
SurfaceMusic: Mapping Virtual Touch-based Instruments
to Physical Models

Lawrence Fyfe, Sean Lynch, Carmen Hull, Sheelagh Carpendale
University of Calgary

2500 University Dr. NW
Calgary, AB T2N 1N4

Canada
ljfyfe@ucalgary.ca, sglynch@ucalgary.ca, cphull@shaw.ca, sheelagh@ucalgary.ca

ABSTRACT
In this paper we discuss SurfaceMusic, a tabletop music sys-
tem in which touch gestures are mapped to physical models
of instruments. With physical models, parametric control
over the sound allows for a more natural interaction be-
tween gesture and sound. We discuss the design and im-
plementation of a simple gestural interface for interacting
with virtual instruments and a messaging system that con-
veys gesture data to the audio system.

Keywords
Tabletop, multi-touch, gesture, physical model, Open Sound
Control.

1. INTRODUCTION
In creating musical applications for interactive multi-touch

tabletops, one of the most important considerations is the
mapping of gestures on the tabletop to control of sound.
The tabletop becomes the gestural interface part of the
four components of computer-based musical instruments de-
scribed in Wessel et al [11]. One approach to gestural con-
trol is to manipulate physical objects that are recognized
by the tabletop. The AudioPad [9] uses round pucks that
are identified by radio-frequency tags. Players manipulate
the pucks to control the volume and effects for sets of sam-
ple loops. A similar approach to gestural control, used by
the reacTable [7], involves the use of fiducial markers to
control sound synthesis objects like oscillators, LFOs and
sequencers.

Another approach to gestural control is to allow players
to touch the interface directly. Compostion on the Table
by Iwai [5] is an early tabletop interface that allows play-
ers to interact directly with the tabletop to control sound.
The Jam-O-Drum from Blaine and Perkis [1] uses velocity
sensitive MIDI drum pads in combination with visual feed-
back on a tabletop. Another touch interface, by Davidson
and Han [3], uses interface elements like sliders, knobs and
keys and implements them on a large multi-touch surface
to control sound synthesis.

SurfaceMusic is an interactive multi-touch tabletop in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME2010, 15-18th June 2010, Sydney, Australia
Copyright 2010, Copyright remains with the author(s).

Figure 1: Playing the virtual instruments.

strument that uses gestural interaction with virtual instru-
ments to control sound parameters in physical models. Fig-
ure 1 shows players interacting with SurfaceMusic. The goal
of SurfaceMusic is to create a natural mapping between ges-
ture and sound control while retaining the configurability
of a tabletop interface. Other work has mapped gesture
to physical model including Jones and Schloss [6] where a
force sensor maps to a 2D waveguide mesh. Dimitrov et
al [4] created mappings between gesture and physical mod-
els for the reacTable. While these interfaces are interesting,
for SurfaceMusic, a more transparent [12] mapping between
gesture and sound control is achieved by allowing a direct
touch interaction with the tabletop that in turn effects the
sound.

The tabletop environment for SurfaceMusic is the Mi-
crosoft Surface where all visuals and interaction were done.
The audio engine for SurfaceMusic is provided via the ChucK
[10] programming language. The physical models used in
ChucK were originally developed for the Synthesis Toolkit
(STK) [2]. Sounds were developed in ChucK rather than in
the STK itself for rapid development and because ChucK
offers built-in support for communication using Open Sound
Control [13]. Gestural parameters are OSC addressable as
per Wright et al [8].

2. VIRTUAL INSTRUMENTS
The virutal insturments in SurfaceMusic have abstract

cicular shapes that are not meant to represent actual in-
struments directly. A circular shape was chosen to allow
players to rotate the instruments in a variety of orienta-
tions depending on their location around the table. The
internal, playable parts of each instrument are meant to
suggest interactions with actual instruments. For example,
a real string instrument can be strummed. In SurfaceMu-
sic, a string is strummed using a swiping gesture across the
virtual strings that is similar to a strum on a real string
instrument. Virtual touch-based instruments cannot offer

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

360



Figure 2: Playing the percussion instrument.

Figure 3: Playing the string instrument.

the affordances of real instruments but interactions with
them can be made simpler by mimicking the gestures used
in playing real instruments.

2.1 Adding and Removing Instruments
In order for people to play the instruments in Surface-

Music, they must first grab them from the instrument con-
tainer, a circle in the center of the screen that contains a
copy of each virtual instrument. This can be seen in Fig-
ure 1. The instrument container serves to both create and
destroy instruments. When an instrument is grabbed from
the container and pulled out, a new copy of the instrument
is created that can be played. Multiple virtual instruments
of the same type can be pulled onto the surface and played
simultaneously. To remove an instrument from the surface,
a player moves the instruments back into the container and
it disappears.

2.2 Rotating, Translating and Scaling
All instruments have a circular grey border to help players

perform actions on the instruments without making sound.
When any instrument’s border is grabbed with one finger,
and dragged, the instrument can be rotated 360 degrees or
tranlated to any location on the surface. In addition, by
grabbing the border with two fingers, instruments can be
scaled to larger or smallers sizes, allowing players to scale
the instrument to a size that suits them. Rotation and
translation have no effect on the sound of the instruments
while scaling changes the volume of the instrument.

Figure 4: Playing the wind instrument.

2.3 Instrument Types
The three instrument types created for this application

are a percussion instrument, a string instrument and a wind
instrument. The physical models used are the BandedWG
model for percussion, the Mandolin model for the string and
the Clarinet model for the wind. Each model has specific
parameters that are controlled via touch events and gestures
on the tabletop. These physical models were chosen because
of their associations with real instruments and because of
their sound control parameters.

2.3.1 Percussion
The percussion instrument shown in Figure 2 is the sim-

plest of all of our instruments, being a circle that players
simply touch to interact with. A touch triggers a call to the
BandedWG pluck function.

2.3.2 String
The string has four circles for determining the note played

and strings for strumming with a swipe gesture. Players
touch the circles to active a note which can be held as long
as a finger is placed within its boundaries.

The action is shown with two fingers in Figure 3 where
note circles become red when touched and text appears and
moves away from the strings when strummed. Strums trig-
ger the noteOn function in the Mandolin model. In addi-
tion, the angle of the strum gesture maps to pluck position
and the speed of the strum maps to attack velocity in the
physical model. Those parameters where used to give a
natural feel to the strum gesture.

2.3.3 Wind
The wind instrument is similar to the string instrument

in that it contains four note circles. However, it differs in
the interaction used to generate sound. In order to generate
sound, a player touches the green circle and moves it to the
right along the grey path shown in Figure 4. The distance
that the green circle is moved controls the intensity of the
sound via the reed stiffness parameter of the Clarinet model.
When a player releases the green circle, it moves back into
its original position. This gesture gives the player the feeling
of putting more or less energy into the sound depending on
how far the circle is moved and how long it is held. Note
that the circles are used as note controls in the same way
as with the string instrument.

2.4 Text Visualization
Text is used to help visualize actions performed with the

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

361



virtual instruments. For the drum, when it is hit, the word
”Touch” appears and then flies off the screen. For the string
instrument, ”Strum” appears whenever it is strummed and
for the wind instrument ”Blow” appears when the green
circle is moved.

2.5 Playing Notes
Both the string and the wind instruments have circles

that can be touched in different configurations to produce
notes in ChucK (see messaging below). Notes for the virtual
instruments work by touching from zero to of all four of the
circles. Each circle, from left to right (see Figures 3 and
4), represents 1, 2, 4 and 8. As each hole is selected, the
number is added to the total giving 16 possible tones from
only four holes. That number, from 0-15, is then sent to
ChucK and added to 60 to create a MIDI note range from
60-75.

2.6 OSC Messaging
Touch events trigger OSC messages that are sent to ChucK

to trigger control changes in the physical models. Each vir-
tual instrument maps to a shred (thread) in ChucK. New
virtual instruments create new shreds and the removal of
an insturments removes shreds. With this kinds of shred
management, SurfaceMusic is completely polyphonic with
the number of instruments limited only by the tabletop’s
visual surface area.

OSC messages sent from SurfaceMusic to ChucK look
like:

/ instrument , i i i i f f f

This is the only message sent regardless of the instrument or
its specific parameters. This simplifies the message receiv-
ing and parsing process in ChucK. The message parameters
from left to right are:

1. id (integer)

This is the ID of the instrument. It is shared between
SurfaceMusic and ChucK so that specific instruments
can be distinguished from one another. For example,
two winds can be played simultaneously with different
notes.

2. action (integer)

Action values are 0 for creating a new instrumen-
t/shred, 1 for removing an instrument/shred, 2 for
starting to play an instrument and 3 for stopping an
instrument that is currently playing.

3. instrument type (integer)

Types values are 0 for percussion/BandedWG, 1 for
string/Mandolin and 2 for wind/Clarinet.

4. note (integer)

This integer value maps to a MIDI note value in ChucK.

5. speed (float)

The speed of a swipe gesture. Currently implemented
only for the string instrument.

6. angle (float)

The angle of attack for the string instrument.

7. size (float)

Size is the current size of any instrument on the table.
It maps to gain with larger sizes having higher gains
and vice versa.

3. SUMMARY
SurfaceMusic is an interaction system that allows for the

gestural manipulation of multiple virtual instruments on a
multi-touch tabletop. The virtual instruments of Surface-
Music use simple gestures that map to parameters in physi-
cal models. The physical models used represent percussion,
string and wind instruments. A communication system, de-
veloped using Open Sound Control, allows the tabletop to
send gestural information to the audio engine for controlling
the parameters of the physical models.

4. ACKNOWLEDGEMENTS
We would like to thank the Natural Science and Engineer-

ing Research Council of Canada, the Alberta Informatics
Circle of Research Excellence, SMART Technologies, Al-
berta Ingenuity, and the Canadian Foundation for Innova-
tion for research support. We would also like to thank the
members of the Interactions Lab at the University of Cal-
gary for feedback and support during the development of
this project.

5. REFERENCES
[1] T. Blaine and T. Perkis. The jam-o-drum interactive

music system: a study in interaction design. In DIS
’00: Proceedings of the 3rd conference on Designing
interactive systems, pages 165–173, New York, NY,
USA, 2000. ACM.

[2] P. R. Cook and G. Scavone. The synthesis toolkit
(stk). pages 164–166. International Computer Music
Association, 1999.

[3] P. L. Davidson and J. Y. Han. Synthesis and control
on large scale multi-touch sensing displays. In NIME
’06: Proceedings of the 2006 conference on New
interfaces for musical expression, pages 216–219,
Paris, France, France, 2006. IRCAM — Centre
Pompidou.

[4] S. Dimitrov, M. Alonso, and S. Serafin. Developing
block-movement, physical-model based objects for the
reactable. TeX Users Group, 2008.

[5] T. Iwai. Composition on the table. In SIGGRAPH
’99: ACM SIGGRAPH 99 Electronic art and
animation catalog, page 10, New York, NY, USA,
1999. ACM.

[6] R. Jones and A. Schloss. Controlling a physical model
with a 2d force matrix. In NIME ’07: Proceedings of
the 7th international conference on New interfaces for
musical expression, pages 27–30, New York, NY,
USA, 2007. ACM.

[7] S. Jordà, G. Geiger, M. Alonso, and
M. Kaltenbrunner. The reactable: exploring the
synergy between live music performance and tabletop
tangible interfaces. In TEI ’07: Proceedings of the 1st
international conference on Tangible and embedded
interaction, pages 139–146, New York, NY, USA,
2007. ACM.

[8] C. W. Osc and M. W. A. Freed. Managing complexity
with explicit mapping of gestures to sound. In in
International Computer Music Conference, (Habana,
pages 314–317, 2001.

[9] J. Patten, B. Recht, and H. Ishii. Audiopad: a
tag-based interface for musical performance. In NIME
’02: Proceedings of the 2002 conference on New
interfaces for musical expression, pages 1–6,
Singapore, Singapore, 2002. National University of
Singapore.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

362



[10] G. Wang and P. Cook. Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia. In MULTIMEDIA ’04: Proceedings of the
12th annual ACM international conference on
Multimedia, pages 812–815, New York, NY, USA,
2004. ACM.

[11] D. Wessel, M. Wright, and J. Schott. Intimate musical
control of computers with a variety of controllers and
gesture mapping metaphors. In NIME ’02:
Proceedings of the 2002 conference on New interfaces
for musical expression, pages 1–3, Singapore,
Singapore, 2002. National University of Singapore.

[12] M. Wright. Problems and prospects for intimate and
satisfying sensor-based control of computer sound,
2002.

[13] M. Wright, A. Freed, and A. Momeni. Opensound
control: state of the art 2003. In NIME ’03:
Proceedings of the 2003 conference on New interfaces
for musical expression, pages 153–160, Singapore,
Singapore, 2003. National University of Singapore.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

363




