 
utterly impractical.

In the late 1990’s, Michael Asburner, a fruit fly 
geneticist at Cambridge and the first director of the 

European Bioinformatics Institute, began advocat-
ing for a standardized language to describe critical 
biological concepts—for example, gene functions. 
Adopting both the philosophical principles of 
ontology and the computational approach that 
Thomas Gruber proposed,2 biologists working on 
different model organisms (fruit flies, mice, and 
yeast) began coordinating their functional vocab-
ulary to create an ontology of biological processes, 
molecular functions, and subcellular locations. In 
2000, they published the first version of the Gene 
Ontology.3 This resource contained not only the 
ontology but also mappings of genes from differ-
ent organisms to the newly standardized way of 
describing qualitative aspects of biology. The com-
putational approach to ontologies can exploit this 
standardization, additionally including subsump-
tion hierarchies, mereologies, and other types of 
relationships among terms. This will provide value 
beyond just a standardized vocabulary.

Since then, ontologies have covered an increas-
ing number of biological areas (for example, 
chemical entities, sequence phenomena, and anat-
omy), and the number of genes annotated with 

Here are descriptions and URLs for some of the resources 
mentioned in the main article, along with a couple of 

other useful resources.

Ontologies in Biology
■■ The Gene Ontology is a collection of ontological data 
and tools for accessing and processing the data. http://
geneontology.org

■■ The National Center for Biomedical Ontology is a commu-
nity hub that gathers a collection of open source soft-
ware for biomedical ontologies. http://bioontology.org

■■ The Neuroscience Lexicon is a wiki for community-based 
curation of neuroscience terms, with collected informa-
tion about gene ontology tools. http://neurolex.org/
wiki/Category:Resource:Gene_Ontology_Tools

■■ The OBO Foundry is a collaborative experiment for de-
velopers of open biological and biomedical ontologies 
to facilitate interoperability between diverse ontologies. 
www.obofoundry.org

Ontology Editing and Visualization
■■ BioMixer is a software tool for visualizing multiple biolog-
ical ontologies and the mappings across them. http://
thechiselgroup.org/2012/01/01/biomixer-visualizing-
mappings-of-biomedical-ontologies-2

■■ Protégé is an ontology editor. http://protege.stanford.edu
■■ Jambalaya is a Protégé plug-in for visualizing ontologies. 
http://thechiselgroup.org/2004/07/06/jambalaya

■■ OntoViz is a Protégé plug-in for visualizing ontologies. 
http://protegewiki.stanford.edu/wiki/OntoViz

■■ TGVizTab is a Protégé plug-in for visualizing ontologies. 
http://users.ecs.soton.ac.uk/ha/TGVizTab

Ontology-Supported Exploration
■■ BioJigSaw is a visual index that supports the investiga-
tion of connections between biological entities. www.
cc.gatech.edu/~john.stasko/papers/kes10-biojigsaw.pdf

■■ The Bohemian Bookshelf is an interactive tool for explor-
ing digital book collections. http://innovis.cpsc.ucalgary.
ca/Research/BohemianBookshelf

■■ Docuburst is an ontology-based document visualization 
tool. http://vialab.science.uoit.ca/portfolio/docuburst-
visualizing-document-content-using-language-structure

■■ GoPubMed is an ontology-based search engine for 
biomedical-research publications. www.gopubmed.org/
web/gopubmed

Other Resources
■■ OWL is the Web Ontology Language. www.w3.org/TR/
owl2-overview

■■ WordNet is a large lexical database of English. http://
wordnet.princeton.edu

■■ TimeViz is a survey of time-oriented visualization tech-
niques. http://survey.timeviz.net

■■ MatrixBrowser is network visualization software. http://
dl.acm.org/citation.cfm?id=506504

Related Resources
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ontological terms has grown dramatically. The US 
National Institutes of Health, recognizing onto-
logical research’s importance to all biomedical re-
search, created the National Center for Biomedical 
Ontology and funds the Gene Ontology Consor-
tium, in addition to providing other wide-ranging 
ontology-related research support. The Gene On-
tology’s structure and the annotations of genes to 
terms in the ontology have unleashed a vast, tre-
mendously useful torrent of valuable applications, 
many of which are far from Ashburner and his 
colleagues’ original intent. For example, biomedi-
cal ontologies turn out to be an important target 
for biomedical text mining (see Figure 1).

The creation and dissemination of ontologies 
for entities in the published biomedical literature 
is only a first necessary step. An arguably larger 
challenge is accurately annotating scientific texts 
with these ontological terms. The same sequence 
homology that allows assignment and coordina-
tion of terms across organisms can contribute to 
authors’ laxity in fully defining the source organ-
ism of named entities in manuscripts. And de-
spite ontology developers’ best efforts, researchers 
often continue to use deprecated or slang entity 
names in their writing. This situation complicates 
text mining of the published literature. Some pub-
lishers, such as Nature Publishing Group, try to 
correct these deficiencies during manuscript copy
editing to ensure that all entity names are the cur-
rent official ontological terms.

Even when a manuscript uses the correct terms 
for entities, each term still must be linked to the 
correct entity. Such linking can be done automati-

cally through text mining, using a tool such as 
Reflect, or the journals themselves can create these 
links. At select Nature research journals, technical 
editors perform such linking of manuscript text 
to ontologies of chemical compounds, genes, and 
proteins. By manually assigning terms and links 
during production, editors can query authors for 
accuracy and correct mistakes.

Instead of tagging individual entities, many 
publishers assign ontological terms to entire man-
uscripts. This ignores the fine-grained information 
in the manuscript but allows improved searching, 
browsing, and linking of manuscripts for strategic 
reading. Assigning the most relevant terms for any 
article is much more subjective than annotating 
individual entities. This can add considerable edi-
torial value by

■■ filtering out articles that are only superficially 
related to a term in them or

■■ grouping articles on a subject regardless of 
whether the manuscript used that subject name.

On the other hand, this subjectivity can lead to un-
desirable inconsistencies in the ontologies them-
selves and in their use.

Challenges
Many groups of people are working with ontolo-
gies on different kinds of tasks. For example, the 
OBO (open biological and biomedical ontologies) 
Foundry, a collaborative experiment for ontolo-
gists, lists over 120 proposed ontologies in differ-
ent biological and biomedical areas.

Three main types of scientists work with on-
tologies. Ontologists focus on creating, maintain-
ing, and extending ontologies. Data curators use 
ontologies to annotate and classify results from 
experiments, datasets, and the literature. Data 
analysts use ontologies indirectly (through com-
puter applications) to analyze experimental data, 
search databases, and navigate and read the scien-
tific literature. These multifaceted tasks create the 
following distinct challenges.

Ontology Evolution
Ontologies are dynamic. Many ontologies con-
stantly change and evolve owing to discoveries 
and new knowledge in their domain. The creation 
of multiple versions of ontologies is prone to in-
consistencies and adds downstream complexity, 
posing problems for humans and computer pro-
grams. Keeping track of evolution becomes even 
more daunting for ontologies that integrate mul-
tiple data sources.

Figure 1. A piece of biology text annotated with multiple ontologies. 
Different-color highlights represent different classes as defined by 
several ontologies. (Source: Colorado Richly Annotated Full Text Corpus; 
http://bionlp-corpora.sourceforge.net/CRAFT; used with permission.)
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Ontology evolution affects all three types of sci-
entists. Ontologists must keep track of ontologies’ 
structure, study their properties (which parts are 
worked out in detail and which parts are prelimi-
nary or deprecated), and identify terms that aren’t 
yet part of a given ontology. Merging, mapping, 
and comparing ontologies also become increas-
ingly difficult when ontologies change over time.

Data curators must examine which parts of an 
ontology have changed and then re-annotate 
their data.

Data analysts must keep track of the version they 
used for all their analyses and potentially rerun 
their analyses after one or more ontologies have 
changed. In this context, a big problem they face 
is the automatic integration of data from multiple 
sources based on ontological annotations.

Scale
Many ontologies represent an overwhelming 
amount of data. For example, the US National 
Center for Biomedical Ontology’s BioPortal has 
collected over 300 ontologies, featuring more than 
6 million terms and more than 26 billion annota-
tions. The 2013-07-04 version of the popular Gene 
Ontology contains nearly 40,000 classes and some 
645,000 gene products, with an 18-level hierarchy.

These large ontologies are usually developed and 
maintained by a team of ontologists; this requires 
a framework supporting collaborative work. A first 
step in this direction was the development of the 
Changes and Annotation Ontology.4

Data curators often have to deal with finding 
the most appropriate concepts in these large on-
tologies when they annotate terms in documents 
or samples in experimental data.

For data analysts, the number of ontology an-
notations can easily be overwhelming, especially 
if documents or data are annotated with multiple 
ontologies (as in Figure 1). Developers of programs 
that use ontologies must find a balance between 
hiding as much complexity as possible and ef-
fectively using the complex representations in an 
ontology. One potentially efficient way to reduce 
the complexity that must be shown explicitly is to 
apply task- and context-specific degree-of-interest 
functions.

Relationships and Types
So far, most applications don’t exploit the complex 
set of relationships in ontologies but rather reduce 
them to a simple hierarchy. In the context of on-
tologies, gene expression data is often visualized as 
a treemap.5 Although treemaps are certainly use-
ful for data analysts, they have difficulties depict-

ing rich semantics and complex relationships in 
ontologies. The lack of an effective visualization 
technique for observing and exploring ontologies, 
combined with their large sizes, makes the manual 
maintenance of ontologies a considerable effort 
for ontologists.

To help meet this challenge, researchers have de-
veloped cross-product extensions of the Gene On-
tology that computationally define relationships in 
the ontology.6 Reasoners can use these extensions 
to assist ontologists with these daunting tasks and 
thus minimize errors and inconsistencies.

Analysts’ Requirements
Finally, to make ontologies more useful for data 
analysis, ontologists must understand what ana-
lysts want to investigate and how they can use 
ontologies for their specific tasks. For many ap-
plications and datasets, we don’t yet know how 
ontologies could support investigations and where 
the ontologies’ real value lies. To this end, we need 
more empirical research to improve the under-
standing of analysts’ workflows, tasks, and aims.

Research Opportunities
The previous challenges are also opportunities. 
Winston Churchill said, “a pessimist sees the dif-
ficulty in every opportunity; an optimist sees the 
opportunity in every difficulty.” Biological ontolo-
gies’ availability, coupled with the abundance of 
biological data, presents exciting possibilities for 
widening the current research scope or establish-
ing new frontiers.

Visualizing Ontologies
Ontologies provide powerful, concise concep-
tualizations of domain knowledge that must be 
machine-processable but also human-readable to 
improve ease of use and to ease communication 
across stakeholders. Improving cognitive support 
for ontology understanding is particularly impor-
tant in the biomedical and biological domains. Bio-
medical ontologies are typically large and complex 
and usually have been developed collaboratively by 
a community of stakeholders over a long time.7

Ontology authors need cognitive support as they 
try to understand what’s already in an ontology 
that they are developing further. Ontology users 
need cognitive support to help them find relevant 
concepts for a data annotation task. To address 
the human-readable requirements for ontology 
use, researchers have designed many visualization 
tools for specific tasks such as finding pertinent 
terms for data annotation or to support ontology 
authoring or data alignment.8
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Some visualization tools support such key tasks 
as providing ontology overviews, visualizing taxo-
nomic relationships, browsing ontology classes 
and instances, and displaying numerous role re-
lationships and properties of ontological concepts. 
Other tools present existing or proposed mappings 
between ontologies or support axiom validity and 
error checking in more sophisticated ontologies. 
In addition, some tools support searching and ad-
vanced querying of ontologies that can be helpful 
during data curation.

Ontology visualization tools have applied such 
methods as

■■ indented lists (for example, Protégé),
■■ tree layouts (for example, Jambalaya),
■■ network views (for example, OntoViz),
■■ matrix views (for example, MatrixBrowser), and
■■ treemaps (for example, Jambalaya).

Most tools provide various interaction techniques 
such as zoomable views (Jambalaya), hyperbolic 
views, concept-anchored exploration (TouchGraph 
in TGViz), and time-based views (TimeViz). Col-
laborative ontology visualization is also increasing, 
as ontology-authoring tools themselves become 
more collaborative (for example, BioMixer).

Visualizing Annotated Content
Despite much research on ontology visualization, 
most tools focus on visualizing or navigating the 
ontologies themselves rather than visualizing on-
tologically annotated content. We need powerful, 
easy-to-use tools for both data curators and users 
browsing annotated content (such as journal ar-
ticles). Such tools can also enable the users to do 
richer analyses of the content.

Text is probably the most important medium for 
knowledge exchange in most sciences. Although 
text has the advantage of general expressiveness, 
we perceive it sequentially, which slows down its 
consumption. Text-mining and text visualization 
approaches aim to accelerate specific tasks, such 
as searching, browsing, or recognition, at differ-
ent aggregation levels (for example, paragraph, 
document, or collection). But these approaches 

require automatic text-processing methods that 
try to retrieve information from unstructured 
data sources that allow considerable freedom 
in expressing the information. The freedom in-
volves not only which facts to represent but also 
which terminology to use, which rhetorical form 
to use, and so on.

Using ontologies as structured background knowl-
edge to allow consistent information extraction from 
or annotation of unstructured text seems prom-
ising. Text-mining methods employ ontological 
knowledge9 and allow semiautomatic extension of 
ontologies by text analysis.10 The opportunity here 
is to focus on how visualizations of text and docu-
ments can beneficially include ontological back-
ground knowledge.

First, you can enrich plain text with informa-
tion retrieved from concept mapping. For example, 
highlighted text snippets can represent ontological 
concepts. When the curser hovers over these high-
lights, additional concept information appears. 
Advanced highlighting methods such as variable 
text scaling11 allow better discrimination between 
highlights and regular text.

Second, you can use metadata and background 
knowledge to navigate documents and document 
collections. For example, GoPubMed sorts PubMed 
search results according to the Gene Ontology hi-
erarchy by investigating document abstracts for 
Gene Ontology concepts. Users can select sub-
hierarchies to further filter the search results. The 
Bohemian Bookshelf interlinks visualizations of a 
digital-library collection. It provides access to books, 
using different views showing meta-information 
such as the historical period of the content and 
the cover color. This approach not only supports 
navigation but also enables serendipitous discover-
ies. Docuburst represents, for a given document, 
the subtree of a background structure based on 
WordNet. It allows background-structure-guided 
analysis of documents.

Automated Visualization Generation
The availability of domain-specific ontologies pro-
vides the exciting opportunity to develop automated 
visualization methods and services. Although in-
teraction remains important for facilitating data 
exploration, learning to use a visualization can be 
costly, especially for occasional users, and inter-
acting with the system can be time-consuming. In 
many application scenarios, automatically gener-
ated visualizations might serve us more efficiently 
and effectively and might facilitate knowledge 
sharing. For instance, an organization might have 
datasets that arrive regularly or have many users, 

We need powerful, easy-to-use  
tools for both data curators and users 

browsing annotated content  
(such as journal articles).
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including new ones, who need to handle a variety 
of data. In such scenarios, overemphasizing the 
need for interaction would be a great waste of hu-
man resources.

To automate visualization, Owen Gilson and 
his colleagues proposed using three ontologies.12 A 
Domain Ontology (DO) captures a collection of 
domain concepts and their relationships. A Visual 
Representation Ontology (VRO) stores the knowl-
edge about visualization tools, styles, and the pa-
rameter space typically applicable to the domain. A 
Semantic Bridging Ontology (SBO) brings together 
the DO and VRO by gathering common mappings 
from the DO to the VRO.

For example, a VRO might store a set of commonly 
used visual representations for bio-information, 
such as pixel-based representations, network rep-
resentations, time series plots, and molecular 
representations. Each representation is connected 
to a set of encoding parameters, such as axes or 
a color map. Given a biological dataset, the vi-
sualization system can obtain its main facets 
(for example, categories, components, and at-
tributes), typically by reading the metadata. It 
can also determine the corresponding domain 
concepts (nodes) in the DO. For each DO con-
cept, the SBO provides one or a few connections 
to visualization concepts in the VRO. The do-
main concepts associated with the dataset trig-
ger a collection of visualization concepts with 
different weights stored in the SBO. This collec-
tion likely might suggest more than one visual 
representation, with the weights ranking each 
representation. The representations composed 
by the VRO can easily be translated to instruc-
tions for the visualization system (for example, 
scripting-language constructs or API functions 
and parameters).

With the availability of digital knowledge in 
the form of ontologies, future visualization tools 
might harvest such knowledge to make connec-
tions between biological data to be visualized and 
the semantic information in relevant ontologies. 
Such tools might let users explore visualization 
images’ semantic context and might generate il-
lustrative visualizations with semantic annota-
tions based on relevant ontologies.

Automation doesn’t necessarily prohibit choices. 
On the contrary, it often might facilitate more ef-
ficient and effective user interaction in creating 
appropriate visualizations. For example, a visualiza-
tion system could automatically generate a “design 
gallery” offering users multiple optional visual 
representations.13 Simply by selecting preferred 
designs, users could explore the design space and 

refine a design iteratively. In addition, they could 
provide the SBO with new knowledge about re-
lationships between domain concepts in the DO 
and visualization concepts in the VRO.

Min Chen and his colleagues outlined a vi-
sion for knowledge-assisted visualization.1 In a 
visualization infrastructure supporting many us-
ers, users can acquire and share domain-specific 
knowledge about various visualization aspects (for 
example, commonly used visual representations, 
the performance of different tools and APIs, and 
the most effective parameter set). Such knowl-
edge can help reduce the burden on users who are 

learning to use complex visualization techniques. 
It also enables the visualization community to 
learn and model best practices, so that power-
ful visualization infrastructures can develop and 
evolve. Ontologies will doubtlessly be indispens-
able in developing infrastructures for knowledge-
assisted visualization.

Visualizing Ontological Context to Support Search
Ontologies intrigue us because they offer a con-
ceptualization of a domain. This conceptualization 
contains considerable structure combined with jux-
taposed semantics; however, it also contains consid-
erable variation. So, challenges abound, alongside 
tempting potential that invites consideration of 
ontologies as a key, or at least a major player, in 
unraveling our information maze.

Many problems remain unsolved regarding the 
use of visualization and interaction to explore on-
tologies. However, the application of ontologies 
and even multiple ontologies to annotate text cor-
pora offers new potential and new challenges.

For example, even though ontologies have pow-
erful hierarchical features, they’re not just hierar-
chies. So, although you can use tree visualizations 
to create an ontology visualization, you must ad-
dress the additional structure. In addition, on-
tologies usually have more structure than general 
graphs, but exactly how to exploit this additional 
structure in visualizations isn’t clear.

Also, ontologically annotated text provides se-
mantically rich metadata. Because visualizing 

The application of ontologies and even 
multiple ontologies to annotate text 
corpora offers new potential and new 
challenges.
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even simple metadata (for example, the Bohemian 
Bookshelf) can enhance serendipity in informa-
tion exploration, visualizing annotated text is very 
promising. However, the complexity of text visu-
alization coupled with the complexity of ontology 
visualization makes this a big challenge.

Finally, researchers are exploring search within 
ontologies. This can expand to consider search 
across multiple related ontologies or be inverted to 
include search via multiple ontologies.

Serendipity in day-to-day life can be enhanced 
through the organizational efforts of our fellow 
humans. For example, browsing for books on tra-
ditional library bookshelves frequently leads to 
unexpected, useful findings. These findings are at 
least somewhat due to librarians organizing and 
cataloging the books. Working with ontologies 
that are both machine-processable and human-
readable could bring such richness to interactive 
computer search.

Although this article has focused on biologi-
cal data visualization, the viewpoints we’ve 

presented are relevant to visualization and vi-
sual analytics in general. For example, visualiza-
tion techniques and editing tools developed for 
creating, maintaining, and extending biological 
ontologies will most likely be applicable to other 
disciplines. This could facilitate the development 

and use of domain-specific ontologies in a wider 
spectrum of science, engineering, medicine, the 
social sciences, and the humanities. It could also 
enable visualization to play a more significant 
role in core computer science subjects such as ar-
tificial intelligence, Web sciences, and software 
engineering.

By capitalizing on ontologies as knowledge rep-
resentations, we’ll be able to take a significant step 
toward realizing knowledge-assisted visualization. 
Such visualization might take the form of auto-
mated visual annotation of texts, documents, and 
corpora; automated construction of visualizations 
for novice users; automated recommendation of 
best visualization practices; or automated visu-
alization of ontological context in information 
retrieval. Because ontologies can be dynamically 
updated, especially through their deployment in 
visualization processes, the realization of these re-
search directions will let us systematically capture, 
record, and reuse visualization knowledge. This 
will greatly improve our capacity to deal with the 
ever-increasing data deluge.�
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During the 2012 Dagstuhl Seminar on Biological Data 
Visualization, a discussion group (comprising the main 

article’s authors) explored the topic of ontologies in biologi-
cal visualization. The group followed a classic design pro-
cess.1–3 The discussion was broadly divided into a problem 
phase and a solution phase. Each phase featured divergent 
and convergent stages: discover and define for the problem 
phase and develop and deliver for the solution phase.

Discover and Define
The group first broke down the topic into the “Four Cs”:

■■ components (parts) of the topic,
■■ characters (people) who are involved in some way,
■■ challenges to be aware of, and
■■ characteristics (features or behaviors) you might encounter.

This approach helped the group better define the topic 
while gaining a holistic view of the design problem.

Develop and Deliver
To establish a shared vision of the outcome, the group 

engaged in the Draw the Box activity. The members 
worked together as a team, imagining a software system 
as an end product that would be provided in a box on a 
shelf, just like any product in a shop. By focusing on dif-
ferent users (some of the characters explored earlier), the 
group designed the product’s packaging.

This activity was not only great fun but also a good 
tool for pooling ideas and visualizing an outcome. The 
tangible artifact transformed the two-day meeting to a 
memorable vision shared by the group members. It also 
sparked further research activities, including the prepara-
tion of this article.
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