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Fig. 1. Using a simple stacked area chart, ThemeRiver, and streamgraph to visualize the Box Office Revenue (Movies) Dataset [13], the 311 Calls
Dataset [27, 40], and a randomly generated dataset.

Abstract—Stacked graphs are a visualization technique popular in casual scenarios for representing multiple time-series. Variations of
stacked graphs have been focused on reducing the distortion of individual streams because foundational perceptual studies suggest
that variably curved slopes may make it difficult to accurately read and compare values. We contribute to this discussion by formally
comparing the relative readability of basic stacked area charts, ThemeRivers, streamgraphs and our own interactive technique for
straightening baselines of individual streams in a ThemeRiver. We used both real-world and randomly generated datasets and covered
tasks at the elementary, intermediate and overall information levels. Results indicate that the decreased distortion of the newer
techniques does appear to improve their readability, with streamgraphs performing best for value comparison tasks. We also found that
when a variety of tasks is expected to be performed, using the interactive version of the themeriver leads to more correctness at the
cost of being slower for value comparison tasks.

Index Terms—Visualization, Streamgraphs, Stacked Area Charts, Interaction Technique, Readability

1 INTRODUCTION

Stacked area charts and their variations are time-series visualizations
that stack multiple time-series on top of each other. Stacking causes
distortion to the shape of each individual time-series representation.
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It has been assumed that this affects readability due to perceptual
experiments that have shown the human perceptual system to be less
accurate at estimating and comparing values on curved slopes than
on straight ones [12]. In response, the evolution of this stacked area
technique has focused on reducing the distortion of individual streams.
Despite these concerns about readability, stacked graphs are popular
outside of a scientific context, in more casual scenarios [35], in which a
key challenge is balancing the goal of readability—supporting accurate
and efficient extraction of information—with making the visualization
aesthetically appealing to evoke curiosity, draw people’s attention to the
visualization, or create a pleasurable experience for the viewer. Stacked
graphs have been used to create attractive representations of data from
personal music listening histories [8], the box office revenue of movies
[10, 13] and social media content [17]. Given that stacked area charts
are being promoted in spite of their limitations, understanding their
relative readability (and what affects readability) is important.

We study a series of techniques that have been proposed to improve
the balance of readability and aesthetic appeal in stacked graphs (see
Figure 1). A basic stacked area chart (top row) stacks all time-series
on a straight bottom baseline, causing maximal distortion to the time-
series positioned at the top of the chart. ThemeRiver [23] organizes
time-series symmetrically along a horizontal center axis, effectively
reducing the outermost possible position of any stream by half (center
row). Streamgraphs [10] further reduce the distortion, or “wiggle”, in
individual layers, resulting in an asymmetrical outer shape (bottom row).
Byron and Wattenberg extracted anecdotal evidence of the issues and



benefits of streamgraph readability [10]; however, no study has formally
tested how the different techniques compare in terms of readability.

We contribute to this ongoing discussion by providing a formal inves-
tigation of the relative readability of stacked area charts, ThemeRiver,
and streamgraphs for both real-world and randomly generated datasets
(as seen in the columns of Figure 1). We also include an interactive
ThemeRiver with baseline straightening to assess if a simple interaction
technique can help to mitigate readability problems.

Results indicate that the decreased distortion of the newer techniques
does appear to improve their readability, in particular for value compar-
ison tasks. We also found that when a variety of tasks is expected to
be performed, using the interactive version of the themeriver leads to
more correctness but is slower for value comparison tasks. Overall, we
recommend using the last iteration of stacked area charts, streamgraphs,
in static conditions; and to use either streamgraphs or an interactive the-
meriver in interactive conditions, depending on the tasks to performed.

2 RELATED WORK

Many approaches exist for the visualization of multiple time–series,
including line graphs, braided graphs [26], horizon graphs [20, 36],
reduced line charts [41], and stacked graphs [10, 23]. Evaluating these
different approaches in terms of readability is necessary to assess their
efficiency (e. g., [25, 26, 34, 39]).

2.1 Evaluation of Time–Series Visualizations
Previous studies have evaluated graphical perception of multiple
time–series visualizations. Horizon graphs [20, 36] overlay high values
on lower values using a two-tone pseudo colouring technique, allowing
for a vertically space-efficient time–series visualization for visualizing
multiple time series. Heer et al. [25] compared the readability of filled
line charts and two variations of horizon graphs—mirroring or not
mirroring the negative values. They measured speed and accuracy of
discrimination and estimation tasks at various chart sizes and used a
randomly generated dataset, the algorithm for which is outlined in their
paper. They found that mirroring does not impair readability and that
horizon graphs improve readability at smaller chart sizes.

Javed et al. compared four visualizations of multiple time–series:
simple line graphs, braided graphs, small multiples, and horizon
graphs [26]. They measured the correctness and completion time of
three tasks (finding a global maximum, assessing global slope, and local
point discrimination) for a synthetically generated dataset with varying
numbers of time-series (2, 4, and 8). They found that superimposed
line graph techniques work best for local tasks, and line graphs that
create separate charts are more efficient for juxtaposed tasks.

Furthermore, Perin et al. [34] compared reduced line charts, horizon
graphs and interactive horizon graphs. They measured binary correct-
ness, error magnitude, and completion time of: finding the maximum
value among several time–series for a given time point, discrimina-
tion of values among several time–series and several time points, and
finding a reference time–series. In a departure from the previously
mentioned studies, they used a real-world financial dataset with 2, 8,
and 32 time–series. They found that the interactive condition was most
effective for datasets with large numbers of time–series.

As these studies illustrate, there is considerable interest in evaluating
visualizations of multiple time-series. However, while the previous
studies compare overlaid or small multiple-style visualizations, no
studies have compared stacked graph visualizations.

2.2 Stacked Graph Visualizations of Multiple Time-Series
Stacked graphs (Figure 1, top row) are an approach to multiple
time–series visualization that stacks filled shapes (‘streams’) repre-
senting individual time–series on top of each other, starting from a
straight baseline. At each point on the time axis, the height of each
stream represents its value. The end result is an outer shape that is
an aggregate view of all the time–series. This technique distorts the
baseline of each individual stream (except for the bottom stream). The
outer shape showing the value of the aggregated time–series is not
distorted. The distortion has been the impetus for several incremental
improvements to this technique [4, 10, 23], detailed below.

ThemeRiver [23] (Figure 1, middle row), stacks individual
time–series around a central axis, resulting in a symmetrical outer
shape. As the shapes are stacked both upwards and downwards from
the axis, the outermost stream in a ThemeRiver is less distorted than the
outermost stream in a stacked area chart. Havre et al. ran a small exper-
iment comparing the readability of ThemeRiver with stacked bar charts
and found ThemeRiver to be useful for identifying an overview of the
changes, but less useful for identifying minor trends. Participants also
expressed interest in interacting with the visualization, particularly to
reorder the time–series vertically. One weakness of ThemeRiver is that
it disproportionately emphasizes streams that happen to be arranged in
the middle of the river [1].

Streamgraphs [10] (Figure 1, bottom row) sort individual streams
in a way that smooths the distortion of each stream by reducing their
‘wiggle-factor’. This results in an asymmetric outer shape. The authors
claim that this reduced distortion improves readability over ThemeRiver.
This line of reasoning based on foundational perceptual studies [12]
is commonly accepted in the visualization community. Heer et al.
deliberately excluded stacked graphs from their study of horizon graphs,
due in part to their lack of support for negative value display, and in part
based on [12]. A blog post [29] analyzed several examples of casual
streamgraphs published on the web and concluded that static or printed
streamgraphs are difficult to read due to their uncommon shapes, and
that interaction is a way to mitigate this problem.

This strategy has been investigated by others. Baur et al. introduced
interaction to stacked graphs with the aim of mitigating the stated per-
ceptual issues of stacked graphs [4]. They developed a hierarchical
ThemeRiver for touch-interactive devices with interactive stream re-
ordering. This approach of adding interaction to mitigate the downsides
of visual representations is not recent [16] and has been proven to
improve the efficiency of specific time-series visualizations [34].

Despite the concerns over their readability, stacked graphs have aes-
thetic value, leading to widespread use on the web, e. g., the Ebb and
Flow of Box Office Sales[13], World Cup Twitter streamgraph [22],
the NameVoyager [44], and ThemeRiver [23]. Artifacts of the Pres-
ence Era [43] is an installation in an art museum that samples video
recordings of the space around it and displays them as stacked sedi-
mentary layers in a visualization. The NameVoyager [44] is a popular
web visualization that represents baby names’ popularity over time.
ColourVis [31] is another aesthetically appealing visualization that
maps to a stacked line graph the proportions of colours used in sets of
images over time. ColourVis can be viewed in numerous configurations,
including with a baseline at an arbitrary position.

Stacked graphs have become widespread due to their aesthetic ap-
peal, and increments of the original technique have been proposed
to overcome their pre-supposed limitations. Despite this, no formal
studies have compared the readability of stacked graphs and their varia-
tions. In this paper, we derive suitable evaluation criteria for stacked
time–series visualizations and assess the readability of stacked graphs.

3 READABILITY

We define readability as the extent to which a visualization supports
the graphical perception—“the visual decoding of information encoded
on graphs” [12]—of the information it contains. Readability of visual-
izations has been of fundamental importance in the Infovis community,
beginning with the perceptual classification of visual variables [6].
Bertin classifies visual variables such as spatial location, color, size and
orientation into different “levels of organization”. At these levels of
organization he distinguishes “selective perception” (i.e. determining
the category of a visual mark), “ordered perception” (i.e. compar-
ing the orderings of two categories) and “quantitative perception” (i.e.
numerically defining the difference between two visual marks).

Cleveland and McGill experimentally investigated graphical percep-
tion of visual encodings [12]. They asked participants to estimate the
ratio between two marks and measured their accuracy after displaying
the graph for 2.5s. This study resulted in a refined perceptual classifi-
cation of Bertin’s visual variables [6], and was later confirmed using
Amazon’s Mechanical Turk crowdsourcing [24]. These results have
been used to justify design choices in visualization, for instance to
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Fig. 2. The four evaluated techniques: stacked area chart (STACK), ThemeRiver (THEME), streamgraph (STREAM), and ThemeRiver with interactive
baseline straightening (INT), all displaying the Movies dataset.

justify the low-distortion design of streamgraphs based on the percep-
tion of curved slopes and slope ratios [10]. The issue of slope ratio
comparisons is further addressed for line charts [39], however, this
has not been studied in the context of stacked graphs directly. Our
experiment studies these issues with the goal of better understanding
the effectiveness of the different stacked graph variations.

The information that one extracts from a visualization consists of
more than individual data points. Bertin suggests that three information
levels should be readable from an information graphic [5]:

• Elementary level: Extraction of individual values. For multiple
time-series, reading the value of one time series at a distinct point.
This is an integral part of values comparison; it is necessary to
read the individual values to be able to compare them.

• Intermediate level: Comparisons and trends in subsets of charac-
teristics. We classify the reading and comparison of time-series
trends (e.g. identifying growth or peaks) as intermediate level
tasks. These differ from elementary tasks in that reading one or
two values is not enough to identify a trend in a time-series.

• Overall information level: Global values and trends. This involves
tasks that require reading values of the combination of streams.
An example would be comparing the aggregated values of all time
series at multiple time points, or reading trends at the global level
(such as finding peaks or growth of all time-series combined).

We take all three of these information levels into account when
choosing tasks to measure the readability of stacked graphs.

4 EXPERIMENT

Our experiment is an empirical contribution to the ongoing discussion
on the readability of stacked graphs. In particular, we investigate the
impact of static and interactive straight baselines, symmetry, and wiggle
on the extraction and comparison of individual and aggregated values
and on the readability of trends.

4.1 Techniques
We compared the readability of four different stacked graph techniques
for visualizing time–series data, illustrated in Figure 2: a basic stacked
area chart (STACK), a ThemeRiver (THEME), a streamgraph (STREAM),
and our own interactive technique, a ThemeRiver with interactive base-
line straightening (INT). INT initially shows multiple time-series using
the ThemeRiver technique. By clicking on one individual stream, the
baseline of that stream is straightened (see Figure 2 (INT)). Clicking on
the bottom layer turns the streamgraph into a stacked area chart. Using
the ThemeRiver technique initially causes less distortion in the rest of
the graph when an arbitrary stream’s baseline is straightened than if a
streamgraph were used initially.

All of these visualizations display both individual time–series and
the aggregation of multiple time–series (by stacking these streams on
top of each other). This allows for reading and comparing values within
individual time–series and across multiple streams, as well as global
comparisons within the overall stream. It also allows for reading both
local and global trends. We kept the qualities of all four techniques as
constant as possible by using the same style and amount of curvature,
and the same colour scheme. The color scheme we used is similar
the the one used in the original streamgraphs paper [10], which scales
up well to large numbers of streams. We added simple highlighting
interaction, common for these types of graphs, that changes the colour
of a stream to light purple on hover and to light yellow on selection.

4.2 Datasets
The types of time-series datasets that can be displayed using the dis-
cussed stacked graphs can vary greatly in size and data distribution, and
thus impact the performance of each technique. For validity, and to vary
both size and data distribution, we used two real-world datasets that
stacked graphs have been applied to, the Box Office Revenue Dataset
(Movies) [13] and the 311 Calls Dataset (Calls) [27, 40], as well as
a randomly generated dataset (Random). Using randomly generated
datasets is common in such perceptual studies (e. g., [21, 25, 26, 30]).

The Movies dataset is a subset of the real world data used by the
New York Times in their streamgraph visualization entitled “The Ebb
and Flow of Box Office Sales” [13]. The data that we selected was
collected over the course of 20 weeks from April 20th, 2012 until
August 31st, 2012. The dataset contains 300 time-series over 20 time
points, each time-series representing the revenue of one movie in U.S.
dollars. Time-series have non-zero values over an average of 7.27 time
points (weeks). This results in short streams that are similarly shaped,
due to the similar development of revenue for movies over time.

The Calls dataset is a subset of complaint calls made over the New
York 311 line available at the NYC OpenData website [40]. This dataset
was originally used in a streamgraph for Wired Magazine [27]. We use
a subset of this data extracted by Vallandingham [42]. The data was
collected during Hurricane Sandy over the course of 35 days from Oct
14th, 2012 to Nov 17th, 2012. The dataset contains 10 time-series over
35 time points, each time-series representing the number of calls on
one topic. Each time-series has non-zero values over the entire period
shown in the graphs. All streams show a similar weekly pattern.

We used the d3 [7] implementation of Byron’s test data generator [9,
10] to create a series of random time-series datasets. The datasets all
contained 30 time-series over 30 time points with varying temporal
patterns. Following Byron’s example, we referred to this dataset as a
listening history in the experiment, where each time-series represents
the numbers of listens for one artist over the course of 30 days.
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Fig. 3. The three evaluated tasks: individual discrimination (Tind) with a stacked area chart (left); stream comparison (Tscomp) with a streamgraph
(center); and aggregate discrimination (Tagg) with a ThemeRiver (right).

4.3 Tasks

We designed the tasks for this experiment based on 1) the three levels
of information that should be readable from an information graphic,
according to Bertin [5], and 2) frequently tested tasks for time–series,
and related to Andrienko and Andrienko’s taxonomy for time–series [3].

Individual discrimination (Tind): “Which is larger: the [value of
time-series x] at A or [time-series y] at B?” Participants were asked
to identify the larger of two individual stream values in the graph at
two given time points A and B (see Figure 3 (left)). This task can be
associated with the elementary information level. In Andrienko and
Andrienko’s taxonomy, Tind is an elementary task (about individual
data elements) that requires direct comparison. This is also a standard
benchmark task for evaluating time-series visualizations (e. g., [11, 19,
25, 37, 38]).

The discrimination points A and B as well as the corresponding
streams were highlighted in bright yellow and blue in both the graph
and the question. This choice ensured that we measured the time to
assess the values only – not the time to find the right streams.

Stream comparison (Tscomp): “The following area chart represents
[time-series data]. In the graph below, which stream represents the
same [time-series]?” Participants were shown a stream with a straight
baseline and asked to find its equivalent in the displayed graph (see
Figure 3 (center)). This intermediate information level task makes
it possible to assess how people perceive trends. In Andrienko and
Andrienko’s taxonomy, Tscomp is a synoptic task (about a set of values)
that requires direct comparison. Such a task has previously been used
for evaluating time-series visualizations (e. g., [11, 34]).

Aggregate discrimination (Tagg): “Is the combined [value of time-
series] larger at A or at B?” Participants were asked to compare the
aggregate value of all time-series at two given time points A and B
(see Figure 3 (right)). This overall information level task requires par-
ticipants to make global comparisons. In Andrienko and Andrienko’s
taxonomy, Tagg is an elementary task (about individual values) that
requires direct comparison. Similarly to Tind , this task has been used
extensively to assess the performances of time-series visualizations
(e. g., [11, 19, 25, 26, 34, 37, 38]). It has also been found to be easier
than Tind [25, 34].

4.4 Hypotheses

We expected the following effects of visualization techniques on tasks:

H1 For Tagg, we expect both STACK and INT to perform better than
THEME, in turn performing better than STREAM, in terms of
correctness.

H2 For both Tind and Tscomp, we expect that in terms of correctness,
INT would perform better than STREAM, which would perform
better than THEME, which would perform better than STACK.

H3 Overall, we expect INT to be slower than all three other techniques
for all tasks.

We formulated H1 because using STACK with its global baseline,
Tagg simply consists of comparing the height of the aggregated chart at
two time points, making this task easy to perform. INT can be turned
into a STACK thus should result in similar correctness. Tagg is difficult

to perform using THEME because the technique does not provide a
global baseline, and even harder using the asymmetric STREAM.

We formulated H2 because both Tind and Tscomp are more difficult
to perform with distorted streams. INT makes it possible to limit the
distortion by setting an appropriate baseline, STACK has more distortion
for individual streams, THEME reduces distortion slightly, and STREAM
reduces distortion significantly.

We formulated H3 because INT requires interacting with the vi-
sualization to change the baseline. Such interaction costs have been
observed in a similar evaluation [34].

4.5 Procedure and Apparatus

To test our hypotheses we decided to run an experiment in a controlled
lab setting where we could ensure that the perceptual conditions are the
same for all participants. This was necessary as we observed during a
pilot tudy that participants make use of their hands and other objects
to measure parts of the visualization on the screen instead of relying
solely on their perceptual capacities. To avoid this bias we refrained
from running an experiment with a larger number of participants on an
online platform.

Participants were first asked to fill out a short questionnaire to de-
termine demographic information, web usage, and their previous ex-
perience with visualizations. After that, the experimenter explained
the conditions to the participants in the order determined by the Latin
square design. Then, the experimenter instructed the participants to
sit in front of the screen, a 30-inch monitor with 2560 x 1600 resolu-
tion, with their back on the backrest of the chair, and to only touch
the mouse and keyboard. This constraint was necessary to make the
results comparable and to prevent people from using their hands as
a measurement aid rather than relying primarily on their perceptual
capacities. Participants were then asked to follow the experiment in the
browser application.

The experiment was broken into four parts, one for each visualization
technique. Each part consisted of the three tasks (Tagg, Tind , Tscomp),
and each of these tasks was performed on the three datasets (Movies,
Calls, and Random). For each visualization technique × task, partici-
pants first performed a training round using another random dataset to
familiarize themselves with the task using the current technique. After
participants completed all tasks for one visualization technique, the
experimenter asked them to comment on their experience.

For each task, the question alone was displayed at first. After partici-
pants read and understood the question, the visualization was displayed
and the start time was logged. For both Tagg and Tind , participants were
asked to identify the larger value of two points (A or B) in the graph
and select their answer from a radio button list. For Tscomp, participants
selected the time-series in the graph by clicking on it. For all tasks, the
given answer could be changed until the submit button was clicked,
logging the end time.

After the experiment, we asked participants to score the visualization
techniques based on their aesthetic preference and perceived legibility
on [0–10] continuous scales.



4.6 Participants

We recruited 16 participants (9 male, 5 female, 2 declined to answer)
aged 18–65 years old with various occupations (12 students) in a variety
of fields (in consideration of the casual context of popular stacked
graph visualizations). All participants frequently used computers, but
had heterogeneous knowledge of visualization. We recruited these
participants through posters and mailing lists at a university. They
received monetary compensation of $20. One participant had previously
seen STREAM, three had seen THEME, seven had seen STACK and one
was very familiar with STACK.

4.7 Experiment Design

Our study used a within-subjects design, with conditions arranged
using a balanced 4x4 Latin square [32] in order to mitigate learning
effects. The independent variables were visualization technique (4:
STACK, THEME, STREAM, INT) × task (3: Tagg, Tind , Tscomp) × dataset
(3: Movies, Calls, Random), or 36 trials per participant. With 16
participants, this produced a total of 576 trials.

Our dependent variables were: correctness (the ratio of correct
answers compared to all answers) and task completion time.

4.8 Performance Results

We base our analyses on estimation, i.e., effect sizes with boot-
strapped [28] confidence intervals [15]. This approach, recommended
by the APA [2], is an alternative to NHST (null hypothesis significance
testing), whose limits are growing concerns in various research fields.
Hundreds of articles criticize the indiscriminate use of NHST and vari-
ous scientific disciplines are more and more recommending banning
the use of NHST (for a summary see [18]).

Using confidence intervals, black points in pairwise comparison
figures indicate the best estimate while intervals indicate all plausible
values, with point estimates being about 7 times more likely than
interval endpoints [14]. When performing pairwise comparisons, the
measures are computed for each participant. For correctness, if the
confidence interval graphical representation does not cross the 0%
vertical line then there is a 95% chance of difference between the
techniques (identical to p < .05). The same is true for time, with the
1.0 vertical line because we applied a log-transform to measures of time
and thus compute ratios. We interpret the results visually as follows:
we call an effect small if it is likely to be smaller than a 10% difference
between two techniques, and large if it is likely to be larger than a 10%
difference. We qualify these effects as being weak if there may be an
effect, but the confidence interval is wide or crosses the 0/1 vertical
line, and strong if there is confidently an effect, with the ratio between
the part of the confidence interval which is on the opposite side of the
vertical line and the total length of the confidence interval being small
or null.

We compare the results for each technique by task. Mean and pair-
wise comparisons correctness and completion time by task and by
technique are shown in Figure 4. Figure 5 summarizes these compar-
isons.

For Tind , in terms of correctness, we found that both THEME and
STREAM performed better than both INT and STACK. In terms of time,
INT was slower than both STACK and STREAM.

For Tscomp, we found that INT performed best overall. In terms of
correctness, INT had strong, small advantages over THEME and STACK
and a weak, small advantage over STREAM. Similarly in terms of
time, INT had a strong, small advantage over THEME and small, weak
advantages over STREAM and STACK.

For Tagg, in terms of correctness, STREAM had a strong, small advan-
tage over THEME and INT had a strong, small advantage over STACK.
In terms of time STACK performed best, followed by THEME then
both STREAM and INT. STACK had a strong, large advantage over
both STREAM and INT; and a strong, small advantage over THEME.
THEME had a strong, large advantage over STREAM and a strong, small
advantage over INT.
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Fig. 6. Participants’ preferences for technique aesthetics and readability
on 1–10 Likert scales.

4.9 Questionnaire Results
Participants’ preferences for technique aesthetics and readability are
presented in Figure 6, created using Bertifier [33].

Overall, participants found STACK to be both the most aesthetically
pleasing and the most readable visualization. They found STREAM to
be the second most aesthetically pleasing visualization, but did not find
it to be readable. THEME obtained mitigated results in terms of aesthetic
preference, with some extreme divergent judgments. Finally, partici-
pants found INT to be the least aesthetically pleasing visualization, but
the majority of participants found INT to be readable.

5 DISCUSSION

We discuss our findings by summarizing the performance results as well
as the results obtained from the questionnaires and providing possible
explanations as to why these results occurred.

5.1 Discussion of Results
For Tind and Tscomp we originally expected that the technique perfor-
mance would be, from best to worst: INT, STREAM, THEME, and
STACK, in terms of correctness (H2). This hypothesis was primarily
based on the degree of individual stream baseline distortion in each
technique. For Tind we found that both THEME and STREAM performed
better than both INT and STACK. The low performance of STACK is
unsurprising, since this technique distorts individual streams the most.
However, INT surprisingly performed worse than both THEME and
STREAM while we expected the opposite. The poorer performance of
INT may have been influenced by the number of small, similar streams:
because the technique only allows for the straightening of one baseline
at a time, participants might have been comparing differences from
memory. Here, the advantage of the straight baseline is outweighed
by the disadvantage of relying on memory. Also, THEME performed
as well as its incremental redesign, STREAM. This suggests that when
comparing values at specific times in Tind reducing the baseline dis-
tortion of individual streams does not provide a substantial benefit in
terms of accuracy.

For Tscomp, we found that INT performed best overall. This is gener-
ally expected, as the interaction technique is appropriate for this kind
of task: one can quickly click through each stream to visually compare
it to the given stream, whereas the other techniques require one to
mentally “undistort” each stream. However, we did not find any other
difference – in particular, STACK did not perform worse than THEME
and STREAM.

For Tagg, we originally expected both STACK and INT to perform
better than THEME, then STREAM, in terms of correctness (H1). This
hypotheses were based on the presumed advantages of having a global
baseline. We found that STREAM and INT performed better than THEME
and STACK. Again, STACK performed worse than expected while
STREAM performed better than expected. This runs counter to our

original expectations that STACK would perform best for this task
due to its straight bottom baseline, suggesting that STREAM wiggle
reduction improves the graphical perception for this task. However, the
differences in this task were very small with close to 100% correctness
in all four techniques. Therefore, although we found a significant
difference between STREAM and THEME and between INT and STACK
these differences might still have happened by chance.

We expected INT to be slowest for all tasks (H3), due to the time it
takes to interact with the visualization. This is confirmed for Tind , and
to a lower extent for Tagg. However, INT was the fastest technique for
Tscomp. It seems that for this task, the time spent to interact and change
the baseline is lower than the time to visually browse and compare all
streams with the three other techniques. We observed very different
strategies in the non-interactive conditions. While some people guessed
the answer (which resulted in short answer times), others tried to read
the top value and the bottom value of the combined stream and mentally
calculated the difference. In the INT condition people could choose
to straighten the bottom baseline so that they only had to read the top
value and could save the time for mental calculation. The slightly lower
efficiency of INT for value comparison tasks (Tind and Tagg) could be
explained by the extra time needed for deciding on a strategy as well
as for the interaction of straightening the baseline. For example, one
participant indicated a change of strategy partway through the session:

“There was a learning curve. In the middle of the ses-
sion I realized that in some [tasks] I can turn the entire
graph into a stacked area graph. That makes it much easier
for comparing the total amounts” - P13

Participants’ aesthetic preferences and perceived readability of vi-
sualizations were not indicative of either our results or the underlying
graphical perception results. While we generally confirm that stacked
area charts were outperformed by the other techniques, participants
overwhelmingly preferred the aesthetic qualities of stacked area charts
and estimated stacked area charts to be easier to read – though partici-
pants did not perform well with this technique during the experiment
and even expressed frustration:

“[Stream comparison in the stacked area chart] was
really hard. [...] If I wasn’t asked to I wouldn’t bother doing
it” - P14

“[The stacked are chart is] not so easy for looking at
the individual stream, especially the ones that are up higher
as they are bumped up a lot by the ones below.” - P16

Participants found INT to be the least aesthetically pleasing visualiza-
tion while this technique has both high perceived readability and high
measured readability. On the other hand, participants found STACK to
be the most aesthetically pleasing and the most readable visualization
while this technique has the lowest measured readability. It appears that
there can be a tradeoff between aesthetics and efficiency of a technique.
However, participants found STREAM to be aesthetically pleasing and
STREAM performed best for two out of three tasks, suggesting that
STREAM has both aesthetics and efficiency value.

5.2 Implications
Overall, the differences between techniques are usually small. The
incremental improvements in stacked graph design, from STACK, to
THEME to STREAM, and finally to the addition of interactivity, has been
largely justified using Cleveland and McGill’s fundamental graphical
perception studies [12]. These studies would have predicted that, over-
all, STREAM would perform better than THEME, which would perform
better than STACK. Our results suggest that this evolution indeed leads
to small perceptual improvements for performing standard tasks on
multiple time series, confirming these predictions.

Predictions Based on Theoretical Models: In the Information
Visualization community, theoretical perceptual models are often used
to predict the relative readability of visualizations. In the case of



stacked graphs Cleveland and McGill’s perceptual model [12] was used
to argue the advantage of streamgraphs over ThemeRiver and stacked
area charts [10]. According to our study these predictions can work,
however they do not shed light on the extent to which the techniques
differ. Therefore empirical investigations can still be beneficial. In the
case of stacked graphs our study suggests that while the predictions are
generally correct, the effect sizes are small.

Empirically Based Suggestions for the Use of Stacked Graphs:
Although the perceptual difficulties of stacked graphs are well known
in the Information Visualization community and this form of visual
representation has been critiqued a lot on the basis of previous percep-
tual studies [12], stacked graphs are still widely used on the web and in
casual scenarios [10, 13, 17]. Our empirical investigation contributes
to this ongoing discussion by offering recommendations on when to
use which technique. Based on our empirical results, we make the
following recommendations:

R1 STREAM performs best for value comparison tasks (Tind and Tagg).
Therefore, if only value comparison tasks are to be performed,
we recommend using STREAM. Overall, in a static condition,
STREAM appears to be the best choice, as STREAM leads to better
results than both STACK and THEME.

R2 INT performs best for both Tscomp and Tagg in terms of correctness,
at the cost of being slower for Tagg. Therefore, if a variety of
tasks are to be performed, we recommend using INT. INT is a
good alternative especially if people are expected to compare
streams instead of comparing values at specific times. However,
in a context where aesthetics is important, INT should be avoided.

R3 There is no condition where there is a performance advantage to
using STACK, and we recommend against using this technique.
However, STACK is subjectively interpreted to be both the most
readable and the most aesthetically pleasing technique.

Interaction for Solving Perceptual Difficulties: While adding in-
teractivity to a technique helped in some cases, it appeared to interfere
in other cases where it required participants to rely on their memory
of a perceived value for a comparison. This is interesting from an HCI
perspective as it suggests that interaction has to be carefully designed to
provide perceptual benefits. We recommend that visualization design-
ers consider the cost/benefit tradeoff between supplying the interaction
and the increase in memory load for perceptual tasks.

5.3 Limitations and Future Work

Our study is the first to quantitatively assess and compare the graphical
perception of stacked area charts, ThemeRivers, streamgraphs and
ThemeRiver with interactive baseline straightening. Although our
findings suggest that improvements over stacked charts and interactivity
lead to better graphical perception of time series, like any controlled
experiment, the results of our study are valid under the conditions of
the study.

Interaction Techniques for Stacked Area Charts: The interactive
technique we developed indicated promising trends to improve read-
ability for some tasks. One direction of future research could further
evaluate the impact of using a wider range of interactive techniques
such as straightening more than one stream or reordering streams, as
suggested by Baur et al [4].

Datasets: We picked two real-world datasets and a randomly gener-
ated datasets in order to vary the dataset properties widely. However,
our selection could not be exhaustive and representative of all possible
datasets. Replicating the study with other datasets would certainly lead
to slightly different results.

Tasks: Our task selection was also not exhaustive. In particular
we chose not to use value retrieval tasks. Value estimation tasks are
also important, but as our experiment already included a large number
of factors, we chose to use comparison tasks, since they would also
be impacted by value estimation performance. As is the nature of
controlled experiments, some of the choices necessary for this study
would not normally be reflected in a real-world application of these four
techniques. Although we chose our tasks to cover all three information
levels, they do not cover the full range of tasks and combinations of

tasks that one might attempt in a real use setting.
Colour Scheme: The color scheme we used may also have had an

effect on our results. A follow-up study dedicated to assessing the effect
of color scheme would be an interesting complement to our findings.

Impact of Interaction Techniques: The most surprising of our
results is that using INT led to lower accuracy than both STREAM and
THEME for the Tind task. Given that INT is an enhancement of THEME,
we expected that people would perform better with the enhanced version
than with the basic version, as this is usually the case [34] and as
this is commonly accepted. Instead, our results suggest that adding
interactivity to a static visualization technique can be detrimental. In our
case, we explain the lower performance using INT due to the fact that
in the interactive condition, participants may have felt that they had to
use the interactive capabilities of the technique, and used the interactive
baseline even when it did not help (for Tind). Indeed, for performing
Tind , participants usually changed the baseline to read accurately the
height of the stream x at A. Then, participants changed the baseline to
read accurately the height of the stream y at B. By doing so, participants
had to memorize the perceived height of x at A and compare it based
on their memorized graphic to the height of y at B. On the other hand,
in a static condition, participants compared x and y at A and B at the
same time, without having to store one value in memory.

This last point raises an important question regarding interaction.
Although interactive capabilities are usually designed to improve the
accuracy and efficiency of performing tasks, the effects can be negative.
Better understanding the interplay between interactive capabilities,
perception, and memory, appears to be a direction worth pursuing.

6 CONCLUSION

We have assessed and compared the readability of stacked area charts,
ThemeRivers, streamgraphs, and our own interactive ThemeRiver tech-
nique with baseline straightening for tasks covering the elementary, in-
termediate, and overall levels of readability for two real-world datasets
and one randomly generated dataset.

This study is the first to measure the readability of stacked area charts
and their incremental variations, whose design has been justified based
largely on fundamental graphical perception studies [12]. Our results
show that in general the expectations from graphical perception studies
do hold, but that the performance of each technique is highly dependent
on the task to perform. Therefore to be able to apply knowledge from
general perceptual models to predict the readability of visualizations,
we have to carefully consider the task to perform.

Our study contributes empirically grounded recommendations for
the use of stacked graphs. Indeed, using STREAM leads to better
performance than the two other static visualization techniques for both
individual and aggregated value comparison tasks. However, for stream
comparisons, the INT led to better results, both in terms of correctness
and completion time. Within the context of our experiment design,
we recommend using STREAM for static representation of stacked
time series – which reach their limits for stream comparisons. We
recommend avoiding using STACK if efficiency is a criteria; but if the
purpose is to create an aesthetically pleasing visualization, then stacked
area charts should be considered.

We discussed the introduction of interaction as a means to miti-
gate perceptual difficulties based on our results. Although interaction
can help people perform some tasks more accurately and sometimes
more quickly, if additional memory load is introduced, then the use of
interaction can be detrimental.

The findings of our experiment can inform visualization designers
when deciding which visual representation to choose. In a more general
sense we discussed the use of theoretical models to predict readability
of visualizations as well as the introduction of interaction to solve
perceptual problems in visualization.
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