
UNIVERSITY OF CALGARY

Lark: Using Meta-visualizations for Coordinating Collaboration

by

Matthew Andrew Tobiasz

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

APRIL, 

© Matthew Andrew Tobiasz 

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

e undersigned certify that they have read, and recommend to the Faculty of Graduate Studies

for acceptance, a thesis entitled “Lark: Using Meta-visualizations for Coordinating Collaboration”

submitted by Matthew Andrew Tobiasz in partial fulfillment of the requirements for the degree of

Master of Science.

Dr. Sheelagh MST Carpendale
Supervisor

Department of Computer Science

Dr. John Daniel Aycock
Internal Examiner

Department of Computer Science

Mr. Gerald Marshall Hushlak
External Examiner
Department of Art

Dr. Michael Gordon Surette
External Examiner

Department of Microbiology and Infectious Diseases

Date

ii

Abstract

Motivated by the increasing volume and complexity of real-world data, my research focuses on pro-

viding better soware support for co-located collaborative information analysis. In particular, I

consider mixed-focus collaboration—team work characterized by frequent changes in collaboration

styles, which range from loosely coupled, individual work to closely coupled, group work. I iden-

tify three concepts—temporal flexibility, spatial flexibility, and scoped interaction—which play im-

portant roles in this type of work scenario. To this end, I design and implement Lark: a coordi-

nated multiple view visualization environment where the relationships and connections between in-

dividual views are made explicit through an integrated meta-visualization. is provides both visual

workspace awareness and explicit collaboration coordination points which provide group members

with the freedom to work in concert or independently. e coordination of interactions can help

facilitate mixed-focus collaborative work by supporting both individual and group work, and the

transitions between these different types of collaboration.

iii

Acknowledgements

I wish to thank the following people who supported and encouraged me during this thesis.

ank you to my supervisor and mentor Sheelagh Carpendale. I am constantly inspired by your

perspicacious view of the world. Your wisdom and encouragement has guided me in maturing aca-

demically, professionally, and personally, and I am absolutely honoured to have had this opportunity

to work with you.

ank you Petra Isenberg, for going first and making it look easy. Your support over the years

has been unwavering and always positive. is project wouldn’t have begun, nor would it have come

as far as it has, without your involvement.

To all those people who at one time were members of the Interactions Lab and made it what it

is, in particular: Fabrício Anastácio, Robin Arseneault, June Au Yeung, Christopher Collins, Marian

Dörk, Mark Hancock, Helen He, Uta Hinrichs, Petra Isenberg, Ricardo Jota, Sean Lynch, Kimberly

Mikulecky, Miguel Nacenta, Eric Pattison, Paul Saulnier, Stephen Voida, Mark Watson, and Torre

Zuk.

ank you tomy biologist collaborators: Mike Surette, Chris Sibley, Cynthia Collins, and the rest

of the members of the Surette Lab.

ank you to Tim Burrell, Christopher Collins, Marian Dörk, Uta Hinrichs, Petra Isenberg, and

Sean Lynch for the constructive comments on early dras of this thesis.

Lastly, my appreciation and love goes out to my family and friends for all the encouragement,

support, laughs, and love. To my family: Mom, Dad, Eric, Mary Lynn, and Anna. And my friends,

many who I have already mentioned, plus: Megan Burnett, Tim Burrell, Dana Codding, Christopher

Collins, David Custer, Ola Kowalewski, Carolyn Krahn, Melissa McDermott, Rachal Pattison, and

Kris Read. I couldn’t have done this, nor would of it been worth doing, without you.

iv

To the memory of

Douglas Russell Cochran ( - )

v

Publications

Materials, ideas, and figures from this thesis have appeared previously in the following publication:

Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale (). Lark: Coordinating co-located
collaboration with information visualization. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of the IEEE Conference on Information Visualization) (): –. doi:
./TVCG..

vi

http://dx.doi.org/10.1109/TVCG.2009.162
http://dx.doi.org/10.1109/TVCG.2009.162

Table of Contents

Abstract . iii

Acknowledgements . iv

Dedication . v

Publications . vi

List of Tables . xi

List of Figures . xii

List of Listings . xvi

 Introduction . 

. Motivation . 

. Research Context . 

. Background . 

. Example Collaborative Scenario . 

.. Parallel Work . 

.. Parallel and Joint Work . 

.. Joint Work . 

.. Collaboration Scenario Synopsis . 

. Research Challenges . 

. esis Organization . 

vii

 Related Work . 

. Scientific and Information Visualization . 

. History of Visualization Process Models . 

. Data Flow Model . 

.. CM: A Data Flow Metaphor for Visualization: 

.. Application Visualization System’s Visualization Cycle 

.. Haber and McNabb’s Data Flow Model . 

.. Use and Extension of the Data Flow Model 

. Data State Model . 

.. Operator Interaction Framework . 

.. Visualization Reference Model . 

.. Carpendale’s Presentation Space . 

.. Visualization Pipelines Compared . 

. Hierarchical Data . 

.. Definition of a Tree . 

.. Visualization of a Tree . 

. Collaboration . 

.. Computer-Supported Cooperative Work . 

.. Tabletop . 

.. Collaborative Information Visualization . 

.. Design Guidelines for Co-located Collaborative Information Visualization

Systems . 

. Coordinated Multiple Views . 

. Meta-visualization . 

. Summary . 

 Lark: Collaboration Concept . 

. Background . 

. Overview of Lark . 

viii

. Design Process . 

.. Support Changing Collaboration Styles . 

.. Large Digital Tabletop . 

.. Direct-Touch Interaction Design . 

.. Coordinated Multiple Views System . 

.. Temporal Flexibility . 

.. Spatial Flexibility . 

.. Scoped Interaction . 

.. Integrated Meta-visualization . 

.. Visualization Pipeline . 

.. Visualization Pipeline-Centric Soware Architecture 

. Discussion . 

. Summary . 

 Interacting with Lark . 

. Lark’s Information Visualization Environment . 

.. View Representation . 

.. Meta-visualization . 

. Visual Collaboration Coordination . 

.. View Generation . 

.. Pipeline Creation and Branching . 

. Lark Interactions . 

.. Setting Interaction Scope . 

.. Coordinated Interactions . 

. Pipeline Cloning . 

. Summary . 

 Implementation of Lark . 

. Lark’s System Architecture and e Visualization Pipeline 

ix

. Elm: Tree Representation Library . 

. SnowMonkey: Tree Visualization Library . 

. Lark: Interactive Visual Interface . 

. Summary . 

 Conclusion . 

. Research Challenges . 

. Contributions . 

. Example Collaborative Scenario Using Lark . 

.. Parallel Work . 

.. Parallel and Joint Work . 

.. Joint Work . 

. Future Work . 

. esis Conclusion . 

Bibliography . 

A Permission for Use of Previous Publications . 

x

List of Tables

. Tory and Möller’s high-level visualization taxonomy. 

. Design guidelines for the effective use of multiple views. 

xi

List of Figures

. Two examples of the increasing quantity of available information. 

. e research scope and context of this thesis. 

. Parallel work: Bob, Carlos, and Alice (from le to right) start by exploring the data

individually. 

. Parallel and joint work: Alice and Bob are discussing the data with one another while

Carlos focuses on his own analysis. 

. Joint work: Bob, Carlos, and Alice have moved to the same work region and are

discussing the findings from their analysis. 

. An example of the original CM graphical user interface, showing a simple ap-

plication. 

. Application Visualization System (AVS)’s analysis cycle, the first known formalized

visualization process model [reproduced from Upson et al., , p. ]. 

. e numerous visualization design decisions available for mapping a D scalar field

to geometric primitives, available in the mapping stage of AVS’s visualization cy-

cle [redrawn from Upson et al., , p. ]. 

. Visualization process models. 

. An example of operator classificationwithin the operator interaction framework [adapted

from Chi and Riedl, , p. ]. 

. An example of the distinction between value versus view operators using a filtering

operation. 

xii

. Categorization of individual operations froman example visualization processwithin

the different visualization pipelines. 

. Examples of undirected and directed graphs, illustrated using node-link diagrams. . 

. An example of a rooted tree, illustrated using a node-link diagram. 

. Four example tree layouts, all visualizing the same data set with different represen-

tations. 

. An integrated meta-visualization model, presented by Weaver []. 

. A view of Improvise’s interface, visualizing election results from the State ofMichigan

from  to  [Weaver, ]. 

. In a separate window tab, a coordination query graph illustrates how the individual

views shown in Figure . are connected to one another within Improvise [Weaver,

]. 

. e VisLink coordinated multiple views (CMV) system by Collins and Carpendale

[]. 

. Lark’s design process. 

. Lark’s design decision to support changing collaboration styles. 

. Lark’s design decision to use a large digital tabletop as the hardware form factor. . . . 

. e large, multi-touch tabletop display from SMART Technologies that was used in

the development of Lark. 

. Lark’s design challenge of direct-touch interaction design. 

. Lark’s design decision to use a coordinated multiple views system. 

. Lark’s design challenge of temporal flexibility. 

. Results from a exploratory study of individuals and small groups working with paper

based visualizations conducted by Isenberg et al. []. 

. Lark’s design challenge of spatial flexibility. 

. Lark’s design challenge of scoped interaction. 

. Lark’s design challenge of creating a integrated meta-visualization. 

xiii

. Lark’s design decision of structuring the integrated meta-visualization aer a visual-

ization pipeline. 

. evisualization pipeline used in Lark (shown above) is similar toCarpendale []’s

pipeline, except that it uses different terminology for the pipeline states and trans-

formations. 

. Lark’s visualization pipeline illustrated using an example visualization process of vi-

sualizing set data. 

. Branching Lark’s visualization pipeline illustrated with three end visualization views

of common underlying data. 

. Lark’s workspace showing four views of a common data set, “Dual Clades”, linked

together with an integrated meta-visualization making the underlying visualization

pipeline visually explicit. 

. Lark’s design challenge of engineering Lark with a visualization pipeline-centric so-

ware architecture. 

. Lark’s collaborative visualization environment: single data set “External Causes of

Mortality”, four coordinated views, plus ameta-visualization of the visualization pipeline

which explicitly shows how the four views are linked to one another in theCMV system. 

. Examples of the two colour palettes designed and optimized for two different pre-

sentation mediums: print graphics and rear projected tabletop displays. 

. Individual view-panes, visualizing the same data set with different tree layouts. All

view-panes aremobile and resizable throughdirection interactionwith the surround-

ing grey border. In this image, the meta-visualization has been omitted for clarity. . . 

. Lark’s conceptual visualizationpipeline and two examplemeta-visualizations demon-

strating how the pipeline is visually represented within the visualization workspace. . 

. e creation of a new view from a data source using a touch-drag-release interac-

tion technique. e silhouette of a hand has been superimposed on the image for

illustrative purposes. 

xiv

. Interaction technique for creating a new pipeline branch off an existing spatial layout

collaboration coordination point (CCP). 

. e CCP icons bordering the top of a view-pane. 

. An example interaction sequence illustrating the user experience of scoped interaction.

. e outcome of filtering operations applied to different points in Lark’s pipeline. e

meta-visualization has been omitted for clarity. 

. Iconmeta-visualization of the analytical abstractionCCP icon. e amount of colour

fill indicates the percentage of unfiltered items at this state. is same encoding is

used in the presentation CCP icon. 

. Icon meta-visualization of the spatial layout CCP showing the four types of spatial

layouts available in Lark. 

. Interaction technique for cloning an existing pipeline branch. 

. Lark’s system architecture stack. 

. e visualization pipeline and the specific soware components which implement

sections of the pipeline. 

. Elm UML class diagram. 

. An overview of the individual classes which comprise the SnowMonkey library and

their relationship to one another, illustrated usingUnifiedModeling Language (UML)

class diagram notation. 

. Parallel work: Initially Alice, Bob, andCarlos start by exploring the data with entirely

separate views of the same data set. 

. Parallel and joint work: Bob and Carlos are discussing a view together while Alice

still focuses on her own analysis. 

. Joint work: Bob, Carlos, and Alice havemoved to the samework region and enlarged

one view to discuss. 

xv

List of Listings

. Example C++ source code illustrating how a tree of heterogeneous data is created us-

ing theElm library. Here a treewith eight leaf vertices—fourVertexTemplate<Circle>

and four VertexTemplate<Square> objects—at a depth of one is created and ini-

tialized. 

xvi

Chapter 

Introduction

In this thesis, I present research into a novel approach to coordinating interactions with information

visualizations on shared digital workspaces. is approachmakes use of an information visualization

process model, or visualization pipeline, as the means to organize the collaborative workspace. is

visualization pipeline is made visually explicit within the workspace through an integrated meta-

visualization which supports both the awareness of how data visualization views are linked and the

freedom for group members to work in concert or independently of one another. e research I

present details the conceptual foundations behind this novel approach, in addition to the design and

implementation of Lark, a system which embodies this collaboration and coordination concept.

To set the context for this research, I discuss how research on collaborative teamwork and infor-

mation visualization plays an important role in addressing present day information challenges. In

Section ., I define the scope of my research by specifying the type of collaborative work I focus on

and contextualizing my thesis within the larger research context. Next, in Section . I briefly intro-

duce the milieu this research grew out of: a collaboration with a group of biologists which grounded

and inspired the research reported in this thesis. To better explain the type of collaborative teamwork

that this thesis focuses on, I present a fictitious collaborative scenario in Section .. is scenario il-

lustrates the characteristics of collaborative work that I am particularly interested in. In this scenario,

I identify and define three important concepts oen present in collaborative work. ese concepts

are used to structure the research challenges which I address in this thesis. I then itemize the specific

research challenges in Section .. Lastly, in Section ., I conclude the chapter with an outline of

the organization of the remainder of the thesis.

. Motivation

e amount of accessible real-world information is continually growing. From the increasing num-

ber of articles in the publicly contributed online encyclopedia Wikipedia [a], to the expanding

number of base pairs catalogued in the National Institutes of Health’s open access genetic sequence

database GenBank [Benson et al., ], the volume of available information is accelerating. Fig-

ure . illustrates the proliferation of these two examples from their inception to present day. e

persistent growth rates observed in Wikipedia and GenBank are indicative of a pervasive trend seen

in numerous other areas: more and more information is becoming readily available.

Analyzing and interpreting this burgeoning quantity of information is a difficult challenge. Uti-

lizing the information processing capabilities afforded by information technology has helped in ad-

dressing this challenge; however, it is not a complete solution in itself. Computational resources

excel at performing well defined information processing tasks, however, higher level analysis activi-

ties, such as “the crystallisation of knowledge from data” [Pattison and Phillips, ], are far beyond

the capabilities of contemporary computer machinery. And so, people continue to play an integral

role in high-level information-based activities.

e challenges present in the growing quantity of information persist at these higher level activ-

ities, and so, strategies for helping people manage these difficulties are needed. To this end, two im-

portant factors have been suggested: collaborative teamwork and information visualization [omas

and Cook, ].

Collaborative teamwork involves groups of individuals working together on a common set of

intersecting goals. It allows group members to combine their knowledge, potentially of different

types and levels of expertise, enabling substantial coverage in both breadth and depth. For ana-

lytic activities, collaborative teamwork has the potential for leading to increased quality of solutions

and discoveries, a testament to the Japanese proverb: none of us is as smart as all of us [Masum,

]. In Computer Science, research into supporting collaborative teamwork falls under the field



0

1,000,000

2,000,000

3,000,000

4,000,000

2002 2004 2006 2008 2010

The Number of Articles on en.wikipedia.org

A
rt

ic
le

s

Year

(a) e growth of total articles in English Wikipedia [Wikipedia, c].

0

50,000,000,000

100,000,000,000

150,000,000,000

1982 1985 1988 1991 1994 1997 2000 2003 2006 2009

The Number of Base Pairs in GenBank

Ba
se

 P
ai

rs

Year

(b) e growth of catalogued base pairs in GenBank [National Center for Biotechnology Information, ].
Since the project’s founding in  this number has doubled approximately every  months.

Figure .: Two examples of the increasing quantity of available information.

of Computer-Supported Cooperative Work (CSCW) which focuses on “groups of users—how to de-

sign systems to support their work as a group and how to understand the effect of technology on their

work patterns” [Dix et al., , p. ]. Systems developed to support collaborative teamwork have

the potential to help groups of individuals address challenges, such as the abundance of information,

by empowering collaborative group activities with computational support that is efficient, effective,

and satisfactory [Gutwin and Greenberg, ].



Information visualization is widely understood as “the use of computer-supported, interactive,

visual representations of abstract data to amplify cognition” [Card et al., , p. ]. It has been

suggested that:

…visualization can amplify cognition: () by increasing the memory and processing

resources available to the users, () by reducing the search for information, () by using

visual representations to enhance the detection of patterns, () by enabling perceptual

inference operations, () by using perceptual attentionmechanisms for monitoring, and

() by encoding information in a manipulable medium. [Card et al., , p. ]

Information visualization has the potential to be an effective means of working with large amounts

of information. It is therefore increasingly recognized as being an important approach in supporting

sense-making of the growing quantity of information. f

Both collaborative teamwork and information visualization are important factors in dealing with

the information challenges of today. While considerable research is being conducted in both the

CSCWand Information Visualization (IV) communities, comparatively less research examines

the interplay between them; this is especially true for co-located collaborative scenarios. At a high

level, this thesis is motivated by the practical problem of how to best support the use of information

visualizations during collaborative teamwork.

. Research Context

Inmoving fromahigh-level characterization ofmy research problem to a concentrated set of research

challenges, I now define the scope of my research. To this end, I narrow the general research scope

by a set of constraints as to the type of collaborative work that I focus on. en, I contextualize and

further scope the thesis topic within the larger research context.

In this thesis, I am interested in collaborative work practices that make use of information visu-

alizations during the data analysis process. I constrain my investigation to collaborative teamwork

which meets the following three criteria: occurs in a synchronous co-located environment, uses a

large multi-touch tabletop display, and involves small groups of people.

First, I restrict the type of collaboration to teamwork occurring in a synchronous co-located en-



vironment. at is to say, synchronous, occurring at the same time, and, co-located, occurring in the

same physical space. A face-to-face group meeting would be an example of this type of collabora-

tion. To provide additional clarity by way of antithesis, the polar opposite of synchronous co-located

collaboration is asynchronous remote collaboration. Here, the collaboration is characterized by peo-

ple working as a group from different spaces and at different times. Instances of collaborative work

occurring outside of a synchronous co-located environment are beyond the scope of this thesis.

e use of information visualizations during collaborative teamwork sessions assumes that the

collaborators have computational resources that are readily accessible when working together. One

can imagine that the form factor of such devices canwidely vary: from individual laptop computers or

mobile computing devices, to a single high-performance computer workstation shared by the group.

e second constraint is, therefore, to restrict the form factor of interest to large multi-touch displays.

Large multi-touch wall and tabletop displays are a compelling form factor for supporting collabora-

tive work as they offer new opportunities to support face-to-face collaboration, discussion, interpre-

tation, and analysis around information displays, expanding the possibilities of desktop-based data

analysis environments. Large displays allow multiple people to stand comfortably around a shared

workspace with sufficient room for individual and group work. Multi-touch capabilities offer the

opportunity for team members to manipulate both shared and individual instances of data represen-

tations concurrently. Combined large multi-touch displays offer new opportunities for supporting

collaborative information visualization. Capitalizing on these affordances, I constrain my focus to

the form factor of large multi-touch displays, especially digital tabletops.

ird, the size and technological capabilities of current large multi-touch displays are most ide-

ally suited for use by small groups of people [Scott et al., a]. erefore, group size is constrained

to small groups of approximately two to four people. is restriction is necessary in order to reli-

ably provide a computing environment that offers rich digital interfaces and visualizations, where

each collaborator can concurrently interact with the digital environment. A computing device with

these affordances requires multi-touch input that is robust and at a high input resolution, in combi-

nation with a high resolution display, operating at a high pixel density, both of which must respond

at interactive rates [Isenberg and Carpendale, ]. While these limitations in current hardware



Synchronous
Co-locatedCollaborativeInformation

Visualization
Multi-touch

Tabletop Displays

Figure .: e research scope and context of this thesis. Note that this progressive nesting im-
plies, for instance, that the research scope is focused on collaboration that happens within
Information Visualization—not to all collaborative situations.

capabilities will undoubtedly be resolved in the near future, they present restrictions to the number

of people that can be supported by the large multi-touch displays of today.

Combining these constraints, I focus my investigation of collaborative teamwork to supporting

mixed-focus collaboration, which is known to occur under these conditions [Tang et al., ; Isen-

berg et al., ]. Mixed-focus collaboration is when group members frequently transition from

loosely coupled, individual work to closely coupled, group work [Gutwin and Greenberg, ].

Here, coupling is defined as “the degree to which people are working together” [Baker et al., ].

e scope and context of this thesis research is illustrated in Figure .. At a high level, this re-

search falls under the field of IV. Within IV, my research focuses on the use of visualiza-

tions for collaborative data analysis tasks. In particular, collaborations in a synchronous co-located

environment. My focus can be further narrowed towards exploring the use of multi-touch tabletop

displays for collaborative work. e progressive refinement of my research scope is summarized in

Figure ..

. Background

To groundmy research in real-world data, tasks, and context, fellow student Petra Isenberg, Dr. Shee-

lagh Carpendale, and myself initiated a collaboration with a group of biologists led by Dr. Michael

G. Surette. Dr. Surette’s group is in the Faculty of Medicine, at the University of Calgary, researching

microbiology and infectious diseases.

e research reported in this thesis was inspired by, and grounded in, discussions that came as a

result of participation in Dr. Surette’s research group. My colleagues and I were interested in inves-

tigating the collaborative processes already being practised within this group of biologists. rough



informal discussions and regular attendance of the biologists’ weekly research meetings, we sought

to gain insight into the group’s collaboration dynamics, and use this insight as a starting point for

our visualization research. In our discussions with this group of biologists, we were interested in

how their collaborative practices could be facilitated by the use of digital tools, particularly for data

analysis tasks. Our informal observations of the biologists’ collaborative processes suggested that

one of the most necessary pieces of technology needed to support collaboration were not novel data

analysis tools, but rather an integrated data analysis environment with direct support for collabora-

tion. While this thesis is set in a biological context, my primary focus is exploring ways to support

collaboration.

. Example Collaborative Scenario

To better identify the type of collaboration this thesis investigates, I describe an example scenario that

follows a fictitious team of three biologists, Alice, Bob, and Carlos, working together to analyze clus-

tered gene expression data from their latest experiment. A large number of genes and the complexity

of the biological networks motivated the three to jointly analyze the data. is example illustrates

the type of collaboration that is the focus of this research: small groups engaging in synchronous

co-located collaborative data analysis. In this scenario digital tools are absent as the fictitious team

makes use of paper-based visualizations and charts of their experiment results—a common approach

employed by the biologists in Dr. Surette’s research group. By focusing initially on a non-digital con-

text, I identify the general characteristics of collaborative work practices that I wish to support in a

digital context. e example highlights three important concepts oen found in mixed-focus col-

laborative work: scoped interaction, temporal flexibility, and spatial flexibility. In the proceeding

subsections, I define each of these concepts, identifying and explaining their occurrence during the

collaborative scenario.

.. Parallel Work

e three analysts come together around a large table to begin their investigation. Each analyst has

his or her own hard copy of the experimental results, printed out on sheets of paper. Since they do not

know what to expect from the experimental data they broaden their coverage by exploring the data



Figure .: Parallel work: Bob, Carlos, and Alice (from le to right) start by exploring the data
individually.

in parallel, looking for interesting patterns individually (Figure .). Alice wants to get an overview

of the data. In front of her, she lays out numerous sheets of paper with the empirical results, hoping to

get a general feel of the data. Bob takes a different approach. He wants to explore one particular part

of the experimental data before looking at anything else. He locates the area of interest, and begins a

careful examination of the data. Carlos decides to do a comparative exploration of data from a single

gene under different experimental conditions, presented as a gene expression profile. He lays out the

expression profiles next to one another, and begins his visual comparison.

is initial work partitioning outlines some of the pertinent collaboration aspects I am interested

in. First of all, the large table allows each analyst to establish their own personal workspace in the

larger shared work environment. is entails spatial flexibility, which is the unconstrained spatial

organization and mobility of artifacts in and people in and around the work environment, allowing

each analyst to organize him/herself in the workspace however he/she feels is most appropriate. For

example, Alice spread out empirical data in front of her, seeking a high level overview. Carlos on the

other hand, looked closely at a single gene under multiple conditions, placing the expression profiles

next to one another for easy visual comparison. ese two approaches to data analysis make use of



unconstrained physical arrangement of objects in the work environment to best match the chosen

analysis approach. It is therefore important to be able to spatially organize objects in a customizable

and dynamic fashion, thereby supporting different analysis styles.

Another salient concept is scoped interaction, defined as the extent of an action’s effects as con-

trolled by the performer of the action. In the scenario, all three analysts are able to concurrently

interact with objects in their work environment. ey moderate their interactions when appropri-

ate, for instance, they can use their peripheral awareness of each other to flexibly ensure that each

person’s work can proceed unhampered. Scoped interaction means that all three analysts can work

in parallel starting from their own unique analysis strategy, yet without disturbing the approach of

his/her colleague.

.. Parallel and Joint Work

Carlos has found some interesting patterns in the data which he begins to investigate further. Alice

notices that Bob is closely examining a section of data by glancing over at his workspace area. In-

trigued by what she sees, she walks over to where Bob is working, gazing over his shoulder to get a

better look at what he has found. Bob, welcoming Alice’s assistance, turns the sheet of paper he is

looking at so that Alice can have a better view. Bob explains what he has found by tracing through

the analysis steps and the items in the data that brought him to this point in time. At each step in his

explanation, Bob picks up the sheet of paper containing the experimental data he is currently refer-

ring to and passes it to Alice for closer inspection. e two begin discussing the significance of the

data, as they examine the further details together. Figure . shows Alice and Bob working together,

while Carlos works individually.

We see that as the analysis scenario progresses the collaborative cohesion has changed, from in-

dividual parallel work to individual parallel and joint group work. Alice and Bob are working closely

together, while Carlos is in loosely coupled collaboration with his colleagues. Alice and Bob’s tran-

sition in collaboration styles was heralded by Alice moving from her private workspace into closer

proximity to Bob. Bob, noticing Alice’s social cue shis his current activities to include her, reori-

enting artifacts in his workspace so that they can be easily seen by Alice and explaining why he is



Figure .: Parallel and joint work: Alice and Bob are discussing the data with one another while
Carlos focuses on his own analysis.

interested in the piece of data that has his attention. is mobility of people and artifacts around

the workspace (spatial flexibility), is important in facilitating changing collaboration styles. Bob’s

explanation involves temporally unravelling the analysis process he employed. is is an instance

of temporal flexibility, which I define as, the unrestricted temporal ordering of activities. Bob is able

to come back to his previous work and retrace his reasoning process, moving through activities he

performed early in his analysis, before resuming his current activity. ere is not specific temporal

ordering to these activities, as such, Bob is able to perform them in whatever order he deems appro-

priate. is concept applies to group activities as well; they too have total control of the temporal

ordering of their activities. Again, scoped interaction means that Alice and Bob can interact with

items in the workspace without disturbing Carlos in his investigation.

.. Joint Work

At some point all three analysts decide to come together to see what they have found, closely dis-

cussing and negotiating their findings. Alice and Bob move over to where Carlos has been working,

to have a better look at his results. Carlos reorganizes his workspace to be better viewed by the group



Figure .: Joint work: Bob, Carlos, and Alice have moved to the same work region and are
discussing the findings from their analysis.

and explains what he has been exploring, drawing attention to the items he finds most interesting.

Upon identifying a common finding uncovered by all three analysts, the group moves over to Alice’s

workspace as she confirms her similar finding. As the discussion continues, the group moves about

the workspace, verifying the conclusions from their analysis. Figure . shows Alice, Bob, and Carlos

having moved to one area of the work space to discuss their findings together.

Again we see a shi in collaboration styles accompanied by movement of analysts and artifacts

around the work space (spatial flexibility). e analysts revisit their previous activities to illustrate

to the group the derived conclusions from their analysis (temporal flexibility). e discussion is

supported by the physical arrangement of the data printouts in each analyst’s work space (spatial

flexibility).

.. Collaboration Scenario Synopsis

ese scenarios present a possible example of the type of mixed-focus collaboration that I am inter-

ested in. e changes in collaboration styles throughout the duration of the collaborative analysis

session are readily identifiable. So too are the presence of temporal flexibility, spatial flexibility, and



scoped interaction, which play an important role in facilitating the different collaboration styles and

the transitions between styles. In deciding to support changing collaboration styles, I focus on these

three germane characteristics, which are defined as follows:

Temporal Flexibility: interactions are flexible temporally if no constraints exist that require a spe-

cific sequencing or other temporal ordering of activities.

Spatial Flexibility: artifacts within, and people around thework environment, have spatial flexibility

if no constraints exist as to the spatial organization of both artifacts and people.

Scoped Interaction: an interaction is explicitly scoped if information about the extent of an action’s

results is explicitly provided in the environment. is information provides an awareness of

the actions of others, as well as control over one’s personal actions. In this thesis I look at spatial

scoping.

. Research Challenges

From the example scenario, I have shown that during mixed-focus collaboration, there are frequent

changes in the collaborative cohesion, ranging from loosely coupled, parallel work to closely cou-

pled, group work. In this thesis, I investigate how to support these changing collaboration styles for

synchronous co-located collaboration within a shared digital workspace. In particular, I address the

following research challenges:

. Howcanweprovide temporal flexibility for data analysis activities? Recent evidence suggests

that temporal flexibility among information analysis tasks is common practice among team

workers [Isenberg et al., ]. I will investigate how to support this behaviour, particularly I

will consider supporting concurrent interaction and not requiring any specific temporal flow

of activities, thus allowing team members to follow their own unique analysis approaches.

. How canwe provide spatial flexibility for visualizations and collaborators around the shared

digital workspace? Since changing collaboration cohesion in large workspaces is commonly

accompanied by changing teammember locations, it is important for artifacts in theworkspace



to be mobile as well. In my research, I will provide a flexible approach to workspace organiza-

tion that can allow team members to establish their own work areas [Scott et al., ], thus

providing support for team members to coordinate their actions [Kruger et al., ].

. How can we provide scoped interaction? Empowering team workers with the ability to work

in parallel without interfering with each other’s task is crucial for collaboration [Scott et al.,

a]. My research investigates howeach interactionwithin a digital workspace can be scoped

in amanner that immediately and persistently informs all workers, thus supporting concurrent

and asynchronous interaction.

. esis Organization

e remainder of this thesis is organized as follows.

Chapter  presents an overview of previously published work related to my thesis research. is

discussion begins with a definitions of visualization and the characterization of two unique visualiza-

tion disciplines—Scientific Visualization (SV) and Information Visualization (IV). Next,

models for conceptualizing the visualization process are introduced and discussed in detail. is

is followed by an overview of hierarchical data and a selection of representational techniques for

visualizing this types of data. An overview of collaborative research from the perspectives of the

Computer-Supported Cooperative Work, Tabletop, and IV research communities is presented.

e remainder of Chapter  outlines visualization research into coordinated multiple views tech-

niques and meta-visualizations.

Lark, a system that facilitates the coordination of interactions with information visualizations

on shared digital workspaces, is then introduced from three distinct perspectives: concept, interface

design, and soware architecture. Each of these perspectives are discussed in their own individual

chapter, beginning with Chapter  which explains the high level concepts upon which Lark is built.

Chapter  outlines the system’s interface and interaction design as seen by someone working with

the system. Chapter  presents an overview of the soware architecture design and the prominent

implementation details.

Chapter  revisits the example collaborative scenario introduced in Section ., this time moving



to a digital context making use of the Lark system for collaborative data analysis. A discussion of the

informal feedback onLark frommybiologist collaborators is presented, alongwith known limitations

of the system, and an overview of exciting directions for future work. e thesis concludes with a

reiteration of the research challenges and a summary of the research contributions which are made

in this work.



Chapter 

Related Work

e following chapter introduces the body of research that this thesis builds upon. I contextualizemy

thesis research contributions through this discussion, by providing the necessary background such

that my contributions can be readily understood. At a high level, the chapter beings with theoretical

considerations, moving towards the pragmatic issues by the end. Section . starts with a definition

of visualization, the research field that this work falls under. I then characterize two visualization

disciplines—Scientific Visualization and Information Visualization—and discuss how others have

sought to differentiate these areas. In Section ., I introduce how these two disciplines have con-

ceptualized the process of visualizing data. I trace the history of two important process models—the

data flow model and the data state model—in Section . and Section . respectively identifying

how closely related these models are to one another and the oen subtle refinements made during

the evolution of each model. Work by Chi and Riedl [] introduced the most innovative con-

tributions for the conceptualization of the information visualization process, and therefore, careful

attention is paid to the important theoretical considerations identified in this work, as it provides

much of the foundation upon which my research is based.

Aer the detailed discussion on visualization process models, the focus of this literature review

shis in Section . to a concrete example of visualizing a particular type of data: hierarchical data.

Amathematical definition of hierarchical data and an overview of some of the common visualization

techniques for representing this specific type of data are provided. Note, visualization techniques for

hierarchical data are not a contribution of this work; rather, they are used as an illustrative example

of information visualization. Visualizing hierarchical data is used in later examples throughout this

thesis, notably also in the Lark system, which is the focus of this work.

Moving from specific visualization techniques, in Section . I present an overview of research on

facilitating collaboration amongst small groups of people in a synchronous co-located environment.

I first look at foundational research from the Computer-Supported Cooperative Work community,

defining the type of collaboration I am particularly interested in: mixed-focus collaboration. Next,

I look at collaboration around interactive tabletop displays, the form factor which I use in my thesis

research. e tabletop discussion is focused on a series of design guidelines for supporting effec-

tive co-located collaboration. is is followed by an overview of previous research on supporting

synchronous co-located collaborative data analysis from the Information Visualization community.

e concluding topic in the collaboration section is a synopsis of design guidelines for co-located

collaborative information visualization systems, which is the design space my thesis research falls

under.

Following the discussion on collaboration, in Section . I introduce how multiple represen-

tations of a common data set can be combined using a technique known as coordinated multiple

views (CMV). A brief overview of these techniques and previous work that investigates the design

space is presented. Next, I introduce meta-visualizations which have been used to tackle some of

the known complexity issues surrounding customizable CMV systems in Section .. ese top-

ics relate to collaborative information visualization, as techniques from CMV in conjunction with

meta-visualizations can be used to provide a foundation for creating a collaborative data analysis en-

vironment. It is in this direction that my own research extends. e primary concepts of this idea

are presented in detail in Chapter .

. Scientific and Information Visualization

Visualization is defined by Card et al. [, p. ] as the transformation of data into visual represen-

tations, presented as interactive computer graphics with the goal of amplifying cognition. Within

academe—as well as in medicine, entertainment, and industry—visualization has received growing



interest over the last thirty years, separating into two disciplines: Scientific Visualization (SV)

and Information Visualization (IV). Card et al. [, chap. ] demarcates SV as generally

focusing on scientific data that is physically based, while IV deals with abstract non-scientific

data. Fluid flow vectors from a hydrology simulation (scientific) and time series stock market data

(non-scientific) are examples of the kind of data visualized in SV and IV respectively. An-

other binary delineation between the two disciplines is that, generally, the data used in SV is

intrinsically spatial [Card and Mackinlay, ]. On the other hand, in IV the data oen is

without a spatial component and it is up to the visualization designer to assign a spatialization where

appropriate [Munzner, ]. While these distinctions are a good starting point, on further scrutiny

they can appear vague and contradictory at times [Tory and Möller, ]. Visualized data which

identifies with IV is oen scientific in nature. (For example, visualizations of phylogenetic trees

used in evolutionary biology to illustrate the relationships between species [Gregory, ] as inves-

tigated by Munzner et al. [].) Furthermore, it is unclear where visualized scientific data that

does not have a spatial component, nor physical in nature, should be classified based on this binary

characterization [Tory and Möller, ].

For a more robust classification of SV and IV, we look to the model–based visualiza-

tion taxonomy proposed by Tory and Möller []. e taxonomy looks to the assumptions made

about a visualization’s design model, rather than the type of data to be visualized, in classifying a cer-

tain visualization technique. e design model is the set of assumptions made by the visualization

designer when creating the visualization algorithm, and these assumptions influence the design de-

cisions made and thereby impact the end visualization. For example, a surface topography might be

stored as set of discretely sampled points (the data type), however the visualization algorithm inter-

polates this data into a representation that is a continuous surface. Here, the design model makes

the assumption that, although the data is discrete, the object of study is continuous, and therefore,

the visualization should represent it as such.

At a high level, Tory and Möller’s taxonomy uses two main criteria in classifying data models:

is the object of study discrete or continuous, and what amount of flexibility—given, constrained, or

chosen—was afforded to the visualization designer in deciding the display attributes (such as spatial-



Display Attributes
Given Constrained Chosen

C
on

tin
uo

us

Images (e. g., medical)

Fluid/gas flow, pressure
distributions

Molecular structures (dis-
tributions of mass, charge,
etc.)

Globe—distribution data
(e. g., elevation levels)

Distortions of given/
continuous ideas (e. g.,
flattened medical
structures, D geographic
maps, fish-eye lens views)

Arrangement of numeric
variable values

Continuous (high-
dimensional) mathematical
functions

Continuous time-varying
data, when time is mapped
to a spatial dimension

Regression analyses

D
isc

re
te

Classified data/images (e. g.,
segmented medical images)

Air traffic positions

Molecular structures (exact
positions of components)

Globe—discrete entity data
(e. g., city locations)

Distortions of given/
discrete ideas (e. g., D
geographic maps, fish-eye
lens
views)

Arrangement of ordinal or
numeric variables values

Discrete time-varying data,
when time is mapped to a
spatial dimension

Arbitrary entity-
relationship data (e. g.,
file structures)

Arbitrary multi-
dimensional data (e. g.,
employment statistics)

Table .: e high-level visualization taxonomy [from Tory and Möller, , p. ], which
uses two main criteria in classifying data models: is the object of study discrete or contin-
uous, and what amount of flexibility—given, constrained, or chosen—was afforded to the
visualization designer in deciding the display attributes. SV is traditionally placed in the
top right corner of the matrix, with IV in the bottom le.

ization, timing, colour, transparency, etc.). Based on these two criteria the traditional definitions of

SV and IV fall on opposing corners of the two-dimensional matrix illustrated in Table ..

Traditionally, SV occupies the top-le of the matrix and IV the bottom-right. e typical

object of study for SV is continuous, where the display attributes are given, such as spatialization.

In IV, the object of study is typically discrete, where the visualization designer has more free-

dom to choose the display attributes. Moreover, the taxonomy nicely illuminates the relatedness of

these two fields within the continuum.



. History of Visualization Process Models

Both the SV and IV communities are interested in creating visual representations of data,

whatever the type of data may be. To better understand this visualization process—the transforma-

tion of data into interactive computer graphics—it is useful to deconstruct the complex whole into

its constituent parts. Both visualization communities have sought to do just this, creating models

of the visualization process. ese models have provided clarity ranging from conceptual, helping

researchers think about visualization [dos Santos and Brodlie, ], to pragmatic, forming the ar-

chitectural foundation for the implementation of visualization applications [Duke et al., ]. e

two important visualization process models are the data flow and data statemodels [Chi, ]. e

following two sections present an overview of both models, tracing the origins of each and following

their maturation over time. e evolution of these process models are generally incremental, with

only subtle refinements in each iteration. Since my research relies heavily on a visualization pro-

cess model, I present a detailed discussion of the conceptualization of the visualization process and

identifying how these ideas have evolved into formalized models.

. Data Flow Model

I begin this discussion of visualization process models with the data flow model which originated in

the SV community. e data flow model is a visualization process model where a series of data-

processing stages progressively transforms raw numerical data into interactive computer graphics.

e process is described using a pipeline metaphor, and hence visualization process models are oen

simply referred to as visualization pipelines.

e data flow model was first proposed by Haber and McNabb [], who built from earlier

work on interactive graphics systems by Haeberli [] and visualization process formalizations

by Upson et al. []. In this section, I present a chronological history of the data flow model,

beginning with work by Haeberli from the late ’s on the CM system. e data flow model

has proven to be an important contribution to conceptualizing the visualization process. Nearly two

decades later, it continues to receive attention and use in the SV community [Chi, ; dos

Santos and Brodlie, ; Duke et al., ].



Figure .: An example of the original CM graphical user interface, showing a simple ap-
plication [from Haeberli, , p. ]. Visualizations are constructed using a high level
visual programming language, organized as a directed acyclic graph. Data flows from the
outputs of one component into the inputs of another component, creating a pipeline of in-
terconnected components. e pipeline accumulates in the production of an image, shown
here in the window on the right. ©  ACM, Inc. Included here by permission.

.. CM: A Data Flow Metaphor for Visualization:

e first known instance of articulating the visualization of data through the use of a data flow

metaphor was reported by Haeberli [] in the CM system. CM, or Connection Man-

ager, is a high level visual programming language in which interactive graphics can be constructed

by graphically creating and modifying a series of interconnected components. e interface for the

system is organized as a directed acyclic graph, in which vertices are components and edges are con-

nections between components. An example of the original interface is shown in Figure .. Data

flows from the outputs of one discrete component and into the inputs of another component. is

pipeline of interconnected components continues, accumulating in the production of an image.



http://www.acm.org/publications/policies/copyright_policy

Summarize

Filter

Map

Playback

Render

Simulate

Image

Data

Geometric
Primitives

Image

Figure .: AVS’s analysis cycle, the first known formalized visualization process model [repro-
duced from Upson et al., , p. ].

CM illuminates the visualization process through its deconstruction of the process into

discretized logical steps that are visually represented within the user interface. In doing so, it em-

powers users with the insight of how a visualization was created, thereby facilitating the analyst’s

interpretation of the visualized data with this understanding.

.. Application Visualization System’s Visualization Cycle

Continuing with the data flow metaphor is work by Upson et al. [] on the AVS, a visualization

environment designed for visualizing scientific and engineering data. CM’s modular compo-

nent design, organized as a directed acyclic graph in a visual programming environment, was refined

in the AVS, where individual components were classified by their functions. is classification comes

fromUpson et al.’s modelling of the visualization process as an unending cycle that is only completed

once all analysis questions have been resolved. Figure . illustrates this analysis cycle, composed of

four major functional classifications: filter, map, render, and playback. ese classifications are de-

fined as follows:

Filtering: involves processing the incoming raw data from a simulation or feedback from a previ-



ously rendered image into a form that is readily consumable by subsequent operations in the

visualization process. It is characterized as: “Filtering operations include derived quantities

such as the gradient of an input scalar field, integrative processes (for example, deriving flow

lines from a velocity field), or simply extracting a portion of the solution”.

Mapping: transforms data processed in the filtering stage into geometric primitives. ere are nu-

merous visualization design decisions on how this mapping can occur. To demonstrate this

point, Upson et al. illustrate the many different options available for mapping a D scalar field

to geometric primitives, shown in Figure ..

Rendering: generates an image from the geometric model. Again, numerous options are available

concerning the viewing transformation, projection transformation, clipping, colour, texture,

lighting, and shading parameters used in the rendering process.

Playback: is the assessment of the rendered visualization by the researcher or engineer engaged in

the analysis cycle. Examination of the visualization can lead to new analysis questions, which

starts the analysis cycle all over again. is process continues until all analysis questions about

the physical mechanism under study have been addressed.

CM provided a layer of abstraction from the details of the visualization process through

the use of the data flow metaphor and the discretization of steps along the pipeline. AVS helped in

formalizing this layer of abstraction by functionally classifying these discrete steps, providing a new

mental model for conceptualizing the visualization process. Furthermore, this process model also

served as the underlying system architecture of theAVS environment. To the best ofmy knowledge, it

is the first known formal characterization of a visualization process model presented in the literature.

.. Haber and McNabb’s Data Flow Model

e term “data flow model” was first coined by Haber and McNabb [] as a conceptual model

for visualization workflow [Duke et al., ]. e model, shown in Figure .(a), refines earlier

work by Upson et al. [] in the way of terminology and expands the theoretical characterization

of the visualization process. Haber and McNabb modelled the visualization process as a series of



3D Scalar Field

0D

2D Point

3D Point Point Surface

1D

Line

Nurb

Vector Surface

2D

Tri

Quad

Ngon

Polygonal Surface

Pixel Maps

Polyhedra

Parametric

Trilinear

Connolly

Nurb

Parametric Surface

3D

Cell

Voxel

Volumetric

Figure .: e numerous visualization design decisions available for mapping a D scalar field
to geometric primitives, available in the mapping stage of AVS’s visualization cycle [re-
drawn from Upson et al., , p. ].

three major transformations: data enrichment/enhancement, visualization mapping, and rendering.

Like AVS’s model, these major transformations can be composed of multiple operations which are

grouped by their functional affordances, and are defined as follows:

Data Enrichment/Enhancement: is closely akin to AVS’s “filtering” transformation where raw data

from a simulation is processed into a form that is more coherent and accessible by subsequent



operations in the visualization process. e product of this transformation is identified as

derived data, as the raw simulation data is fundamentally altered in one ormoreways. Example

operations include extracting a subset from the simulation data (filtering), interpolation, noise

reduction, and deriving surface normals from a curve, surface, or hypersurface.

Visualization Mapping: involves transforming derived data into imaginary objects, referred to as

Abstract Visualization Objects (AVO). An AVO is described through a series of attributes,

which “might include geometry, time, colour transparency, luminosity, reflectance, and sur-

face texture” [Haber and McNabb, ]. is transformation combines AVS’s entire “map-

ping” and parts of the “rendering” transformations. InHaber andMcNabb’smodel, operations

like assigning colours and textures to objects are classified as “visualization mapping” trans-

formations, not rendering.

Rendering: generates an image from theAVO. Similar to the AVS transformation by the same name,

with the exception of operations that have beenmoved into the visualizationmapping transfor-

mation. Typical operations include viewing transformation, projection transformation, clip-

ping, rasterization, etc..

Haber and McNabb []’s data flow model present refined definitions of the concepts first in-

troduced by in earlier work by Upson et al. []. e changes are subtle rather than profound,

though the work has been credited as establishing a vocabulary of concepts for understanding the

process of visualization [Duke et al., ]. One criticism of the data flow model is the poor pre-

cision in the classification of operations. e model is ambiguous, as it lacks a formal definition

of the three major transformations and the borders that separate them. For example, consider a

transfer function for deriving flow lines from a simulated velocity field. Based on the transforma-

tion definitions, such an operation could be classified as either a data enrichment/enhancement or

a visualization mapping transformation. e flow lines operation derives new data from the ini-

tial simulation data (data enrichment/enhancement transformation), however the operation could

also be viewed as mapping attributes into AVO (visualization mapping transformation). Hence the

vague demarcation of transformation classifications.



.. Use and Extension of the Data Flow Model

e data flow model has received widespread use in the SV community [Chi, ; dos Santos

and Brodlie, ]. Haber and McNabb’s original definition of the model is not rigidly adhered to,

but rather the general abstraction is utilized: conceptualizing the visualization process as the flow

of data through a pipeline of data transformations. is pipeline is a directed acyclic graph, where

vertices represent data transformations and edges are the flow of data between transformations. In

classifying these transformations it is not uncommon to see a mixing of the terminology used by

Upson et al. [] and Haber and McNabb [], as is the case in Roberts [] and Brodlie

[]. A notable extension of the data flow model is by dos Santos and Brodlie [] who added

support for working with multidimensional and multivariate data.

. Data State Model

e data state model emerged out of the IV community as a way of providing further precision

in the description of the visualization process, as well as unifying its interaction model [Chi and

Riedl, ]. e pipeline metaphor is again used in this model with particular attention being paid

to the changes in the data’s state at each step in the pipeline [Jankun-Kelly, ], taking a state-based

perspective of the visualization process. emodel was first introduced byChi andRiedl [], with

later refinements by Card et al. [] and Carpendale [].

Chi and Riedl’s operator interaction framework introduced innovative contributions to the con-

ceptualization of the visualization process. e research which I present in this thesis relies heavily

on this framework and the important theoretical considerations which it identifies. erefore, I pay

careful attention to these issues discussing them in detail.

.. Operator Interaction Framework

e operator interaction framework proposed by Chi and Riedl [] was the first to formalize the

concept of looking at the visualization process from the perspective of a data statemodel. is frame-

work builds on earlier work by Card and Mackinlay [] on describing the design space of infor-

mation visualization. Like the data flow model, it too models the visualization process as a directed



acyclic graph. Where the two models begin to differ is in the meaning of the vertices and edges of

the graph: in the data state model, vertices represent data states and edges are the transformations

between data state; here, vertices provide information as to the status of the data within the pipeline.

Recall, that in the data flow model, vertices represent data transformations and edges are the flow

of data between transformations. Despite these differences, the data flow and the data state mod-

els have been shown to be equivalent in visualization expressiveness [Chi, ]; that is, the same

visualization can be represented using either model.

... Chi and Riedl’s Visualization Pipeline

Chi and Riedl’s proposed visualization pipeline is shown in Figure .(b), and is closely akin toHaber

andMcNabb’s version. e pipeline begins with data in its raw form. From this state, a data transfor-

mation processes the data into the analytical abstraction state, deriving “metadata, data about data, or

information” [Chi and Riedl, ] from the raw data. e analytical abstraction state is described

as “processed data that is not yet mappable but include[s] all information from the raw data that

will be visualized” [Chi, ]. From the analytical abstraction state, a visualization transformation

is applied, resulting in the visualization abstraction state. is transformation applies a visual form

to the information in the analytical abstraction state; multidimensional scaling and clustering are

examples of possible operations [Chi and Riedl, ]. In the visualization abstraction state, infor-

mation “is mappable and visualizable on the screen using at least one visualization technique” [Chi,

]. From the visual abstraction state, a visual mapping transformation is applied resulting in the

end view of the visualized data. Notice that the these three transformations—data, visualization, and

visualmapping—closely parallel the respective transformations—data enrichment/enhancement, vi-

sual mapping, and rendering—in Haber and McNabb’s model.

A novel contribution from Chi and Riedl’s pipeline is the attention drawn to the data space, or

system control, and the view space, or analyst control. ese two spaces are seen as end points on a

spectrum, a visualization pipeline scale [Chi and Riedl, ], indicating the amount of direct ma-

nipulation available with the different pipeline processes. At the view state, the analyst using the

visualization system can interact heavily with the processes involved in the visual mapping transfor-



mation (view space). For example, rotating a view or applying a different colour scale can all be done

with ease. Moving away from the view state towards the data stage, the amount of direct interaction

decreases, as the system plays a more dominate role and the analyst’s interactions become more in-

direct (data space). Processes like parsing and loading in a file, are handled by the system, and the

analyst’s involvement is minimal.

... Classification of Operators in the Operator Interaction Framework

e state-based visualization pipeline is an important part of Chi and Riedl’s operator interaction

framework. One of the affordances provided by this framework is in the classification of operators.

In this context, an operator is defined as any interaction of the analyst with the system, be it directly

or indirectly. In creating an ontology, the framework builds off of two observations about the fun-

damental properties of operators: operational versus functional similarity, and value versus view

orientation.

e first observation suggests that operators can be classified based on whether or not their tech-

nical implementation is operationally or functionally similar. Operational similarity is when the

implementation of an operator is, for all intensive purposes, identical across applications regardless

of the domain. An example of operational similarity is an affine transformation used in computer

graphics, such as translation, rotation, and scaling. Applications ranging from medical volumet-

ric visualization or text visualization all utilize the same matrix operations for translation, rotation,

and scaling when handling graphics primitives. Functional similarity is when the semantics of an

operator is equivalent across application domains, however its implementation is significantly dif-

ferent. Filtering is an example that is conceptually universal, however the technical implementation

for filtering three dimensional structures in a volumetric data set versus words in a text corpus, are

radically different.

e second observation suggests another classification of operators based on the operator’s value

or view orientation. A value operator makes a fundamental change to the underlying data source,

creating an entirely new data set. Clustering an unstructured data set into a hierarchy is an example

of a value operator, as the product of the clustering operation is a fundamentally new data set. A



Data Enrichment /

Enhancement

Visualization
Mapping

Rendering

Simulation
Data

Derived
Data

Abstract
Visualization

Object

Displayable
Image

(a) e visualization pipeline according to the data flowmodel proposed byHaber andMcNabb [], which refined earlier
work by Upson et al. [] on the AVS visualization cycle (see Figure .).

Data Transformation

Visualization

Transformation

Visual Mapping

Transformation

Data Analytical
Abstraction

Visualization
Abstraction View

View Space
(Analyst Control)

Data Space
(System Control)

(b) e visualization pipeline according to the data state model proposed by Chi and Riedl []. It builds off earlier work
by Haber and McNabb [], taking a state-based perspective of the visualization process and adding the control space
separation.

Raw
Data

Data
Tables

Visual
Structures Views

DataTransformations

VisualMappings

ViewTransformations

Human Interaction

Task

(c) e visualization reference model proposed by Card et al. [], which refined Chi and Riedl []’s pipeline by mod-
ifying the terminology and removing the control space separation, making each state under the analyst’s control.

DataAbstraction

VisualAbstraction

Presentation
Transformation

ViewTransformation

Data Data
Representation

Visual
Representation

Visual
Presentation View

(d) e visualization pipeline used by Carpendale [], based on Chi and Riedl []. While conceptually similar to its
progenitor, Carpendale uses different terminology and adds a presentation space to the pipeline.

Figure .: Visualization process models which have evolved incrementally, building on earlier
work with subtle refinements to process terminology and characterization.



view operator makes a superficial change to the visualization without fundamentally altering the

underlying data set which it represents. Object translation, rotation, and scaling are examples of

view operations, as they make peripheral changes to the representation of the underlying data set

behind the object.

ese classification types—operational versus functional, value versus view—are in fact related

to one another. Value operators, which fundamentally alter the underlying data set, are typically

functionally similar across application domains. View operators, which affect the presentation of

a visualization, are typically operationally similar. Returning to the previous example, a value op-

erator such as clustering unstructured data is conceptually similar across applications, however its

implementation is strongly dependent on the data type, and therefore is operationally similar. On

the other hand, a view operator such as affine transformation for translation, rotation, and scaling

of graphics primitives is functional similar. Moreover, the dichotomous relationship between op-

erational similarity/value orientation and functional similarity/view orientation are end points on

spectrum, rather than binary in nature. is spectrum integrates into the visualization pipeline, be-

ginning with raw data, which is characterized by operators that are operationally similar and value

orientation, and ending in a view, with operators that are functionally similar and view orientated.

Operators can be positioned within the framework, as illustrated by Chi and Riedl’s original figure

shown in Figure ..

... Value Versus View Operators

One major benefit of the operator interaction framework is the powerful mental model which it pro-

vides and that can be applied to understand the mechanics of the visualization process. To illustrate

the model’s potential, consider the following example.

Figure .(a) shows a simple pie chart visualization with four equally weighted data items. Per-

haps we are only interested in itemsA andD, andwould like all other items filtered out. ere are two

possible ways of realizing this operation: filtering data items and then visualizing the resulting subset,

or visualizing and then filtering. e results of these two possibilities are shown in Figure .(b) and

Figure .(c). What type of filtering did we want to do? ese different interpretations of intentions



vector rating tuple graph network

subset
of edges

surface network pointset

multi-
dimensional

scaling

subset

clustering

breadth
first

traversaldepth
first

traversal

correlate
with
other
users

subset

hills
and

valley
linkmap

scatter
plot

Hyperbolic
Tree

Disk
Tree

Cone
Tree

create
text

vector
get
user

ratings

create
similarity

relationship

create
web
page

linkage

rotatefocus on nodeview-filtering

Legend:

documents collection of web pages

difference

value-filtering value-filtering

Data

Analytical Abstraction

Visualization Abstraction

View

D
at

a
Tr

an
sf

or
m

at
io

n
V

is
ua

liz
at

io
n

Tr
an

sf
or

m
at

io
n

V
is

ua
l M

ap
pi

ng
Tr

an
sf

or
m

at
io

n

Figure .: An example of operator classification within the operator interaction frame-
work [adapted from Chi and Riedl, , p. ].



BA

C D

(a) e original pie chart visual-
ization without any filtering of data
items.

DA

(b) An example of a value opera-
tion: data items B and C are filtered
from the data set and the resulting
subset is then visualized.

A

D

(c) An example of a view operation:
the complete data set if first visual-
ized, and then data items B and C
are filtered from the view, keeping
the spatial organization of the non-
filtered items.

Figure .: An example of the distinction between value versus view operators using a filtering
operation.

leads to what Chi and Riedl identify as the gulf of execution, defined as the “difference between the

intentions and the allowable possible actions” [Norman, , chap. ]. By using the operator in-

teraction framework, we can understand how these two types of filtering operations differ, thereby

bridging the gulf of execution by matching our intentions with unambiguous system actions.

e difference between these two filtering operations is that one of them is a value operator, and

the other is a view operator. Filtering the complete data set into a subset is a value operator. e

operator is then followed by the visualization transformation and the end view shows no signs of the

removed data items (Figure .(b)). Whereas filtering aer the visualization transformation has been

applied is a view operator. It simply removes those visualized data items from the end view, while

keeping the spatial organization of the non-filtered items (Figure .(c)). Both types of filtering are

valid and useful in the right situation; the issue is that the analyst using the visualization system must

be aware of these differences. e operator interaction framework provides amentalmodel to readily

make sense of these differences.

.. Visualization Reference Model

e operator interaction framework and its visualization pipeline were later refined by Card et al.

[]. e refinement sought to provide a simple reference model to facilitate the discussion of

information visualization systems and aid in their comparison [Card et al., , p. ]. Card et al.



termed their visualization pipeline the visualization reference model, shown in Figure .(c).

A series of transformations modelled as a directed cyclic graph, which maps raw data into an end

visualization. e process is described as follows:

Data Transformations map Raw Data, that is, data in some idiosyncratic format, into

Data Tables, relational descriptions of data extended to include metadata. Visual Map-

pings transform Data Tables into Visual Structures, structures that combine spatial sub-

strates, marks, and graphical properties. Finally, View Transformations create Views of

the Visual Structures by specifying graphical parameters such as position, scaling, and

clipping. User interaction controls parameters of these transformations, restricting the

view to certain data ranges, for example, or changing the nature of the transformation.

e visualizations and their controls are used in service of some task.

e core of the reference model is the mapping of a Data Table to a Visual Structure.

Data Tables are based on mathematical relations; Visual Structures are based on graphi-

cal properties effectively processed by human vision. Although Raw Data can be visual-

ized directly, Data Tables are an important intermediate step when the data are abstract,

without a direct spatial component. [Card et al., , p. ]

e visualization reference model simplifies Chi and Riedl’s previous work and removes the con-

trol space separation, making each state under the analyst’s control [Collins, ]. e model lacks

the rigour of the operator interaction framework, however its original goal was for a general purpose,

simple model for discussing information visualization systems. To this end the model has been very

successful. It is commonly used in the IV literature and in the design of information visualiza-

tion systems (e. g., prefuse [Heer et al., ]).

.. Carpendale’s Presentation Space

A notable extension of Chi and Riedl’s pipeline is work by Carpendale [], modifying the termi-

nology used in the pipeline and adding a presentation space to pipeline. Carpendale’s version of the

visualization pipeline is shown in Figure .(d). Here a distinction is made between the representa-

tion and the presentation of information in the following manner:



Representation is the act of creating a basic image that corresponds to the information

such as creating a drawing of a graph. Presentation is the act of displaying this image,

emphasizing and organizing areas of interest. For example, a map of Vancouver may be

presented with one’s route to work magnified to reveal street names. [Carpendale, ,

p. V]

erefore, the visualization abstraction state in Chi and Riedl’s pipeline is divided into two unique

states: visual representation and visual presentation. I adopt this division in the visualization model

used in my thesis research.

.. Visualization Pipelines Compared

On a cursory glance the various visualization pipelines appear very similar to one another. With sub-

tle refinements in terminology for pipeline stages and transformations, how are the different pipeline

distinguished from one another? To illuminate this question, let us classify the individual opera-

tions in an example visualization process according to each of the visualization pipelines. e top

of Figure . presents one such example series of visualization operations, and below it, the clas-

sification of each operation within the four visualization pipelines from Figure .: the data flow

model [Haber and McNabb, ], the data state model [Chi and Riedl, ], the visualization ref-

erence model [Card et al., ], and the visualization pipeline from Carpendale []. As shown

in Figure ., the four process models achieve consensus on three points: the range of operations

included in the initial data stage, the distinct edge in each model for the transformation of data ab-

straction into the representation stage through the application of a node-link layout transform, and

the termination of the whole process with the view stage. (Albeit, the visualization reference model

includes a feedback loop between the visualization pipeline and the individual engaged with the visu-

alization and his/her driving task, which has not been shown in this comparative figure.) Figure .

shows the different levels of resolution in each of the pipelines—for instance the data state model

from Chi and Riedl [] classify the final three operations of the example visualization process as

occurring in their definition of the view state, whereas Carpendale [] defines distinct states for

each of these operations. Moreover, while the various visualization process models appear initially



Simulation
Data Derived Data Abstract Visualization Object View

Data Flow Model by Haber & McNabb:

Data Analytical
Abstraction

Visualization
Abstraction View

Data State Model by Chi & Riedl:

Raw Data Data Tables ViewsVisual Structures

Visualization Reference Model by Card et al.:

Data Data Representation ViewVisual
Representation

Visual
Presentation

Visualization Pipeline by Carpendale:

Processed
Raw DataRaw Data ViewData

Abstraction Representation Presentation
Filter, Derive

Meta-Data

Cluster Data

into Hierarchy

Apply Node-Link

Layout

Emphasize Specific

Elements (e.g.,

colourization,

Focus+Context)

View Operations

(e.g., rotation,

translation, etc.)

Example Visualization Operations

Figure .: Categorization of individual operations from an example visualization process
within the different visualization pipelines. e individual operations in the example visu-
alization process (shown at the top) are qualitatively colourized; this colour is assigned to
the stage in the various visualization pipelines that the operation is classified under.

similar, the classification of operations can vary between the different models.

. Hierarchical Data

us far, our discussion has focused on the theoretical considerations of the visualization process. In

moving tomore pragmatic territory, I now turnmy attention towards the visualization of a particular

type of data: hierarchical data. In this section, I introduce a formal definition of hierarchical data and

present a few visualization techniques for visualizing this type of data. e Lark system uses hierar-

chical data as an illustrative example to present the system’s concepts for supporting collaboration.

erefore, visualization techniques for hierarchical data are not a contribution of this work.



1

4 5

2 3

6 7

(a) An undirected graph G = (V,E),
where V = {1,2,3,4,5,6,7} and E =
{(1,2),(1,4),(2,3),(2,5),(3,5),(4,5),(6,7)}.

1

3 4

2

5

(b) A directed graph G = (V,E),
where V = {1,2,3,4,5} and E =
{(1,3),(2,1),(2,2),(3,1),(3,4),(4,3),(5,5)}.

Figure .: Examples of undirected and directed graphs, illustrated using node-link diagrams.

.. Definition of a Tree

To introduce what hierarchical data is, first consider the following example. Before you now is a

thesis. Like many other documents, this thesis is organized into chapters. Each individual chapter is

broken into sections and some of these sections are further divided into subsections, like the one you

are reading now: Section ... e structure I have just described is an example of hierarchical data.

Individual elements—such as documents, chapters, sections, and subsections—are organized relative

to one another using a parent-child relationship. e thesis document (parent) ismade up of chapters

(children); a chapter (parent) is made up of sections (children), and so on. ese relationships can

be represented using a hierarchical tree structure, modelled mathematically as a connected, acyclic,

undirected graph, also known as a rooted tree [Cormen et al., , p. ].

... Graph

In graph theory, a graph G = (V,E) is a mathematical structure [Gross and Yellen, , p. ] com-

posed of a pair (V,E) where V is a finite, non-empty set and E is a set of pairs on V [Cormen et al.,

, p. ]. e set V is composed of elements called vertices (also referred to as nodes) and the set

E is composed of pairs of vertices called edges. Graphs can either be undirected or directed.

In anundirected graphG=(V,E), the setE are unordered pairs of edges, such that edge e= {u,v}

where e ∈ E and u,v ∈V . Since edges do not have a direction the following two edges are equivalent:

{u,v} = {v,u}. Self loops are not permitted in undirected graphs, therefore u ̸= v. Figure .(a)

illustrates an example of an undirected graph.



A

B C

I K L M NJ

F GD E

depth 0

depth 1

depth 2

depth 3

root

Figure .: An example of a rooted tree, illustrated using a node-link diagram. e root of the
tree is vertex letter A and tree contains seven leaf vertices: D, I, J, K, L, M, and N. Vertex
letter C is the parent of vertices F and G, which are siblings of one another and children of
vertex C. Vertex letter G has a degree of three and is at a depth of two.

In a directed graph G= (V,E), the set E are ordered pairs such that for each edge e= {u,v}where

e ∈ E and u,v ∈V . is is similar to a undirected graph, with two exceptions: self loops are allowed,

u = v, and edges are order pairs of vertices, {u,v} ̸= {v,u}. Figure .(b) illustrates an example of a

directed graph.

Within a graph G = (V,E), a path is a sequence of vertices connecting vertex u and u′. is

sequence of vertices, denoted ⟨v0,v1,v2, . . . ,vk⟩, connects vertices u and u′ to one another such that

v0 = u, vk = u′, and {vi,vi−1} ∈ E for i = 1,2, . . . ,k. e length of a path is k. If all vertices in the

path are distinct, the path is considered simple [Cormen et al., , p. ]. A path is considered a

cycle if v0 = vk [Cormen et al., , p. ]. An acyclic graph is a graph that has no cycles.

In a connected graph G = (V,E), for each pair of vertices ∀{u,u′} ∈V where u ̸= u′, there exists

some path connecting u to u′ [Gross and Yellen, , p. ].

... Rooted Tree

A rooted tree is a connected, acyclic, undirected graph with one distinguished vertex known as the

root of the tree [Cormen et al., , p. ]. In a rooted tree, or simply a tree, T = (V,E) with root

vertex r, for any non-root vertex u in the tree, there is a unique path from r to u. Along this path, for

the last edge {y,u}, we say that y is the parent of x, and x is the child of y. Each vertex in the tree has



a parent vertex, with the exception of root. Siblings are any two vertices with the same parent. Leaves

are vertices that do not have any children. e degree of a vertex is the number of children it has. e

depth of a vertex x is the length of the unique path from the root r to x (this can also be referred to as

the level of a vertex) . An example of a rooted tree is shown in Figure ..

.. Visualization of a Tree

Numerous visual representations of rooted trees have been created, and they are commonly referred

to as tree layouts. In this section, I present an overview of a few of these different types of two-

dimensional layouts, focusing on the conventional variants and the types used in the Lark system.

Notable tree layouts, which are not discussed, include treemaps [Shneiderman, ] and layouts for

non-two-dimensional space, such as those for hyperbolic space [Munzner, ].

... Node-Link Representation

By far the most commonly used method for visually representing a tree is a node-link representa-

tion. Here, the tree vertices are represented using shapes, such as circles or squares, and edges are

represented using connecting lines. ere are numerous variants of node-link layouts, however, this

discussion is limited to rectilinear, cladogram, and radial cladogram layouts.

Rectilinear Layout: An example of a rectilinear node-link tree layout is shown previously in Fig-

ure .. Assuming that we are drawing the tree vertically on a plane in a top-down fashion, the

spatial arrangement of vertices places the root vertex at the top, with the children of the root

horizontally aligned directly bellow their parent (the root). is layout structure is repeated

recursively on the root vertex’s children, until all vertices in the tree have been positioned. To

make room for all the leaf vertices in the tree, vertices may be horizontally repositioned to

avoid cluttered and potentially overlapping edge lines. With this layout algorithm, all vertices

of the same depth are horizontally aligned with one another, as seen in Figure .. Develop-

ing fast and efficient node-link layout algorithms that adhere to certain aesthetic requirements

continues to be an active area of research [Buchheim et al., ; Marriott and Sbarski, ].

Cladogram Layout: A cladogram (also known as a dendrogram), is oen used as a general term for



(a) Cladogram tree layout. (b) Radial cladogram tree layout.

(c) Icicle plot tree layout. (d) Sunburst tree layout.

Figure .: Four example tree layouts, all visualizing the same data set with different represen-
tations.

a tree diagram [Baum and Offner, ] that is commonly used in illustrating hierarchical

data which represents how related individual items in a set are to one another. Cladograms

are widely used in evolutionary biology for depicting the phylogenetic relationships between

species, and in cluster analysis applications for illustrating the relatedness between clustered

elements. An example of a cladogram layout is shown in Figure .(a). A cladogram is very

similar to the rectilinear node-link layout, with the notable distinctions that all leaf vertices

are aligned along the bottom of the tree, regardless of their depth, and that the edge lines are

drawn with ◦ angles.

Radial Cladogram Layout: A radial cladogram is similar to a regular cladogram, except that it is laid



out circularly rather than rectilinearly, as shown in Figure .(b). e radial layout makes

better use of the available space, partitioning leaf vertices along the circumference of the outer

ring of the tree. is affordance makes the radial cladogram a common choice for illustrating

hierarchical data when space is at a premium; for example, in publication figures (e. g., [Willis

et al., ]).

... Space Filling Representation

e three tree layouts we have discussed so far—node-link, cladogram, and radial cladogram—are

typically categorized as node-link representations. Another classification of tree layouts are those

that are space-filling, such as the icicle plot and sunburst layouts.

Icicle Plot Layout: Figure .(c) illustrates an example of a icicle plot layout. Vertices in the icicle

plot are positioned in a similar fashion to the node-link layout (see Section ...), except that

vertices are drawn to fill the area of the level on the tree that they are on. Edges are implicitly

represented, as a vertex’s children cascade downward from their parent.

Sunburst Layout: A sunburst layout is a radial, space-filling layout similar to the icicle layout, ex-

cept for the radial arrangement of vertices. e sunburst layout is to the icicle layout, as the

radial cladogram is to the rectilinear cladogram. is layout was introduced by Andrews and

Heidegger [], and is shown in Figure .(d).

. Collaboration

Moving from individual visualization techniques, in this section I review existing research on facili-

tating collaborative work practices in digital environments. As introduced in Section ., my thesis

research investigates collaborative work practices that make use of information visualizations during

data analysis tasks. In particular, I am interested in collaborative teamwork that is occurring in a

synchronous co-located environment, with small groups of people who are using a large multi-touch

tabletop display. My investigation of collaborative teamwork is centred around supporting mixed-

focus collaboration, and the following discussion is focused by this research scope.



I begin our discussion with work from the Computer-Supported Cooperative Work community

onmixed-focus collaboration. is is followed by research on collaboration around interactive table-

top displays and an overview of design guidelines for supporting effective co-located collaboration

around tabletop display. Next, I present an overview of IV research on synchronous co-located

collaborative work. I conclude our collaboration discussion with a synopsis of design guidelines for

co-located collaborative information visualization systems.

.. Computer-Supported Cooperative Work

Work in Computer-Supported Cooperative Work (CSCW) has indicated that the discrete activities

which occur during collaborative group work sessions, such as brainstorming or planning, cannot be

strictly dichotomized as either independent or shared activities [Tang et al., ]. e distinction is

rather a spectrum, which collaborative activities fluidly and frequently move within. e frequently

transition of group members between loosely coupled, individual work and tightly coupled, group

work is the defining feature ofmixed-focus collaboration [Gutwin and Greenberg, ]. In this con-

text, coupling is “the degree to which people are working together” [Baker et al., ]. A strong

theme within research into collaboration is how to support different types of individual and group

work, as well as the transitions between these activities. e frequency of changes in collaborative

coupling means that these transitions should be quick and easy to perform [Elwart-Keys et al., ;

Mandviwalla and Olfman, ].

In designing computer interfaces which support mixed-focus collaboration, designers are oen

confrontedwith the trade-off of designing for the individual or the group at large [Gutwin andGreen-

berg, ]. In Tang et al. [], mixed-focus collaboration was investigated through two obser-

vational studies which looked at the influence of viewing techniques on collaborative coupling. e

viewing techniques used in these studies presented different affordances for individual and group

work, ranging from a single shared data representation, to multiple independent representations.

Tang et al. [] found that with a single shared representation, an individual’s ability to work inde-

pendentlymay be compromised, yet using separate copied viewsmay preventmany group collabora-

tive dynamics from emerging. It was therefore noted that a trade-off is necessary between supporting



the individual versus the group.

.. Tabletop

Since the early explorations of interactive tabletop displays, researchers have sought to leverage peo-

ple’s well established understanding of traditional tabletops in designing novel interfaces and inter-

action techniques for digital tabletops [Wellner, ; Krüger et al., ]. is approach is still

found in recent tabletop research. Researchers using observational based methodologies begin with

studying people’s behaviour in traditional tabletop environments and then apply these observations

in designing for the digital realm [Kruger et al., ; Scott et al., ; Isenberg et al., ]. Other

researchers have taken different approaches to developing systems and interaction techniques for

digital tabletops [Shen et al., , ; Wu and Balakrishnan, ], which are oen then evalu-

ated with formal user studies [Ryall et al., ; Ringel et al., ].

Scott et al. [a] characterizes a series of system design guidelines for supporting effective co-

located collaboration around tabletop displays. Best practices alongwith lessons learned fromprevious

tabletop research is collected and succinctly summarized in eight design guidelines. ese guidelines

are as follows:

Support Interpersonal Interaction: Collaboration is organized and coordinated through the inter-

personal interactions of group members. Technology should not interfere with these interac-

tions, as they are fundamental to the collaborative process. Work by Gutwin and Greenberg

characterize these interpersonal interactions in what they call the mechanics of collaboration,

“the low level actions and interactions that must be carried out to complete a task in a shared

manner” [Gutwin and Greenberg, ]. ese mechanics include: explicit communication,

consequential communication, coordination of action, planning, monitoring, assistance, and

protection; and can be evaluated according to their effectiveness, efficiency, and satisfaction.

Again, each mechanic does not necessarily require direct technological support, but at a min-

imum, they should not be interfered with.

Support Fluid Transitions Between Activities: Switching between activities should impose little to

no overhead, allowing collaborators to focus on the task at hand, rather than activity manage-



ment. Mixed-focus collaboration is characterized by frequent transitions between activities,

and therefore, any incurred transition overhead would repeatedly penalize task performance.

Support Transitions Between Personal and Group Work: Switching between varying degrees of col-

laborative coupling occurs frequently [Elwart-Keys et al., ; Mandviwalla and Olfman,

], therefore these transitions should be performed with ease. Recent work by Isenberg

et al. [] has provided additional evidence that these transitions require the coordination

of group members’ activities, and therefore, these transitions should be facilitated by support

from the collaborative environment.

Support Transitions Between Tabletop Collaboration and External Work: eworkflowof collab-

orative activities is rarely isolated to just the tabletop environment. For example, a group plan-

ning meeting might build off of initial ideas sketched out by individual group members prior

to the collaborative session; or, the ideas generated in a group brainstorming session might be

further developed aerwards by a single individual with a vested interest in the project. ese

examples illustrate that collaborative activities are oen a stage within a larger workflow in-

volving individual activities which take place beyond the collaborative tabletop environment.

Harnessing the collaborative effort relies on integrating into this workflow and systems should

support this.

Support the Use of Physical Objects: e horizontal surface provided by tables presents a flexible

workspace which people can gather around and place objects upon. ese objects might be

relevant to the collaborative task, for example, project documents, or they may be unrelated,

such as coffee mugs and personal day-timers. e familiar usage of tables should not be lost

in the transition from traditional to digital tabletops. Rather, these well established practices

should be augmented with digital features, providing a “seamless integration of digital and

physical objects at the table” [Scott et al., a].

Provide Shared Access to Physical and Digital Objects: Tables are particularlywell suited for groups

of people sharing information and objects with one another. e use of gestures and de-

ictic references towards objects on the table, communicates rich spatial information to the



group [Bekker et al., ; Tang, ]. If the group is working with shared objects, a gesture

towards an object has a direct spatial relationship, which promotes group awareness and fo-

cus [Suzuki and Kato, ]. When each groupmember has his/her own individual copy of an

object, gestures have an indirect spatial relationship. Each group member must first identify

the object being gestured towards by a colleague, locate his/her own copy of the particular ob-

ject, and then spatially translate the gesture. is identification and spatial translation incurs

cognitive overhead to important actions that were traditionally extremely lightweight [Bekker

et al., ; Bly, ; Tang, ; Gutwin et al., ].

With groups of people gathering around a table, the orientation of objects in the workspace

can both impede and facilitate group interaction [Tang, ]. Orientation-dependent objects,

such as text documents, can be difficult to understandwhen facing away from the viewer [Wig-

dor et al., ]. At the same time, orientation has been shown to be “critical in how indi-

viduals comprehend information, how collaborators coordinate their actions, and how they

mediate communication” [Kruger et al., ]. It is therefore important that digital tabletop

technologies provide flexible, user-controlled spatial arrangement and orientation of objects

in the workspace.

Consideration for the Appropriate Arrangements of Users: Similar to the flexible arrangement of

objects on a table, technology should provide the same flexibility for people around the table.

Different types of tasks around a table have different optimal spatial configurations that people

feel most comfortable working in. For instance, in conversation based activities, a face-to-

face arrangement is generally preferred by adults. On the other hand, “activities that require

coordinated actionsmay best be supported by close user positions, because this positioning can

enhanceworkspace awareness” [Scott et al., a]. Furthermore, as groupmembers transition

between different degrees of collaborative coupling, their optimal spatial arrangement around

the table may change as well. Technology must therefore support this, allowing collaborators

to freely move about the tabletop.

Support Simultaneous User Actions: Concurrent interaction is a natural behaviour commonly ob-



served in groups of people working together around traditional tabletops [Tang, ; Scott

et al., b; Isenberg et al., ]. Digital tables must also provide support for concurrent

interaction within the workspace from multiple group members. Recent advances in multi-

touch technology (e. g., frustrated total internal reflection (FTIR) [Han, ]) have made this

requirement feasible, empowering designers with the means of creating rich interaction tech-

niques. With these hardware affordances, it is crucial that support is also provided at the so-

ware level. Tabletop systems should allow multiple tasks to be carried out simultaneously by

multiple individual group members, thereby enabling synchronous collaboration to occur.

In summary, the design guidelines outlined by Scott et al. [a] mirror the ideas from early table-

top research [Wellner, ; Krüger et al., ] in that they emphasize the importance of leveraging

people’s well established understanding and experience with traditional tables when designing for

digital tabletops. Technology should augment familiar modes of behaviour with computational re-

sources and integrate into the large working environment.

.. Collaborative Information Visualization

e IV community has also been interested in collaborative data exploration and analysis.

Brennan et al. [] proposed a distributed collaborative visual analytics framework where individ-

ual group members have distinct system perspectives, or viewpoints. Group members have access

to a shared knowledge base, and within their private viewpoints members can flexibly generate their

own visualizations of information from the knowledge base. ese private viewpoints and the visual-

ization that they contain can be explicitly shared between groupmembers in a common ground, a joint

perspective that algorithmically merges multiple individual viewpoints. Merging operations such as

morphing and fusing are provided to create the common ground perspective. Morphing identifies

similarities between views and fusing generates aggregate viewpoints. Within Brennan et al.’s frame-

work, the trade-off between individual and group work is handled by offering each group member

an independent perspective, suitable for his/her own individual work, while at the same time provid-

ing support for transitioning these perspectives to more group orientated activities. is trade-off

is similarly addressed in another distributed analysis system by Keel []. Here, computational



agents were used to identify when an individual had uncovered potential relationships between in-

formation items in his/her workspace; this insight was then automatically relayed to the larger group

of collaborators.

e systems proposed by Brennan et al. [] and Keel [] share admirable goals of provid-

ing explicit logical and graphical support for sharing information and translating among different

views. However, as a collaborative visualization environment, emphasis is placed on individual per-

spectives (and thereby individual work) and spontaneous interactions are not easily possible. Systems

should support the coordination of views and interactions so that team members can follow a mo-

mentary insight, glance at another’s views, and transition quickly and effortlessly between different

views of the data. is goal has been examined in two previous systems for co-located data analy-

sis [Isenberg and Carpendale, ; Isenberg and Fisher, ]. In a co-located collaborative tree

comparison system [Isenberg and Carpendale, ], group members could create multiple view in-

stances and interact with these as separate entities, thereby enabling concurrent individual work. Yet,

coordination among views was limited to a tree comparison operation and did not allow for group

members to easily coordinate data annotations or other data modifications, and therefore, support of

concurrent group work was limited. In Cambiera [Isenberg and Fisher, ], group members were

provided with coordinated visualizations of their search results through text document collections.

rough collaborative brushing and linking individual search results and text document representa-

tions were linked and joint interactions and search overlap were explicitly visualized.

.. Design Guidelines for Co-located Collaborative Information Visualization
Systems

Isenberg and Carpendale [] characterized a series of design guidelines for co-located collabora-

tive information visualization systems. ese guidelines where assembled from a collection of ad-

vice drawn from the areas of information visualization design, co-located collaboration research,

collaborative visualization studies, and observational studies on collaborative problem solving us-

ing information visualizations. is is precisely aligned with the research scope of my thesis work,

and therefore, in this section I present a synopsis of these design guidelines. e original set of de-

sign guidelines, as outlined by Isenberg and Carpendale, are comprised of three main categories:



hardware and system setup, designing the information visualization, and designing the collaborative

environment. ese categories are further subdivided and my overview will follow this organization.

... Hardware and System Setup

e first category of design guidelines looks at the configuration of the physical workspace from a

technical perspective. is group of guidelines highlights the important issues that should be consid-

ered when determining the size, configuration, input, and resolution of the collaborative visualization

environment.

Size: Effective collaboration using information visualizations requires a device that offers sufficient

screen space to display the visualized information, as well as, allowing these visualizations to be

viewed and shared by several groupmembers. e size of the display workspace for supporting

effective collaborativework has also been identified as an important issue by Scott et al. [a].

In this earlier work, Scott et al. asserted that the workplace must be large enough to allow

group members to work comfortably with one another, without forcing people to encroach

on each other’s intimate space for prolonged periods. Isenberg and Carpendale’s guidelines

add an information visualization perspective to this requirement, asserting that there must

be sufficient screen space available for each group member to view and share the visualized

information.

Configuration: Numerous possibilities exist for hardware configurations of information displays,

from large, interactive single-displays, such as a interactive tabletop displays or display walls,

to individual interconnected displays; for example, the ConnecTable system [Tandler et al.,

]. Different types of displays offer different affordances; therefore, the selected display has

implications as to the type of visualization which can be most optimally presented, in addition

to the type of collaborative work that is most optimal for that particular setup. Determining

which display configuration to use should depend on that collaborative task and the type of

group which will undertake this task.

Input: Scott et al. [a] asserted that concurrent interaction is a natural behaviour commonly ob-

served in groups of people working together around traditional tabletops. To support this in a



digital environment, it would be ideal if collaborative visualization systems where to provide

each group member with at least one means of input. Furthermore, it would be advantageous

if these inputs were identifiable, enabling contextualization of system interaction with infor-

mation as to who is performing the action.

Resolution: e resolution guideline is concerned with the the display resolution of the visualiza-

tion’s output device, as well as the resolution of the input device(s), as both of these are im-

portant issues for information visualization systems. Display resolution must be sufficiently

high, such that images and text can be clearly discerned, and “visualizations might have to be

re-designed if readability of text, color, and size is affected by display resolution” [Isenberg and

Carpendale, ]. e pixel density of the display is another related issue that can be influ-

ential depending on the proximity of a person’s interaction with the device. Close proximity

to the displays requires a much higher pixel density, when compared to displays that are in-

teracted with from afar. With interactive displays, input resolution can also be an issue, since

direct touch input technology can oen be too coarse to select individual pixels on a display

with high pixel density. is is especially true when interacting with fingers. e issue is exas-

perated when working with information visualization systems, which typically have relatively

small visual items that need to be directly interacted with.

Interactive Response: Information visualizations systemsmust be efficiently implemented such that

systems perform at interactive rates, especially when handling numerous simultaneous inputs

at any given time. It is important that visualization designers and developers use graphics tech-

niques that ensure fast rendering of visualizations, supported by efficient soware architecture

design.

... Designing the Information Visualization

Designing collaborative information visualizations draws on much of the previous guidelines sug-

gested for non-collaborative visualization systems (e. g., [Ware, ; Tue, ]). In this category,

particular attention is paid to the issues which must be considered when designing for collaborative

environments.



Supporting Mental Models: Flexible, user-controlled spatial arrangement and orientation of objects

in a co-located collaborative workspace is crucial for facilitating group interactions and task

coordination [Scott et al., a, ]. Isenberg and Carpendale suggest that “letting users

impose their own organization on items in the workspace may help collaborators create and

maintain mental models of a data set that contains several different representations”. Collab-

orative visualization environments should therefore allow group members to freely move ob-

jects in their workspace to whatever configuration they decide is most appropriate for a given

task.

Representation Changes: Different information representations can provide different affordances

for cognitive behaviours [Zhang and Norman, ]. For example, most people can calculate

the product of two numbers easier when the numbers are represented in the decimal numeral

system (e. g.,  × ), rather than the binary numeral system (e. g.,  × ), although

both representations provide the same information. Within cognitive science, this is referred

to as the representational effect, “the phenomenon that different isomorphic representations of

a common formal structure can cause dramatically different cognitive behaviors” [Zhang and

Norman, ]. Different representations of common information therefore “provides differ-

ent task efficiencies, task complexities, and changes decision-making strategies” [Isenberg and

Carpendale, ]. Different representations can also present challenges in a collaborative en-

vironment. While making multiple representations available to group members may facilitate

individual tasks, it can also hinder the larger group’s communication concerning these objects

that may potentially have varying representations [Gutwin and Greenberg, ]. As in the

above numerical representation example, it might be difficult for collaborators to identify that

 ×  is the same as  ×  on first glance, however, if a single, commonly understood

numerical representation was utilized, this identification would be significantly easier. Isen-

berg and Carpendale [] suggest that algorithmic support for the identification of common

data items in a collaborative workspace might be a viable method in bridging the gap between

multiple different representations of common information entities. e latter part of their pa-

per presents a system which investigates the practicality of this approach for collaborative tree



comparison.

Task History: Providing history of information visualization interaction has been shown to facilitate

iterative analysis in non-collaborative systems [Heer et al., ; Shneiderman, ]. In a col-

laborative environment, making interaction history available might be even more important,

as group members may lose track of the interactions of their colleagues when transitioning

between varying degrees of collaborative coupling across different tasks. erefore, providing

a graphical overview of task history “can help in later discussing the data and exploration re-

sults with collaborators or informing them about interesting data aspects that have been found

during the analysis process” [Isenberg and Carpendale, ].

Perception: e effect of different display configurations on the interpretation of information visu-

alizations is a relatively unexplored area of study. e perceptual scalability of visualizations

presented on small and large display sizes has been studied by Yost and North []. Based

on the results of a controlled experiment, Yost and North suggested that for ensuring scalable

visualizations, designers should consider:

• the effect of viewing distance and angle on visual encodings,

• using scalable graphical encodings within visualizations

• on large displays, provide both local and global visualization legends, and

• strategically placing labels in multiple locations throughout the visualization workspace.

Viewing angle was further studied by Wigdor et al. [], who looked at the affect of dis-

tortion on the perception of basic graphical elements of information visualizations, seen from

different angles on a tabletop display. In general, it was found that some graphical elements are

more affected by distortion than others, and this must be considered when selecting a distor-

tion robust visual encoding. In collaborative visualization environments, such as interactive

tabletop displays, groupmembers are likely to be gathered around the device; thus, viewing the

workspace fromdifferent directions. Designers should be cognizant of this issue, and therefore

consider the affects of perception on the legibility of information visualizations.



... Designing the Collaborative Environment

Guideline for effective design of collaboration visualization environments, draws on previous CSCW

research into the basic operations that should be supported by shared-workspace groupware systems,

in facilitating groupmembers performing their tasks as a team [Pinelle et al., ]. ese operations

can be grouped as either coordination or communication aspects of the collaborative process.

Coordination: Groupwork requires the coordination of individual groupmembers actions. Support

for the coordination of activities can be approached from the following guidelines.

Workspace Organization: On traditional tabletops, group workspaces are typical composed

of distinct personal, group, and storage territories [Scott et al., ]. Collaborative vi-

sualization environments should provide a flexible approach to workspace organization,

such that these separate territories can organically emerge. Furthermore, a group inter-

action and viewing space, where shared representations and tools can be accessed by the

group, is necessary. is area should be complementedwith a personal spacewhere group

members can perform individual analysis activities, separate from the group.

Fluid Interaction: is guideline echoes the assertion from Scott et al. [a] that transitions

between activities should be performed in a fluidmanner, imposing little or no overhead.

Providing support for fluid interaction thereby improves the coordination of activities.

Information Access: In a collaborative environment, the individual actions of groupmembers

must be coordinated at an information access level, at both global and local scopes. Mod-

ifications to shared objects within the workspace have the potential to affect the separate,

individual activities of group members. erefore, information access must be consid-

ered when looking to support coordination between group members in a collaborative

setting.

Collaboration Styles: As noted in the previous discussion of mixed-focus collaboration (see

Section ..), group members frequently transition between different degrees of col-

laborative cohesion. Collaborative environments must therefore support these different

collaboration styles, which span from loosely coupled individual work, to closely coupled



group work. Individual work practices can be supported by providing multiple copies of

objects within the workspace, such that collaborators can engage in individual, parallel

activities with their own copies of an object. Group work practices can benefit from sin-

gle shared instances of objects, which collaborators can access concurrently as a group.

Related to the “supporting mental models” guideline, the ability to flexibly reorganize

workspace objects also facilitates changing collaboration styles, as group members can

change their proximity to one another, bringing their work items with them as they tran-

sition between different collaboration styles.

Communication: Successful collaboration depends on communication. In themechanics of collab-

oration, Gutwin andGreenberg [] identified that both explicit and consequential commu-

nication are critical and these mechanics should not be interfered with. Furthermore, “people

need to be able to trigger conversations, communicate about intentions to change collabora-

tion styles, indicate a need to share a visualization, and to be generally aware of their team

members’ actions” [Isenberg and Carpendale, ].

In summary, the design guidelines by Isenberg and Carpendale [] assembles together much

of the previous research for the design of information visualizations and co-located collaborative

work environments, with a specific focus on the interplay of these two areas. ese guidelines identify

the specific issues that must be addressed whenworking in this design space, and therefore, this work

is germane to my thesis research which operates within this very same design space.

. Coordinated Multiple Views

Moving away from the collaboration discussion, I now introduce coordinated multiple views (CMV),

an important family of techniques for combining the interactions on multiple individual visualiza-

tions in a unified fashion. e general technique is characterized by simultaneously visualizing a data

set in multiple different ways, where the individual visualizations, or views, are linked to one another

via an interactive dependency [Weaver, b, p. ]. For example, Figure . shown previously,

presents four different hierarchical data visualizations of the same data set (a multiple view visualiza-

tion). One possible means of coordinating interactions across these individual views is with brushing



and linking: if a tree vertex in one view is selected, the same vertex is selected across all other views

(a CMV visualization). More generally, brushing is an interaction technique in which graphical ele-

ments in an interface can be highlighted, selected, or deleted through direct pointing with an input

device, such as a mouse [Ward, ]. In a multiple view environment, brushing is oen combined

with linking, where the same selected items in one view are selected across all views of that particular

data set [Ward, ]. is CMV technique was first introduced over two decades ago by Becker

and Cleveland [] and has since become a core feature in modern graphical computer interfaces.

Brushing and linking is just one example of a possible coordination mechanism between multiple

views of a common data set. Other mechanism have been discussed [North and Shneiderman, ;

Shneiderman et al., , §..].

Design guidelines for the effective use of multiple views have been outlined by Baldonado et al.

[]; these guidelines are listed in Table .. Baldonado et al. [] acknowledge that multiple

view techniques are not always appropriate for a particular application; therefore, the first category of

guidelines present design rules suggesting when the use of multiple views are warranted. ese rules

identify situations when multiple views are a particularly effective visualization technique. e sec-

ond category of design rules looks at how multiple views should be used, recommending important

design considerations which can facilitate in system usability.

e use of CMV is motivated by the assertion that an analyst can arrive at a better understand-

ing of a data set when he/she is able to visualize the data from multiple complementary perspec-

tives [Roberts, ; Pattison and Phillips, ]. Multiple representations of a common data set

also “provides different task efficiencies, task complexities, and changes decision-making strate-

gies” [Isenberg and Carpendale, ]. Overloading a single visual representations with a large num-

ber of visual variables can quickly lead to an overwhelming cognitive load for anyone attempting to

engage with the system. is cognitive load can be reduced by using multiple, simple representa-

tions, even when including the effort required to manage these multiple views [Pattison and Phillips,

]. To ease in the navigation and understanding of an information space that is spread out across

multiple views, interactions are coordinated across the views. Coordinate visualizations introduce

their own set of design trade-offs, as a visualization environment with a simple set of coordination



M
aj
or

Im
pa

ct
so

n
U
til

ity
Ru

le
Su

m
m

ar
y

Po
sit

iv
e

N
eg

at
iv
e

WhenToUse

D
iv
er

sit
y

U
se

m
ul

tip
le

vi
ew

sw
he

n
th

er
ei

sa
di

ve
rs
ity

of
at
tr
ib

ut
es

,m
od

el
s,

us
er

pr
ofi

le
s,

le
ve

ls
of

ab
st
ra

ct
io

n,
or

ge
nr

es
.

·m
em

or
y

·l
ea

rn
in

g
·c

om
pu

ta
tio

na
lo

ve
rh

ea
d

·d
isp

la
y
sp

ac
e
ov

er
he

ad

C
om

pl
em

en
ta
rit

y
U
se

m
ul

tip
le

vi
ew

sw
he

n
di

ffe
re

nt
vi
ew

sb
rin

g
ou

t
co

rr
el
at
io

ns
an

d/
or

di
sp

ar
iti

es
.

·m
em

or
y

·c
om

pa
ris

on
·c

on
te
xt

sw
itc

hi
ng

·l
ea

rn
in

g
·c

om
pu

ta
tio

na
lo

ve
rh

ea
d

·d
isp

la
y
sp

ac
e
ov

er
he

ad

D
ec

om
po

sit
io

n
Pa

rt
iti

on
co

m
pl

ex
da

ta
in

to
m

ul
tip

le
vi
ew

st
o
cr

ea
te

m
an

ag
ea

bl
ec

hu
nk

sa
nd

to
pr

ov
id

e
in

sig
ht

in
to

th
e

in
te
ra

ct
io

n
am

on
g
di

ffe
re

nt
di

m
en

sio
ns

.

·m
em

or
y

·c
om

pa
ris

on
·l
ea

rn
in

g
·c

om
pu

ta
tio

na
lo

ve
rh

ea
d

·d
isp

la
y
sp

ac
e
ov

er
he

ad

Pa
rs
im

on
y

U
se

m
ul

tip
le

vi
ew

sm
in

im
al
ly.

·l
ea

rn
in

g
·c

om
pu

ta
tio

na
lo

ve
rh

ea
d

·d
isp

la
y
sp

ac
e
ov

er
he

ad

·m
em

or
y

·c
om

pa
ris

on
·c

on
te
xt

sw
itc

hi
ng

HowToUse

Sp
ac

e/
Ti

m
e

Re
so

ur
ce

O
pt

im
iz
at
io

n

Ba
la
nc

et
he

sp
at
ia
la

nd
te
m

po
ra

lc
os

ts
of

pr
es

en
tin

g
m

ul
tip

le
vi
ew

sw
ith

th
es

pa
tia

la
nd

te
m

po
ra

lb
en

efi
ts

of
us

in
g
th

ev
ie
w
s.

·c
om

pa
ris

on
·c

om
pu

ta
tio

na
lo

ve
rh

ea
d

·d
isp

la
y
sp

ac
e
ov

er
he

ad

Se
lf-

Ev
id

en
ce

U
se

pe
rc

ep
tu

al
cu

es
to

m
ak

er
el
at
io

ns
hi

ps
am

on
g

m
ul

tip
le

vi
ew

sm
or

ea
pp

ar
en

tt
o
th

e
us

er
.

·l
ea

rn
in

g
·c

om
pa

ris
on

·c
om

pu
ta
tio

na
lo

ve
rh

ea
d

C
on

sis
te
nc

y
M

ak
et

he
in

te
rf
ac

es
fo

rm
ul

tip
le

vi
ew

sc
on

sis
te
nt

,a
nd

m
ak

et
he

st
at
es

of
m

ul
tip

le
vi
ew

sc
on

sis
te
nt

.
·l
ea

rn
in

g
·c

om
pa

ris
on

·c
om

pu
ta
tio

na
lo

ve
rh

ea
d

At
te
nt

io
n

M
an

ag
em

en
t

U
se

pe
rc

ep
tu

al
te
ch

ni
qu

es
to

fo
cu

st
he

us
er

’s
at
te
nt

io
n

on
th

er
ig
ht

vi
ew

at
th

er
ig
ht

tim
e.

·m
em

or
y

·c
on

te
xt

sw
itc

hi
ng

·c
om

pu
ta
tio

na
lo

ve
rh

ea
d

Ta
bl

e
.
:

D
es

ig
n

gu
id

el
in

es
fo

rt
he

eff
ec

tiv
eu

se
of

m
ul

tip
le

vi
ew

s[
fr
om

Ba
ld

on
ad

o
et

al
.,



,p

.


].



mechanisms might be easy to understand, yet lacking in expressivity and customizability. On the

other hand, the environment becomes more powerful, albeit more complex, when the number of

views increases and a large customizable set of relationships for coordinating interactions on these

views is made available [Weaver, a].

Work by North and Shneiderman [a] and Weaver [] has investigated the design space

of rich, customizable CMV systems, exploring their utility [North and Shneiderman, b] and

techniques for balancing the associated design tradeoffs. North and Shneiderman’s “Snap-Together

Visualization” system is conceptualized using a relational database model, where coordinate visual-

izations are constructed by relational joins on the database schema. is elegant solution empowers

analysts with the ability to interactively construct his/her own CMV environment, using familiar

concepts from relational databases. Weaver’s “Improvise” system is also modelled aer a relational

database using a “flexible, expression-based visual abstraction language” [Weaver, ] for creating

customizable coordinate visualizations.

. Meta-visualization

Full featured CMV systems, like those demonstrated byNorth and Shneiderman [a] andWeaver

[], offer a rich set of customizable coordinations between multiple views. ese systems are

indeed powerful, however they can become overly complex, making the visualization difficult to

comprehend [Weaver, b, p. ]. To understand a CMV visualization, the analyst working

with the system must be able to conceptualize the coordination system which connects the individ-

ual views [Weaver, b, p. ]. As the number of views and the coordinations between views

increases, this task becomes increasingly more arduous.

To manage this complexity, Weaver [] introduced a meta-visualization to help people con-

ceptualize the coordination structure in the Improvise system. A meta-visualization is a “visualiza-

tion of another visualization’s structure and operation” [Weaver, b, p. ] and can be used in

CMV systems to make the coordination relationships between views visually explicit. Improvise re-

alizesmeta-visualizations ranging from embedding/overlaying themeta-visualization directly on the

individual views, to providing a separate view which displays the meta-visual data. Figure . illus-



Coordination
Graph

.

.

.

I1

IP

Metavisualization

Visualization

Δ

Li

E

Coordination
Graph

.

.

.

T1

TN

.

.

.

V1

VM

Meta
Data

Data

Lenses

Metaviews

Views (Embedded)

Combined Layout

Mj

Figure .: An integrated meta-visualization model [from Weaver, , p. ]. In a CMV
system, the visualization is comprised of data subsets (T) that are linked together using
a coordination graph, producing a series of views (V). is information makes up the
metadata. e meta-visualization takes the dynamic representations (I) from the meta-
data, links them together using a coordination graph, producing the meta-visualizations:
coordinated lenses (L), metaviews (M), and meta-visual embedding (E). Weaver, Visual-
izing Coordination In Situ, Proceedings of the IEEE Symposium on Information Visualiza-
tion, ©  IEEE. Included here by permission.

trates Weaver’s conceptual model for an integrated meta-visualization. Figure . and Figure .

present examples of how this model is applied within Improvise. ese example meta-visualizations

convey a lot of information that would otherwise be tacit, le to the analyst to manage. In a full fea-

tured CMV system like Improvise, visualizing the coordination relationships alleviates a significant

amount of cognitive overhead that is now externalized and accurately matches what is happening in

the visualization system.

Another meta-visualization example is the VisLink CMV system by Collins and Carpendale

[]. In this work, links are drawn between common data items visualized using different rep-

resentations, as shown in Figure .. VisLink is a low-level technique when compared to the meta-

visualization in Improvise, as the focus is on the occurrence of individual data items across multiple



Figure .: A view of Improvise’s interface, visualizing election results from the State of Michi-
gan from  to  [from Weaver, , p. ]. Here we see the CMV visualization
environment with twometa-visual lenses overlaid across workspace. e uppermost lens
shows the coordination structure between four views: Counties Table, Map, Map Inset,
and Votes versus County. A second, lower lens shows which views are selected, illustrated
using round rectangles of different shades of grey. e lenses are bevelled and tinted to
help distinguish them from the visualization below. Weaver, Visualizing Coordination
In Situ, Proceedings of the IEEE Symposium on Information Visualization, ©  IEEE.
Included here by permission.

visualizations, rather than presenting metadata about the coordination structure between visualiza-

tions.

. Summary

In this chapter, I have presented the body of previous research that forms the foundation of my own

thesis research. My overview began with defining the general field of visualization and characteriz-

ing two prominent disciplines: SV and IV. I then introduced how these disciplines have

conceptualized the visualization process with the creation of the data flow and the date state pro-

cess models. Particularly close attention was paid to the operator interaction framework created by

Chi and Riedl [], outlining the theoretical considerations that this framework seeks to address.

Moving from theoretical to pragmatic territory, I then introduced a mathematical definition of hier-



Figure .: In a separate window tab, a coordination query graph illustrates how the individual
views shown in Figure . are connected to one another within Improvise [fromWeaver,
, p. ]. In this metaview, coordinations between views can be added and removed
interactively. A series of lists present an overview of the visualization’s constituent parts
and their interactive state (green for inactive, yellow for focused, and red for editing).
Weaver, Visualizing Coordination In Situ, Proceedings of the IEEE Symposium on Informa-
tion Visualization, ©  IEEE. Included here by permission.

archical data and an overview of some of the common visualization techniques for representing this

type of data. Next, I introduced previous research on collaboration in synchronous co-located envi-

ronments. Specifically, I focused the discussion around small groups of people involved inmix-focus

co-located collaborative data analysis that makes use of information visualizations on a interactive

tabletop display. is examination of collaboration research was followed by a discussion of CMV

techniques. Lastly, I introduced the use of meta-visualizations in CMV environments. Building off

of this previous research, in Chapter , I present the collaboration concept behind the Lark system.



Figure .: e VisLink CMV system [from Collins and Carpendale, , p. ]. VisLink
uses brushing and linking, with ameta-visualization drawing links between selected items
across the three visualizations—treemap (le), scatterplot (middle), and geographic map
(right). Collins and Carpendale, VisLink: Revealing Relationships Amongst Visualizations,
IEEE Transactions on Visualization and Computer Graphics (Proceedings of the IEEE Con-
ference on Information Visualization), ©  IEEE. Included here by permission.



Chapter 

Lark: Collaboration Concept

Lark is a system that facilitates the coordination of collaborative interactions with information visu-

alizations on shared digital workspaces. Here I introduce through three distinct perspectives: con-

ceptual design, interface design, and soware architecture design. Each of these perspectives are

discussed in their own individual chapter, beginning here in Chapter  with the conceptual design.

In this discussion I explain the high level concepts upon which Lark is built, drawing on previously

introduced topics from the review of related work in Chapter .

is chapter is organized as follows. Section . presents the background surrounding the design

process of Lark. Before moving into the design process in more detail, Section . briefly introduces

the Lark system, providing some grounding to the conceptual discussion that follows. Section .

outlines the design challenges and the design decisions identified during the research and develop-

ment of Lark, summarized in Figure .. e discussion is structured by connecting Lark’s design

process with the design guidelines for co-located collaboration information visualization systems, as

outlined by Isenberg and Carpendale [], and the design guidelines for multiple view system by

Baldonado et al. [], as well as the principles identified in the literature review from Chapter .

e chapter is concluded with Section . which summarizes the conceptualization of Lark.

. Background

econtext for the research presented in this thesis is a collaboration between a group of Information

Visualization (IV) researchers—comprised of myself, Petra Isenberg (a PhD student at the

time), and our supervisor Dr. Sheelagh Carpendale—and a group of research biologists lead by Dr.

Michael G. Surette from the Department of Microbiology and Infectious Diseases, in the Faculty of

Medicine at the University of Calgary. is collaboration grounded this research in real-world bi-

ological data, tasks, and context. My IV colleagues and I were interested in investigating the

collaborative processes already being practisedwithin this group of biologists, and studying how their

collaborative practices might be better facilitated by digital tools that have been designed with their

collaborative processes in mind, particularly for data analysis tasks. To this end, we conducted a se-

ries of informal interviews and walkthroughs of the current analysis processes employed by a select

group of individual biologists when undergoing empirical data analysis. ese accounts of individ-

ual work flows and processes where then juxtaposed by informal observations made during regular

attendance of the biologists’ weekly research meetings, where research progress, experimental hy-

potheses and results, and data analysis strategies were discussed by the group. ese weeklymeetings

demonstrated numerous instances of collaborative work occurring in the group. e observations

made therein where used to inform the design of Lark, a visualization system for collaborative data

analysis.

Our informal observations of the biologists’ collaborative processes suggested that one of the

most necessary pieces of technology needed to support collaboration is not novel data analysis tools,

but better support for their collaborative practices. us what would bemore appropriate in address-

ing their challenges is collecting together existing, disparate tools into a unified data analysis envi-

ronment designed to support collaboration. As a result, instead of new tools to facilitate individual

work, my research focuses on designing a systemwhich supports collaboration during group analysis

tasks; exploring soware to support changing collaboration styles. erefore, while this thesis is set

in a biological context, the system’s primary focus is exploring ways to support collaboration.



. Overview of Lark

Lark is a co-located collaborative information visualization environment in which an integrated

meta-visualization [Weaver, ] shows the links and relationships between multiple coordinated

views. Traditional coordinated multiple views (CMV) systems propagate the mapping of actions

on objects in one visualization to actions in another [North and Shneiderman, a]. Lark ex-

tends this general feature to better support coordination of synchronous interactions from multiple

people collaborating in a shared workspace; which has been identified as an important feature in

supporting collaborative work within a digital context [Scott et al., a]. To support the coordina-

tion of interactions, Lark’s meta-visualization is modelled aer the conceptual visualization pipeline,

which provides several distinct stages in which group members can coordinate their actions. In

doing so, Lark extends existing CMV [North and Shneiderman, a; Weaver, ] and meta-

visualization [Weaver, ; Collins and Carpendale, ] techniques with its novel approach to

supporting mixed-focus collaborative work.

Enabling concurrent interaction with objects in a shared digital workspace requires careful con-

sideration of how to provide tools such that group members can coordinate their own actions, with-

out interference from the system. Viewing this challenge from the perspective of a visualization

process model, we can see that this coordination can take place at several different stages of the vi-

sualization pipeline—data, representations, presentation, or view level [Heer and Agrawala, ].

Making the stage at which coordination is taking place visually explicit may help provide awareness,

which collaborators can use to flexibly coordinate their activities. Lark’s information visualization

environment supports this type of coordination by integrating a representation of the visualization

pipeline into the shared workspace, thus indicating coordination points for data, representation, pre-

sentation, and view levels. is meta-visualization of the underlying visualization process makes the

connections and relationships between the individual views visually explicit, providing workspace

organization and awareness. e underlying goal is to support mixed-focus collaborative work. Lark

strives to realize this goal by supporting varying levels of collaborative cohesion—from loosely cou-

pled, individual work to closely coupled, group work—as well as, the integration of and transitions

between these different collaboration styles.



. Design Process

Within the collaborative work scenario that I am interested in (introduced in Section .), I centremy

research effort on supporting mixed-focus collaboration. Providing a means to facilitate changing

collaboration styles is fundamental to supporting mixed-focus collaboration. To this end, I dicsuss

the collaboration and coordination concept underpinning Lark which focuses on supporting chang-

ing collaboration styles. is conceptual design draws on system design guidelines for co-located

collaborative information visualizations [Isenberg and Carpendale, ] and multiple views [Bal-

donado et al., ], introduced previously in Section .. and Section . respectively. e design

guidelines by Isenberg and Carpendale [] were assembled from a collection of advice drawn

from the areas of information visualization design, co-located collaboration research, collaborative

visualization studies, and observational studies on collaborative problem solving using information

visualizations. is is precisely within the research scope of my thesis work, and therefore, these

guidelines are particularly well suited for explaining the design process of Lark. Lark’s information

visualization environment makes use of multiple view techniques in visualizing hierarchical data.

e design of this visualization environment makes use of previously published design guidelines

for multiple view systems by Baldonado et al. [] to avoid known shortcomings when utilizing

this family of visualization techniques.

e design process behind Lark’s collaboration and coordination concept is illustrated in Fig-

ure .. is design process overview is shown as an annotated sequence of steps, each categorized

as either a design challenge or design decision, which incorporates the design guidelines from Isen-

berg and Carpendale [] and Baldonado et al. []. Each step in the process is influenced by

the previously identified design challenges and design decisions. e discussion of the design pro-

cess follows this sequential iteration of design steps, beginning at the top of Figure . with support

changing collaboration styles, and each step is discussed in its own subsection. To avoid having to con-

stantly refer back to Figure ., a portion of this figure has been recreated in each of the subsections

to better contextualize that particular design step discussion.

In this context, a design challenge is defined as an aspect of the environment, task, etc. that has

been identified as difficult to overcome and must be addressed directly in order to achieve the objec-



Design Decision

Design Challenge

Design Guidelines for
Co-located Collaborative
Information Visualization

Design Guidelines for
Multiple Views

Design Process of Lark

Support Changing
Collaboration Styles

Promising hardware
form factor

Attention
Management

Parsimony

Diversity

Consistency

Large Digital
Tabletop

Information
Access

System
Setup

Task History

Perception

How to support changing
collaboration styles

Coordinated Multiple
Views System

No required temporal
ordering of actions

Temporal Flexibility

Spatial Flexibility

Freedom of object and
people juxtaposition in
the workspace

Control what an
interaction affects

Visualization
Pipeline-Centric

Software Architecture

Scoped Interaction

Integrated
Meta-visualization

Visualization Pipeline

Informing collaborators
of the extent to which
interactions are scoped

Integrate the visualization
process model within the
software architecture

Visualization process
models offer potential
for interaction scoping

Interaction techniques
for a digital tabletop

Legend

Decomposition

Collaboration
Styles

Workspace
Organization

Communication

Supporting
Mental Models

Fluid
Interaction

Hardware
Setup

Representation
Changes

Direct-Touch
Interaction Design

Self-Evidence

Space/Time
Resource

Optimization

Complementarity

Figure .: Lark’s design process.



tives of a project. Explicitly outlining these challenges in the early design stages can help in identifying

solutions as they arise later on in the design process. Furthermore, design challenges from one spe-

cific project can oen be generalized and applied to other related projects within the same research

domain addressing similar issues. A design decision is a declaration of a specific design choice made

and the resulting actions taken during the design process. is choice may, for instance, be based

on the identified design challenges, suggestions from existing literature on the topic, and/or insights

gained from an iterative design process. e explicit declaration of design decisions act as bifur-

cation points, enabling future research endeavours to make conscious alternative choices at these

points, leading to potentially different end results. e remainder of this section traces through the

design process of Lark, explaining the design decisions that were made and discussing the design

challenges that where identified.

.. Support Changing Collaboration Styles

e principal design decision in the conceptual development of Lark is to focus on supporting chang-

ing collaboration styles. It is from this point that Lark’s design process begins (see Figure .) and

all other design choices are subordinate to this primary focus. Supporting changing collaboration

styles deserves this attention as much evidence has been gathered about the importance of support-

ing teammembers in switching between tightly and loosely coupled collaborative work [Elwart-Keys

et al., ; Mandviwalla and Olfman, ; Gutwin and Greenberg, ; Scott et al., a; Isen-

berg et al., ]. While collaboration styles are frequently discussed as parallel and joint, it has been

shown that these are end points of a continuum which exhibits many variations in the degree of co-

hesion between team members [Tang et al., ]. For example, a small group of people engaged in

collaborative work with information visualizations could transition through the following phases:

A: Joint examination of one shared view, where everyone is interacting with the single view and

collectively discussing their findings.

B: Joint examination of one shared view, where only one groupmember is interacting with the single

view and the other members are observing.

C: Parallel exploration using different views, where each group member has his/her own individual



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Process of Lark

Support Changing
Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Design Decision

Design Challenge

Legend

Collaboration
Styles

Direct-Touch Interaction Design

Figure .: Lark’s design decision to support changing collaboration styles.

view and are closely communicating about his/her findings with one another.

D: Parallel exploration using different views, where each group member has his/her own individual

view and are working individually, with little explicit communication between the group.

Changing collaboration styles requires support for both group work practices (Scenario A) and in-

dividual work practices (Scenario D), as well as the gradual transition between the different styles of

work (Scenario A through D). It is this type of support for collaboration that I strive to provide with

Lark’s visualization environment.

Design guidelines for collaboration styles by Isenberg and Carpendale [] (see Section ...)

have suggested the following strategies for realizing the support of changing collaboration styles.

Group work may be better facilitated by providing single shared instances of visualizations in the

workspace, which group members can access concurrently (Scenario A). Individual work could be

facilitated with the ability to create multiple copies of visualizations, enabling individual parallel ac-

tivities (Scenario D). e transitions between group work and individual work should be supported

by the ability to fluidly transform objects between these different states. For example, transitioning



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Process of Lark

Design Decision

Design Challenge

Legend

Hardware
Setup

Support Changing Collaboration Styles

Promising hardware
form factor

Large Digital
Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Direct-Touch Interaction Design

Figure .: Lark’s design decision to use a large digital tabletop as the hardware form factor.

from joint examination (Scenario A) to parallel individual work (Scenario D), group members could

break off from their group task by creating individual instances of the shared visualization under

study and continue the analysis individually with their own private visualization instances. is dy-

namic coordination of interactions in facilitating changing collaboration styles is precisely what I

hope to achieve.

.. Large Digital Tabletop

A promising hardware form factor that is well suited for studyingmixed-focus collaborative work are

large, interactive tabletop displays. Previous work on mixed-focus collaboration [Rogers and Lindley,

; Tang et al., ], have shown that this form factor provides unique affordances conducive to

this type of collaborative work, and therefore Lark’s second design decision was to use this hardware

configuration. Selecting digital tabletops as the computing form factor follows the hardware setup

design guideline outlined by Isenberg and Carpendale []. is guideline is comprised of five

individual categories—configuration, input, size, resolution, and interactive response—introduced



Figure .: e large, multi-touch tabletop display from SMART Technologies that was used in
the development of Lark.

in Section ... and each of which are touched on in the discussion below. It should be noted that

I use the very same hardware configuration as that used by Isenberg and Carpendale [] in the

development of their collaborative tree comparison visualization system.

Lark was designed for use on a large, interactive tabletop display. e development system con-

sisted of a touch-sensitive . ×  meter DViT Board from SMART Technologies [SMART Tech-

nologies ULC, ] which makes up the tabletop surface. e display size is sufficient for groups

of two to four people to work comfortably together with enough area to share information visual-

izations [Isenberg and Carpendale, ]. Figure . presents a photograph of the tabletop display;

the scene includes three people to illustrate the relative size of the device. e system is capable

of capturing two non-identifiable concurrent and independent inputs, allowing two people to work

synchronously with objects in the workspace. Support for only two concurrent inputs constrains

the optimal number of group members who can simultaneously collaborate around this particular

tabletop display, to groups of two people. is table was build circa  and at the time was state-

of-the-art, given its large display size and high resolution. Support for two concurrent inputs was the



best available technology, given the trade-offs with display size and resolution, as all other solutions

were simply cost prohibitive for an academic research lab.

e tabletop display operates at a resolution of , × , pixels. is . megapixel display

is provided by four rear-mounted projectors in a ×  configuration. In , a projector operating

at a resolution of ,× , pixels was comparable to desktop displays at the time. e projectors

are driven by twoNVIDIAGeForce  graphics cards [NVIDIACorporation, ] connected via

SLI running under Microso Windows XP on a single-core . GHz processor with  GB of RAM.

e minimum font size used in Lark’s visualization was selected such that text can be easily read

at the provided display resolution. e pixel density of the display is approximately  pixels per

inch (PPI), which in  was acceptable for close proximity interaction. e input resolution of the

display, when using a finger or pen, is rather coarse given the high output resolution. Lark’s interface

has therefore been designed with sufficiently large selection areas on all interface widgets requiring

direct touch interaction. However, selection of individual items contained within a visualization can

be an issue. I have investigated this issue in other research pursuits [Voida et al., ], however a

discussion of this work is beyond the scope of this thesis.

.. Direct-Touch Interaction Design

Using an interactive tabletop display as the hardware form factor has implications on Lark’s inter-

action design. Rather than following traditional interaction techniques intended for mouse- and

keyboard-based systems, making full use of the tabletop display demands shiing the focus to a

direct-touch interaction design paradigm [Shen et al., ]. Lark’s first design challenge is to uti-

lize the unique affordances of the interactive tabletop medium and design the system’s interaction

techniques specifically for a direct-touch environment. Designing tabletop interaction techniques

that can be performed with ease realizes the guideline of fluid interaction [Isenberg and Carpendale,

] (see Section ...). Lark’s interaction paradigm makes exclusive use of direct-touch input,

thereby avoiding the usability costs associated with shiing between input modes (e. g., moving from

touch-based interaction to using a keyboard).



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Process of Lark
Support Changing Collaboration Styles

Design Decision

Design Challenge

Legend

Fluid
Interaction

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Interaction techniques
for a digital tabletop

Direct-Touch
Interaction Design

Figure .: Lark’s design challenge of direct-touch interaction design.

.. Coordinated Multiple Views System

With Lark’s hardware setup and the associated design implications for interaction techniques de-

termined, the next item in Lark’s design process returns to the initial question of how to support

changing collaboration styles. My research addresses this by providing a coordinated multiple views

(CMV) environment within Lark’s visualization system, supporting the visual analysis of hierarchical

data. Previous work has suggested that a multiple view environment is well suited for mixed-focus

collaborative work [Scott et al., a]. e decision to use CMV is also supported by guidelines for

both co-located collaborative information visualization [Isenberg and Carpendale, ] and the use

of multiple views [Baldonado et al., ].

In Isenberg andCarpendale’s guideline for collaboration styles (see Section ...), it is suggested

that individual work practices can be supported by providing multiple copies of objects within the

workspace, and group work practices can benefit from a single shared instance of an object. In the

representation changes guideline (see Section ...), Isenberg and Carpendale identify the need

for providing multiple representations of the same information, empowering group members to use



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Guidelines for
Multiple Views

Design Process of Lark
Support Changing Collaboration Styles

Large Digital Tabletop

Design Decision

Design Challenge

Legend

Parsimony

Diversity

Decomposition

Collaboration
Styles

Representation
Changes

How to support changing
collaboration styles

Coordinated Multiple
Views System

Temporal Flexibility

Spatial Flexibility

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Direct-Touch Interaction Design

Complementarity

Figure .: Lark’s design decision to use a coordinated multiple views system.

whichever representation they feel is more appropriate for the task at hand. Both of these guide-

lines can be realized through the use of CMV visualization techniques, that is: providing multiple

visualizations of a common data set, where these individual views are linked to one another via an

interactive dependency [Weaver, b]. e representation changes guideline can be followed by

providing multiple options as to the visual representation of data. Lark’s visualization environment

supports this by visualizing hierarchical data through four types of representations: cladogram, radial

cladogram, icicle plot, and sunburst (as illustrated in Figure .). e collaboration styles guideline

can be followed by providing a dynamic number of these views within the visualization workspace

where the number of views is determined by the individual collaborators. Lark supports the dynamic

creation of views, controlled by people rather then the system. An open question in using CMV is

determining an appropriate coordination mechanism for connecting the multiple views to one an-

other. My research addresses this question later on in Lark’s design process, beginning with scoped

interaction (see Section ..).

e design decision to use CMV is also supported by design guidelines from Baldonado et al.



[] identifying situations when multiple view techniques can be particularly effective. Our col-

laborative work scenario follows Baldonado et al.’s rules of complementarity, decomposition, parsi-

mony, and diversity as introduced in Table .. e rule of complementarity suggests that it is easier

to compare visualizations when they can be juxtaposed alongside each other and compared visually,

rather than having to rely on memory to make the comparison. Since comparison has been shown

to be an important strategy for data analysis [Munzner et al., ; Isenberg and Carpendale, ],

providing techniques that improve comparison efficiency is of value. erefore, the use of multiple

views within Lark is indeed warranted. e rule of decomposition characterizes handling complex

data by breaking the whole down into manageable parts. is divide and conquer approach is of-

ten used in collaboration work situations [Isenberg et al., ] and Lark’s work scenario conforms

to this rule. e rule of parsimony suggests that multiple views should be used minimally. is is

echoed in Lark’s design as it is the individual collaborators who control the creation of views. Lastly,

it is suggested that multiple views are appropriate when there is a diversity of user profiles (e. g., pref-

erences, levels of expertise, roles) that are to be supported by the system. is again is appropriate

for the work scenario I am investigating as collaborative data analysis leverages the analytic power of

multiple individuals where these individuals oen have varying types and levels of expertise.

.. Temporal Flexibility

e next step in Lark’s design process is acknowledging that there should be no required temporal

ordering of actions within the visualization environment. is design challenge embodies one of the

large research challenges of this thesis, introduced in Section ., which investigates how to provide

temporal flexibility for data analysis activities. is challenge is not drawn from either group of de-

sign guidelines, but rather more recent work by Isenberg et al. [] who conducted an exploratory

study of individuals and small groups working with paper-based visualizations. e study inves-

tigated how participants went about answering a series of assigned questions, organized into two

separate scenarios. Analysis of the collected data identified eight common information analysis pro-

cesses that were employed by participants: browse, parse, discuss collaboration style, establish task

strategy, clarify, select, operate, and validate. It was observed that “the processes themselves were



Design Process of Lark
Support Changing Collaboration Styles

Large Digital Tabletop

Design Decision

Design Challenge

Legend

Direct-Touch Interaction Design

Coordinated Multiple Views System

No required temporal
ordering of actions

Temporal Flexibility

Spatial Flexibility

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Figure .: Lark’s design challenge of temporal flexibility.

not temporally organized in a consistent way across groups” [Isenberg et al., ]. For example,

what one group of collaborators did at the beginning of their analysis session might be performed

halfway through a session by another group. Figure . presents an original image from Isenberg

et al.’s paper illustrating the temporal sequencing of categorized information analysis processes for

three pairs of participants during a complete scenario. Based on the study results, Isenberg et al.

concluded that temporal flexibility of analysis processes is common practice among group members

engaged in mixed-focus collaboration. Lark’s second design challenge is to adhere to this finding,

providing a visualization environment where analysis actions are temporally flexible, free of any pre-

defined ordering of actions.

.. Spatial Flexibility

Spatial flexibility is the next challenge in the design of Lark. Like temporal flexibility, this design

challenge embodies one of the larger research challenges of how to provide spatial flexibility of visu-

alization and collaborators around the shared workspace (see Section .). e formulation of this

challenge ties back in with supporting changing collaboration styles, as changes in collaborative co-



Figure .: Results from a exploratory study of individuals and small groups working with pa-
per based visualizations [from Isenberg et al., , p. ]. is figure illustrates the
temporal sequencing of the eight common information analysis processes for three pairs
of participants during an analysis scenario. Notice the inconsistent ordering of processes
across the different groups. ©  ACM, Inc. Included here by permission.

hesion in large workspaces is commonly accompanied by changing team member locations and the

associated reorganization of workspace items [Scott et al., a]. During individual work, team

members may want to keep views they are working on in close proximity or within their personal

territories [Scott et al., ]. Transitioning to more closely coupled work may require the relocation

and resizing of views so that they can more easily be seen and accessed by multiple collaborators.

Designing a workspace that supports this type of unconstrained spatial organization and mobility is

the objective of this challenge.



http://www.acm.org/publications/policies/copyright_policy

Design Guidelines for
Co-located Collaborative
Information Visualization

Design Guidelines for
Multiple Views

Design Process of Lark

Design Decision

Design Challenge

Legend

Collaboration
Styles

Workspace
Organization

Communication

Supporting
Mental Models

Space/Time
Resource

Optimization

Support Changing Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Spatial Flexibility

Freedom of object and
people juxtaposition in
the workspace

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Temporal Flexibility

Direct-Touch Interaction Design

Figure .: Lark’s design challenge of spatial flexibility.

e spatial flexibility design challenge is supported by Isenberg and Carpendale []’s guide-

lines for supporting mental models, workspace organization, and communication. It is also sup-

ported by Baldonado et al. []’s guidelines for space/time resource optimization. e supporting

mental models guideline (see Section ...) asserts that workspace items should have the ability to

be individually placed, scaled, and organized throughout the workspace. Providing this function-

ality facilitates in the creation and maintenance of mental models by allowing group members to

impose their own organizational principles to workspace items. Spatial flexibility also ties in with

the workspace organization guideline (see Section ...). Unconstrained spatial arrangement of

workspace items enables the emergence of an organic workspace organizational structure, allowing

individual team members and the group at large to establish both individual and group work ar-

eas [Scott et al., ] in a dynamic fashion. e communication guideline (see Section ...) is

supported too, as being able to spatially re-orient interface items has been shown to support ease of

reading and collaborative communication practices [Kruger et al., ].

Lastly, the spatial flexibility design challenge also strives to adhere to the rule of space/time re-



source optimization for the effective use of multiple views (see Table .). is guideline proposes

that both the spatial and temporal costs associated with multiple views must be balanced. e for-

mer considers the amount of screen real estate occupied by multiple views, an important issue as

screen real estate is a finite resource on any display and must be used effectively. e latter considers

the temporal costs assumed by an analyst when he/she makes the context switch between views, as

well as the computation time required to render alternative views. One step in balancing the spa-

tial costs for multiple views is the design decision to use a large digital tabletop as Lark’s hardware

form factor (see Section ..). While the space of a large high-resolution tabletop display can still

be easily exhausted, the display provides sufficient area to place multiple views next to one another

for easy comparison. Empowering analysts with the ability to choose their own spatial arrangement

of workspace objects further mitigates the spatial costs of multiple views, as analysts have full con-

trol over space usage within the workspace. Analysts can therefore optimize the usage of screen real

estate to best support the task at hand, rather than conforming to a predefined layout. e spatial

flexibility design challenge does not address the issues of the associated temporal costs with multiple

views. is aspect is discussed later on in Section ...

.. Scoped Interaction

Scoped interaction is another concept that my research addresses when supporting different col-

laboration styles. e research challenge of how to provide scoped interaction (see Section .) also

identifies this need. Providing a flexible definition of interaction scope is important in collaboration

so that team workers can avoid interfering with each other’s tasks when working individually and

coordinate their interactions when working as a group. Returning to the four collaborative scenar-

ios introduced earlier in this chapter (see Section ..), workspace objects in these scenarios range

from a single shared instance to multiple individual instances, and the coordination of interactions

on these objects is an important consideration. e different collaborative cohesion styles inherent

in Scenarios A through D have different requirements in the type of interaction coordination. Dur-

ing parallel work phases (such as D), interactions by each group member should stay separate so

that actions, such as filters or view changes, remain local and do not interfere with another person’s



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Process of Lark

Design Decision

Design Challenge

Legend

Information
Access

Collaboration
Styles

Communication

Fluid
Interaction

Support Changing Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Control what an
interaction affects

Visualization Pipeline-Centric
Software Architecture

Scoped Interaction

Integrated Meta-visualization

Visualization Pipeline

Spatial Flexibility

Direct-Touch Interaction Design

Figure .: Lark’s design challenge of scoped interaction.

current activity. During the transition towards Scenarios C and B, coordinating views between team

members may benefit from the integration and relation of joint analysis results. Empowering collab-

orators with the ability to decide how their interactions should be coordinated would support these

different types of collaboration styles, and the scoped interaction design challenge investigates how

this kind of support can be provided. Moreover, the goal is to keep concurrent interaction individ-

ually scoped, allowing collaborators to choose how information will be linked and how changes to

this information will be propagated, in addition to providing immediate and persistent information

to all group members about interaction scoping.

e notion of providing explicit interaction scoping is supported by the design guidelines for

collaboration styles, communication, information access, and fluid interaction from Isenberg and

Carpendale [], all of which fall under the category of coordination within the collaborative en-

vironment (see Section ...). e collaboration styles guideline is directly followed as the primary

objective of this design challenge is to provide a flexible definition of interaction scope, thereby sup-

porting the coordination needs of different types of collaboration. e design challenge also speaks



to the communication guideline as an important part of interaction scoping is facilitating workspace

awareness by making an action’s interaction scope visually explicit within the collaborative work

environment. Communicating the extent of an individual action’s effect allows group members to

coordinate their actions at an information access level as well. In this situation, information access

does not necessarily need to be explicitly enforced, but rather the awareness provided by simply in-

forming group members means that this information is no longer implicit and group members can

now act on this knowledge. Furthermore, in adhering to the fluid interaction guideline, changing the

interaction scope should be a simple and lightweight operation. Allowing the interaction scope to be

easily changed, collaborators can then easily change their degree of collaborative cohesion, moving

from individual work, where interaction is locally scoped, to group work with a more global interac-

tion scoping.

.. Integrated Meta-visualization

An important part of realizing scoped interaction is informing collaborators of the extent to which

different interactions are scoped. e next design challenge in the development of Lark looks at

how this information can be effectively communicated. A promising method for providing visual

awareness of how groupmember’s actions relate is through an integratedmeta-visualization [Weaver,

], as introduced in Section .. Integrated meta-visualizations have been used previously in

CMVenvironments to assist in the cognition of howmultiple views are related to one another [Weaver,

; Collins and Carpendale, ]. Lark employs a similar principle, using a meta-visualization

to illustrate the connections between the multiple views in the visualization environment, in addi-

tion to communicating the interaction scope of actions performed on these visualization views. To

this end, my research gathers together the following series of design goals for creating an integrating

meta-visualization:

• Create an integrated meta-visualization [Weaver, ] within the visualization workspace.

• Make the relationships between multiple views explicit (e. g., show that two visualizations are

individual instances of the same underlying data set and to what extent).

• Bring to the surface the underlying coordination graph of coordinated multiple views.



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Guidelines for
Multiple Views

Design Process of Lark

Scoped Interaction

Integrated
Meta-visualization

Informing collaborators
of the extent to which
interactions are scoped

Design Decision

Design Challenge

Legend

Communication

Attention
Management

Self-Evidence

Space/Time
Resource

Optimization

Visualization Pipeline-Centric
Software Architecture

Visualization Pipeline

Support Changing Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Direct-Touch Interaction Design

Figure .: Lark’s design challenge of creating a integrated meta-visualization.

• Represent propagating interactions (e. g., make it explicit that altering this viewwill affect these

other two views as well).

• Clarify the distinction between value and view operations [Chi and Riedl, ] (as introduced

in Section ...).

• Keep the visuals minimal.

• Embed necessary interactions within the meta-visuals.

e integratedmeta-visualization design challengemakes use of the design guidelines of commu-

nication by Isenberg and Carpendale [] (see Section ...) and self-evidence, attention man-

agement, and space/time resource optimization by Baldonado et al. [] (see Table .). Providing

a meta-visualization within Lark’s collaborative environment is strongly motivated by the consider-

ations touched on in Isenberg and Carpendale’s communication guideline, as the meta-visualization

provides a visual means of communicating an action’s interaction scope to collaborators. Related



Design Guidelines for
Multiple Views

Design Process of Lark

Consistency

Integrated Meta-visualization

Visualization Pipeline

Visualization process
models offer potential
for interaction scoping

Design Decision

Design Challenge

Legend

Scoped Interaction

Support Changing Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Direct-Touch Interaction Design

Visualization Pipeline-Centric
Software Architecture

Figure .: Lark’s design decision of structuring the integrated meta-visualization aer a visu-
alization pipeline.

to the mechanics of collaboration [Gutwin and Greenberg, ], the meta-visualization provides

consequential communication, coordination of action, monitoring, and protection. Furthermore,

by surfacing the underlying coordination graph of Lark’s CMV environment, the meta-visualization

follows the rule of self-evidence as the relationships between multiple views are made visually ex-

plicit. e meta-visualization can also be used as a means of directing analysts’ attention towards

“the right view at the right time”, in accordance with the rule of attention management. Lastly, the

meta-visualization can also help in reducing the temporal costs associated with switching between

multiple views by communicating contextual information such that analysts can quickly re-orientate

themselves in the new view. is approach can help in balancing the temporal costs of multiple

views, as suggested in the rule of space/time resource optimization.

.. Visualization Pipeline

e next design decision in Lark’s design process is to structure the integrated meta-visualization

aer a visualization process model (discussed in detail in Section . through Section .). Visual-



DataTransformation

Spatial Mapping

Transformation

Presentation
Transformation

ViewTransformation

Data Analytical
Abstraction

Spatial
Layout Presentation View

Figure .: e visualization pipeline used in Lark (shown above) is similar to Carpendale
[]’s pipeline, except that it uses different terminology for the pipeline states and trans-
formations.

ization process models, or visualization pipelines, offer the potential for interaction scoping by de-

constructing the visualization process, of transforming raw data into interactive computer graphics,

into a series of chained data processing steps. In this model, any interaction with the end visual-

ization is mapped to a modification of a discrete pipeline step. Altering the processing operation

of a pipeline step thereby influences the data received by subsequent pipeline steps. Branching the

visualization pipeline between pipeline steps enables the end visualization views to utilize common

upstream pipeline steps, with unique pipeline steps occurring downstream from the branching point.

ese discrete pipeline steps and the rooted tree that connects the steps to one another provides an

effective mechanism for interaction scoping, as the extent of an action’s effect is logically captured

within the process model.

Lark’s visualization pipeline is illustrated in Figure .. is state-based visualization process

model is similar to the pipeline introduced by Carpendale [] (see Section ..), except that it

uses slightly different terminology for the pipeline states and transformations, although the seman-

tics of each remain consistent with Carpendale’s definitions. e pipeline begins with the data state

which contains raw unprocessed data. A data transformation processes this raw data into a form

that is more readily consumable by subsequent steps in the visualization pipeline, resulting in the

analytical abstraction state. e data transformation could include operations such as value filtering

(see Section ...), statistical data analysis methods (e. g., cluster analysis), and deriving meta-data

from the raw data. From the analytical abstraction state, a spatial mapping transformation applies

a visual representation to the processed data, adding geometric information to the individual ele-



{A, B, C, D}

Analytical
Abstraction

{A, B, C, D, E, F}

Data Spatial Layout
Filter {E, F}

Spatial M
apping

Filter {B, C
},

C
olourize, Label

A

D

Presentation View

A

D

Rotate, Scale

Figure .: Lark’s visualization pipeline illustrated using an example visualization process of
visualizing set data.

ments. From this spatial layout state, a presentation transformation further processes the data’s visual

representation into the presentation state. is transformation includes operations such as colour-

ization, labelling, highlighting, view filtering (see Section ...), and spatial re-organization (e. g.,

magnification). e final view transformation moves data from the presentation state to the view

state. is transformation includes operations such as projection transformations (e. g., perspective

and orthographic projections) and view operations (e. g., rotation, pan, zoom, scale, and shear).

Figure . illustrates an example visualization process where the individual operations are cat-

egorized according to Lark’s visualization pipeline. In this example, the initial raw data is a set of

elements, {A,B,C,D,E,F}. e data transformation performs a filtering operation, removing ele-

ments {E,F} from the initial set, resulting in the set {A,B,C,D} at the analytical abstraction state.

Next, the spatial mapping transformation visually represents the four element set as a pie chart with

four equally sized pieces. At the presentation transformation, set elements {B,C} are filtered from

the view, and the remaining elements are labelled and colourized with a qualitative colour scheme.

Lastly, the view transformation rotates the visualization clockwise by ◦ and scales the elements by

.

Asmentioned above, Lark’s visualization pipeline can also be branched at different pipeline states.

is concept is illustrated in Figure . using the same initial set data from Figure ., with differ-

ent transformation operations and two branching points, resulting in three end visualization views.

It is important to note that each subsequent step in the visualization pipeline builds upon the de-

cisions made in the previous steps. Work by Heer and Agrawala [] on asynchronous remote



C
olourize, Label

View
Rotate, Scale

BA

C D

B
A

C
D

View

A

D

{A, B, C, D}

Analytical
Abstraction

{A, B, C, D, E, F}

Data Spatial Layout
Filter {E, F}

Spatial M
apping

View

Shear

Rotate, Scale

A

D

A

D

Presentation

Presentation
Filter {B, C

},

C
olourize, Label

Figure .: Branching Lark’s visualization pipeline illustrated with three end visualization
views of common underlying data.

collaboration suggested that these discrete stages in the visualization pipeline can be used to coor-

dinate collaborative activities. Lark’s pipeline contains three specific coordination points for possi-

ble interaction: analytical abstraction, spatial layout, and presentation states. ese are essentially

collaboration coordination points (CCP) which arise from the pipeline concept, allowing the devel-

opment of a collaboration coordination tree that specifies which views are linked and at which level

of the pipeline. For instance, in Figure . any changes to the spatial layout state will affect all three

subsequent views. Changes to the bottom presentation state will only affect the lower two view states,

leaving the upper view unaffected.

e visualization pipeline thereby offers a mechanism for modelling interaction scoping. Mul-

tiple copies of shared visualizations can be provided by utilizing a common visualization pipeline



Figure .: Lark’s workspace showing four views of a common data set, “Dual Clades”,
linked together with an integrated meta-visualization making the underlying visualiza-
tion pipeline visually explicit.

up to the presentation state and then branching into multiple view states (as shown in the bottom

two views of Figure .). ese multiple views are “shared” in that any interaction with common

visualization pipeline steps will influence both views, however they can be independently positioned

within the workspace as each view has a unique view transformation (as seen in the separate sheer,

and rotation and scaling operations in Figure .). Multiple individual copies can be provided by

utilizing multiple distinct visualization pipelines all branched off of the initial data state. Here, the

visualizations are based on the same data set, yet have the potential for completely unique end views.

Moving the branching point connecting two views further down the pipeline increases the amount of

cohesion between the views, providing a flexible means of defining interaction scope. Furthermore,

with this pipeline approach, each view has its own unique view transformation, and all views (shared

or individual) can be freely positioned about the workspace. is ability realizes the design challenge

of spatial flexibility of objects within the workspace.

Lark’s visualization pipeline is made visually explicit within the collaborative workspace through

the meta-visualization. Figure . presents an image of Lark’s workspace where the connections

within the visualization pipeline linking four visualization views are visually represented by themeta-



visualization. A full explanation of the meta-visualization’s visual encoding is discussed in detail in

Section .. of the following chapter.

In summary, the design decision to coordinate viewswithin Lark’s visualizationworkspace around

the visualization pipeline facilitates the realization of the design challenges of scoped interaction

and spatial flexibility. is approach also addresses the coordination mechanism of Lark’s mul-

tiple view environment, as this coordination is directly modelled using the visualization pipeline.

Making the visualization pipeline visually explicit within Lark’s workspace structures the integrated

meta-visualization. is design decision is supported by the rule of consistency for multiple view

systems [Baldonado et al., ]. Lark’s visualization pipeline provides a well defined structure for

modelling the coordination between multiple views, as each pipeline path is always made up of five

discrete states, regardless of the transformation operators at work. Since the pipeline is presented

visually within Lark’s workspace, this leads to a consistent interface illuminating the coordination

structure of Lark’s multiple views.

.. Visualization Pipeline-Centric Soware Architecture

e final design challenge in the development of Lark is engineering Lark’s soware architecture as

visualization pipeline-centric. at is to say, the clear division between pipeline states and the trans-

formations between states, as illustrated in Figure ., should be distinctly manifest within Lark’s

soware architecture. Structuring the soware architecture aer the visualization pipeline has been

identified as one of the pragmatic utilities of these conceptual process models [Duke et al., ].

Lark’s implementation features all the interaction design, user interface, and information visualiza-

tion concepts introduced in the design decisions and challenges mentioned above. Furthermore, the

implementation must ensure that the system performs at interactive rates. is has been identified

in the system setup guideline by Isenberg and Carpendale [] as an important issue for collabo-

rative information visualization systems, as a system performing below interactive rates profoundly

impedes overall usability.



Design Guidelines for
Co-located Collaborative
Information Visualization

Design Process of Lark

System
Setup

Visualization
Pipeline-Centric

Software Architecture

Visualization Pipeline

Integrate the visualization
process model within the
software architecture

Design Decision

Design Challenge

Legend

Integrated Meta-visualization

Scoped Interaction

Support Changing Collaboration Styles

Large Digital Tabletop

Coordinated Multiple Views System

Temporal Flexibility

Spatial Flexibility

Direct-Touch Interaction Design

Figure .: Lark’s design challenge of engineering Lark with a visualization pipeline-centric
soware architecture.

. Discussion

Lark’s design process introduced in the previous section adheres to many of the design guidelines

from Isenberg and Carpendale [], and Baldonado et al. [], however not all of them are

followed. In the guidelines for co-located collaborative information visualization systems [Isenberg

and Carpendale, ], the two guidelines that where not utilized are task history and perception (see

Figure .). While these guidelines represent promising areas for future research (some of which

have already been pursed [Wigdor et al., ]), they are beyond the research scope of this thesis.

e concept of coordinating collaboration around the information visualization pipeline has been

explored in previous research. Work on asynchronous remote collaboration by Heer and Agrawala

[] has identified the idea of using the information visualization reference model as “entry points

for collaborative activity” [Heer andAgrawala, , p. ], asmentioned previously. In earlier work,

Wood et al. [] used the idea of coordinating collaboration around the visualization pipeline in a



distributed system. is work is conceptually close to Lark, however the implementation was limited

to an architectural design whereas my approach focuses on making different coordination points in

the pipeline visually accessible and understandable.

Lark’s coordination and collaboration concept is generalizable, and can be applied to the visual-

ization of many different types of data. e prototype application introduced in Chapter  realizes

the coordination and collaboration concept, focusing of visualizing a specific type of data: hierarchi-

cal data. Lark uses this particular data type as a compelling exemplar for visualization, however once

again, Lark’s concept is generalizable to other types of data.

. Summary

is chapter introduced Lark’s collaboration and coordination concept. Beginning with the back-

ground of Lark’s design process in Section ., an overview of the Lark system was presented in

Section .. is is followed by Section . introducing the system’s conceptual design. is dis-

cussion was structured around Lark’s design process, illustrated in Figure ., which identified the

design challenges and design decisions made in the research and development of Lark. Lark’s design

process begins with focusing the research effort on supporting changing collaboration styles. All other

design choices are subordinate to this focus, identified as a design decision, albeit how to provide this

type of support is an open and difficult question. Section .. further characterizesmixed-focus col-

laborative work (the type of collaboration that is the focus of this research) and draws on potential

strategies from the design guidelines by Isenberg and Carpendale [] on how support could be

provided for changing collaboration styles. e next step in Lark’s design process is the design deci-

sion to use a large digital tabletop as the hardware form factor used in this research. is decision is

supported by previous research on mixed-focus collaboration [Rogers and Lindley, ; Tang et al.,

] which identified large digital tabletops as a promising form factor for supporting synchronous

co-located collaborative work. Section .. presents the technical details of this hardware setup. e

decision to use a touch-sensitive horizontal display has direct implications on the interaction design

of the system. erefore, what follows from the previous design decision is the challenge of creating

a user interface specifically for direct-touch interaction, which is necessary to fully realize the poten-



tial of the tabletop form factor (Section ..). e next design decision seeks to address the support

of changing collaboration styles through the use of a CMV environment within the visualization

workspace (Section ..). is approach is supported by both guidelines for co-located collabora-

tive information visualization [Isenberg and Carpendale, ], as well as, guidelines forwhen to use

multiple views [Baldonado et al., ]. ese guidelines compliment each other and suggest that

providing multiple visualizations that are linked to one another via an interactive dependency is a

promising technique for supporting collaboration.

e next design challenge in the development of Lark is creating a visualization environment

that does not require a specific temporal ordering of actions (Section ..). Previous research [Isen-

berg et al., ] has shown that small groups involved in mixed-focus collaboration do not follow a

strict temporal sequence of analysis tasks; rather, the analysis patterns are dynamic and spontaneous.

erefore, Lark seeks to support this type of behaviour by providing temporal flexibility of actions

within the collaborative workspace. Another important characteristic of mixed-focus collaboration

is that changes in collaborative cohesion in large workspaces is commonly accompanied by changing

team member locations and the associated reorganization of workspace items [Scott et al., a].

is characteristic is the motivation behind the spatial flexibility design challenge which strives to

provide support for the free movement of objects in and people around the collaborative workspace

(Section ..). e next design challenge is scoped interaction, introduced in Section ... is

challenge identifies that need for explicit control over the extent of an interaction’s effects, such that

group members can avoid interfering with each other’s tasks when working individually and coor-

dinate their interactions when working as a group. is requires a flexible definition of interaction

scope which can be dynamically set by collaborators to best suit the immediate task at hand.

e next item in Lark’s design process is determining a means of communicating to collabora-

tors the extend to which different interactions are scoped. Lark uses an integrated meta-visualization

to present this information, discussed in Section ... e meta-visualization is also used to sur-

face the underlying CMV coordination graph. is step in the design process is labelled as a design

challenge since how to visually structure this information within the meta-visualization is an open

question. e next design decision is to structure the meta-visualization aer a visualization process



model, similar to the pipeline model proposed by Carpendale []. Lark’s visualization pipeline

is shown in Figure .. Visualization process models offer the potential for interaction scoping by

deconstructing the visualization of data into a series of chained processing steps, and these discrete

steps can be used to define an interaction’s scope. e steps within a visualization process model also

lend themselves towards well defined coordination points for collaborative activities, as identified by

Heer and Agrawala []. Lark terms these as CCP, or collaboration coordination points, allow-

ing the development of a collaboration coordination tree that specifies which views are linked and

at which level of the pipeline. is coordination tree provides the model for structuring the CMV

coordination graph. is visualization pipeline design decision discusion is found in Section ...

e final item in Lark’s design process is the design challenge of architecting Lark’s soware aer

the visualization pipeline (Section ..). e implementation of Lark features all the interaction

design, user interface, and information visualization concepts identified in the design process, with

the whole system performing at interactive rates.

Building on this introduction of Lark’s coordination and collaboration concept, the next two

chapters present the interface and soware architecture designs which realize these concepts. Chap-

ter  discusses Lark from the perspective of someone using the system, identifying how the system’s

interface follows Lark’s design decisions and manifests specific approaches to the different design

challenges. Chapter  introduces Lark’s soware architecture from a development perspective. ese

next two chapters segment Lark’s design process in the following manner. Chapter  touches on the

first nine design challenges/decisions, Section .. through Section ... Chapter  addresses the

last item in the design process, Lark’s soware engineering design challenge from Section ...



Chapter 

Interacting with Lark

In this chapter I present the interface design of Lark, which realizes Lark’s collaboration and coor-

dination concept as introduced in the previous chapter. is discussion presents Lark as seen from

the perspective of someone using the system, and looks at the particular design decisions that were

made in creating the visual and interaction aesthetic of Lark. e visual design of the collaborative

visualization environment is presented, along with the system’s interaction design capturing what it

is like to work within this environment.

is chapter is organized as follows. Section . presents an overview of Lark’s information vi-

sualization environment, introducing the visual design of the meta-visualization and what it rep-

resents. Section . presents the interaction techniques for creating new views and coordinations

between views within Lark’s coordinated multiple views (CMV) system. Section . covers more of

Lark’s interactions techniques, with particular attention paid to how the interaction design realizes

Lark’s design challenges, as identified in Chapter . Lastly, Section . explains how Lark’s visualiza-

tion pipeline, represented by the meta-visualization, can be duplicated or cloned, and why this is an

important operation for collaboration support. Section . concludes this chapter with a summary

discussion.

(a) Lark’s collaborative visualization environment.

(b) e pipeline meta-visualization.

(c) e individual views.

Figure .: Lark’s collaborative visualization environment: single data set “External Causes of
Mortality”, four coordinated views, plus a meta-visualization of the visualization pipeline
which explicitly shows how the four views are linked to one another in the CMV sys-
tem. e original image—Figure .(a)—has been altered for illustrative purposes in Fig-
ure .(b) and Figure .(c), focusing on the meta-visualization and the individual views.



. Lark’s Information Visualization Environment

Lark is an information visualization system where an integrated meta-visualization shows the links

and relationships among multiple coordinated views. Figure . presents an example of Lark’s in-

terface: a single data set, four coordinated views, and a linking meta-visualization illustrating the

relationships between the data set and the views.

Note that unless otherwise stated, all images of Lark’s interface come directly from the system,

demonstrating what Lark looks like from the view of someone using the system. e visualization

workspace has been organized so that the meta-visualization and the views are clearly visible for

illustrative purposes. Furthermore, two distinct colour palettes for Lark’s visualization workspace

were designed—one for usage on rear projected tabletop displays and one for print graphics—and

these colour palettes have been optimized for their respective presentationmediums. e two colour

palettes are briefly summarized as follows: the tabletop palette uses a neutral grey workspace back-

ground to avoid high contrast between foreground interface elements; the rest of the palette is de-

signed around this neutral tone, with localized high contrast regions where appropriate (e. g., white

text for labelling individual elements in the hierarchical data). e print graphics palette, on the other

hand, uses a white workspace backgroundwith the rest of the palette subordinate to this colour. Both

palettes are shown in Figure ..

.. View Representation

Lark’s visualizations of hierarchical data are contained within individual view-panes, which are mo-

bile and resizable, and can be placed anywhere in the workspace. From here on, these are simply

referred to as view-panes within Lark. e ability to move and resize the view-panes realizes the de-

sign challenge of spatial flexibility, as introduced in Section ... Allowing visualizations to be freely

moved about the workspace enables group members to rearrange views to best support the current

task and collaboration style.

e visualizations contained in the view-panes are the focus of the teamwork that is to be sup-

ported by Lark. Figure . shows individual view-panes visualizing a common hierarchical data

set with different tree layout algorithms. e view-panes are framed with a semi-transparent grey



(a) For print graphics.

(b) For tabletop displays.

Figure .: Examples of the two colour palettes designed and optimized for two different pre-
sentation mediums: print graphics and rear projected tabletop displays.



Figure .: Individual view-panes, visualizing the same data set with different tree layouts. All
view-panes are mobile and resizable through direction interaction with the surrounding
grey border. In this image, the meta-visualization has been omitted for clarity.

border, which provides resizing, translation, and integrated rotation and translation (RNT) [Kruger

et al., ] operations. e border’s width is set to allow for direct-touch interaction, which speaks

to the design challenge of designing for the touch-sensitive tabletop display form factor (see Sec-

tion ..). Resizing is initiated from any of the four corners, translation from the darker grey regions

of the border, and RNT throughout the rest of the frame. e three icons at the top of the frame are

radio buttons, with the current selection indicated as the larger of the three. Data interactions are

supported through gestures made directly on the data visualization. rough interactions with the

radio buttons, data interactions are scoped and linked; this is discussed in more detail in Section ..

.. Meta-visualization

Lark’s underlying visualization pipeline, as introduced in Section .., is explicitly representedwithin

the workspace via an integrated meta-visualization. e conceptual pipeline and two examples of its

visual representation are shown in Figure ., illustrating visualization pipelines of varying levels of

complexity. Each visualization pipeline contains a data set view-pane, three types of collaboration

coordination points (CCP) for possible interaction—analytical abstraction, spatial layout, and pre-

sentation—and ending in a final view. ese pipeline components are connected to one another



with coloured edges; connectedness has been shown to be a more effective grouping principle over

techniques such as colour, proximity, shape, or size [Palmer and Rock, ]. Each new visualization

pipeline branching off a data set has a unique edge colour, as illustrated in Figure .(b). e relatively

more complex visualization pipeline in Figure .(c) contains numerous views of a single data set,

where the connecting views form a collaboration coordination tree (as introduced in Section ..).

edata set view-pane is composed of a data icon and a text label, framedwith a semi-transparent

grey border. e borders of the data set and the visualization view-panes present a consistent look

and feel of the interface, offering the same spatial arrangement operations, accessed via the same

interaction techniques. Pane translation is initiated from any of the dark grey regions located along

the four cardinal points around the frame. Interaction with the rest of the light grey border initi-

ates RNT. e resizing operator has been omitted from the data set view-pane as its utility was not

sufficiently compelling.

e CCP arise from the pipeline concept and are made visually explicit in the workspace, allow-

ing the development of a collaboration coordination tree that specifies which views are linked and

at which level of the pipeline. In the meta-visualization, the number of views that are linked at any

point in the collaboration coordination tree are indicated by the thickness of the tree edge, as seen in

Figure .(c). e CCP themselves are indicated by a circle and labeled with an icon which declares

the relation to the pipeline. e icons are surrounded with a circular semi-transparent grey border,

which provides RNT such that the CCP can be fluidly repositioned throughout the workspace. e

first pipeline state is the analytical abstraction, labeled “AA” in the icon, which contains fundamental

data operations such as removal of non-pertinent aspects of the data. e next state takes the data in

its “ready-to-examine-state” and creates a spatial layout. In Lark, a small icon indicates this state. e

third state is presentation, labeled “P”, which includes all temporary visual transformations, such as

colour transformations and the addition of labels. e final state is the view state, which contains the

summation of the choices made in the previous states, the ability to interact with the view, and the

ability to indicate which pipeline phase the interaction should affect via the bordering radio buttons.

Each element of Lark’s visualization environment—from data set view-panes, CCP, and visu-

alization view-panes—can be freely repositioned about the workspace, thereby addressing the de-



DataTransformation

Spatial Mapping

Transformation

Presentation
Transformation

ViewTransformation

Data Analytical
Abstraction

Spatial
Layout Presentation View

(a) Lark’s conceptual visualization pipeline, as introduced in Section ...

(b) A simple example of Lark’s meta-visualization, explicitly representing the visualization pipeline.

(c) A more complex example of Lark’s meta-visualization.

Figure .: Lark’s conceptual visualization pipeline and two example meta-visualizations
demonstrating how the pipeline is visually represented within the visualization workspace.



sign challenge of spatial flexibility (see Section ..). Collaborators can organize their workspace in

which ever way they feel is most appropriate for the task at hand. When changing from different lev-

els of collaborative cohesion, workspace objects can be repositioned to reflect changing work styles.

ese spatial operations use a consistent set of both interaction techniques and visual encodings for

the available operations, presenting a unified look and feel to the interface. Lark’s visual interface also

realizes the design challenge of providing a integrated meta-visualization (Section ..) structured

aer the visualization pipeline (Section ..). e relationships between themultiple views aremade

self-evident [Baldonado et al., ] with the meta-visualization, following in a similar direction as

work by Weaver [] on meta-visualizations in Improvise.

. Visual Collaboration Coordination

Lark organizes and provides interaction with multiple visualizations of multiple data sets by illus-

trating the structure of the underlying visualization pipeline that was used to generate these visual-

izations. By making the visualization pipeline explicit, the relationships between individual views of

a data set are emphasized. e visual structure of these relationships also provides awareness infor-

mation to collaborators and shows how their interactions relate to one another. is section covers

how views in Lark’s CMV environment are created and coordinated with one another.

.. View Generation

e system starts by showing available data sources, each labelled and in its own data set view-pane.

Creating a view of the data uses a touch-drag-release technique, illustrated sequentially in Figure ..

Touching the data source and then dragging away generates a semi-transparent view with default pa-

rameters for factors such as colour scales and layout type. e newly created view gains opacity as

it travels with the touch-point away from the data source, to be released in its intended work loca-

tion. Note in Figure .(b), this new view is linked to its data source via a meta-visualization of the

pipeline with CCP at the analytical abstraction (“AA”), spatial layout (i. e., visual representation),

and presentation (“P”) states. Note also that the visualization view-pane’s three interaction scoping

buttons are initialized to the default “P”, which keeps interaction local. is is a first branch of the

underlying visualization pipeline which visualizes how views are coordinated (Figure .(c)).



(a) Data source is touched. (b) Dragging the finger reveals view
and pipeline meta-visualization.

(c) Releasing reveals view-pane and
scoping buttons.

Figure .: e creation of a new view from a data source using a touch-drag-release interaction
technique. e silhouette of a hand has been superimposed on the image for illustrative
purposes.

.. Pipeline Creation and Branching

evisual representation of the pipeline in Lark is shown in Figure .. Here the pipeline is structured

as a tree, where the root is the initial data state, leaves are individual view states, and all other vertices

are CCP. All leaves have an equal depth of four dictated by the discrete states in the visualization

pipeline.

Collaborators can dynamically create new visualization pipelines and branches from existing

pipeline states through a touch-drag-release interaction technique. is interaction technique is il-

lustrated in Figure .. A new branch of the pipeline tree can be created from any CCP. To create a

new pipeline branch, the CCP icon is touched and the touch point is dragged to the intended view-

pane location. As the distance between the CCP and touch point increases, the newly created branch



(a) To create a new pipeline branch, the spatial layout icon
is touched.

(b) e finger is dragged away from the icon. As the dis-
tance increases, the new pipeline branch fades in.

(c) e finger is released at the intended view-pane loca-
tion.

(d) On release, the creation of the new branch is con-
firmed and interface decorators are added to the newly
created components.

Figure .: Interaction technique for creating a new pipeline branch off an existing spatial layout
CCP.

proportionally gains opacity and is alpha blended into the workplace. Releasing the touch anywhere

outside of the CCP icon boundary confirms the creation of the pipeline branch. A quick animated

transition adds interface decorators to the components of the newly created pipeline and completes

the fade-in from transparent to opaque. All CCP operators of the newly created view and its pipeline

link are initialized to default values. For instance, the newly created branch in Figure .(d) does not

include the labels that have been added in the existing view, nor have any items been filtered from the

view. is is because these labels and the filtering operation are not included in the default presenta-

tion state. e pipeline branch creation operation is cancelled by relinquishing the touch anywhere

within the bounds of the CCP icon. While the touch point is inside the CCP icon, the new pipeline is



Figure .: e CCP icons bordering the top of a view-pane. Here the presentation CCP icon
has been selected, scoping all interactions to the presentation state.

completely transparent, and therefore cancellation occurs in a seamless and non-disruptive fashion.

. Lark Interactions

Lark’s collaborative environment contains a integrated meta-visualization and a data visualization,

and both are interactive elements. Interactions with the meta-visualization exclusively handle the

creation of new views which contain data visualizations. rough use of the meta-visualization one

can choose exactly where in the pipeline a particular view should be linked. Interactions with the

data visualization are performed directly on the view, allowing collaborators to explore the visualized

data set.

.. Setting Interaction Scope

All interactions with the visualized hierarchical data happen directly in the view-pane. e interac-

tion scope is explicitly set through three CCP icons bordering the top of a view-pane, as illustrated in

Figure .. Note that these bordering icons use the same representation as the CCP icons from the

pipeline meta-visualization which connect the data set to the view-pane. e icon for the currently

selected interaction scope is displayed at a larger size. For instance, in Figure . the presentation

icon is currently selected indicating that all interactions will target the presentation transformation

of the pipeline (see Figure .(a)), altering the presentation state. View transformations are always

independent; this means that operations such as changing rotation, translation, and size of a view do

not affect other views (as discussed in Section ..). Hence, the view-pane does not include an icon

for view transformations as these transformations are implicitly localized.

e interaction sequence in Figure . illustrates the user experience of interaction scoping. Fig-

ure .(a) presents two view-panes connected to one another at the spatial layout CCP. e inter-

action scope for both views are set to the presentation state, as indicated by the larger bordering “P”



icon. In Figure .(b) the analyst has added labels to the view on the le and is about to modify

the colour scale. e pipeline edge connecting the presentation CCP to the view-pane is highlighted

communicating the scope of the interaction the analyst is about to perform. Since each view-pane

has distinct presentation states, these changes are localized to the le view-pane that is being directly

interacted with. In Figure .(c) the analyst changes the interaction scope of the right view-pane to

the spatial layout by pressing the bordering spatial layout icon. e two view-panes share the same

visualization pipeline up to and including the spatial layout, therefore, anymodification to the spatial

layout pipeline state will affect both views. Again, notice the highlighted pipeline edge communicat-

ing the new interaction scope. rough a flick gesture on the right view-pane, the analyst changes

the tree layout, as shown in Figure .(d). is interaction affects both view-panes since the opera-

tion is modifying the common spatial layout pipeline state. is example illustrates how interaction

scoping is controlled through the view-pane CCP icons. Group members can explicitly coordinate

how their interactions affect other views in the workspace, realizing the design challenge of scoped

interaction (see Section ..).

Different visualization pipeline states are modified by setting the interaction scope to target that

specific region of the pipeline. e selected interaction scope (i. e., which pipeline state an operation

will affect) dictates how interactionswill affect the final view. Similar towork byChi andRiedl [],

as introduced in Section ..., the distinction between view and value operations is particularly

crucial in this context. For instance, a distinction is made according to where filtering occurs in

the pipeline: filtering as a data transformation at the analytical abstraction state removes the filtered

parts of the data before it reaches the layout, what Chi and Riedl call value-filtering, whereas filtering

at the presentation state is view-filtering. Value filtering occurs before the spatial mapping stage, and

hence, will influence the way the data is laid out in space. View filtering will still remove the selected

aspect of the data but the basic spatial mapping is le unaffected, with a gap where the data has

been removed. is distinction was discussed previously in Section .... Figure . illustrates

this concept once again, this time within Lark’s visualization environment. Here, the same filtering

operation is applied to two different points in the visualization pipeline. While filtering in both cases

uses the same gestures and has the same general result of removing data, where it is applied in the



(a) Two view-panes connected to one another at the spa-
tial layout CCP.

(b) e analyst has added labels to the le view and is
about to modify the colour scale. e pipeline edge con-
necting the presentation CCP to the view-pane is high-
lighted communicating the scope of the interaction the
analysts is about to perform.

(c) e interaction scope of the right view-pane is
changed to the spatial layout. e pipeline is highlighted
indicating the extent of the new interaction scope.

(d) e tree layout is changed via a flick gesture directly
on the view-pane, altering the common spatial layout
pipeline step and therefore changing the data representa-
tion in both views.

Figure .: An example interaction sequence illustrating the user experience of scoped interac-
tion.



(a) Complete data set, no items are
being filtered.

(b) Filtering at the analytical ab-
straction CCP (value-filtering) .

(c) Filtering at the presentationCCP
(view-filtering).

Figure .: eoutcome of filtering operations applied to different points in Lark’s pipeline. e
meta-visualization has been omitted for clarity.

pipeline matters, leading to dramatically different results.

In the development of Lark, an alternative to explicitly setting the interaction scope was explored.

For instance, an expanded gesture vocabulary could be developed that would provide each operation

its own unique gesture, avoiding the reuse of gestures that are contextualized based on the defined

interaction scope. However, informal user feedback suggested keeping the gesture set simpler and

using the CCP icons on the view-pane to make the scoping—either analytical abstraction, spatial

layout, or presentation—explicit. Furthermore, the explicit nature of setting the interaction scope

provides workspace awareness to collaborators through consequential communication and moni-

toring [Gutwin and Greenberg, ].

.. Coordinated Interactions

To illustrate Lark’s coordinated interactions, let us look at a concrete example. Returning to Fig-

ure ., we see four view-panes attached to the same data source. Each view shares a common ana-

lytical abstraction step, the three icicle plots on the right share the same layout step, and two of these

share the same presentation step. By touching the “P” icon on the icicle plot at the top right we set

this view to receive interactions affecting presentation. Any interaction on this view will automati-

cally affect the other icicle plot that shares the same presentation CCP in the pipeline. Presentation



(a) . (b) . (c) . (d) .

Figure .: Icon meta-visualization of the analytical abstraction CCP icon. e amount of
colour fill indicates the percentage of unfiltered items at this state. is same encoding is
used in the presentation CCP icon.

(a) Icicle tree layout. (b) Sunburst tree lay-
out.

(c) Radial cladogram
tree layout.

(d) Cladogram tree lay-
out.

Figure .: Icon meta-visualization of the spatial layout CCP showing the four types of spatial
layouts available in Lark.

operations include filtering, colourization, vertex/edge annotations, and selective labelling. Here we

can see that both icicle plots connected at “P” share the same colour and labels and have been view-

filtered to show the same subset of vertices. e three icicle plots share the same spatial layout CCP.

When the spatial layout icon on the view-pane of one of these three views is selected, a gesture can

be used to switch the layout of all three views. Four tree layouts are available in Lark: cladogram,

radial cladogram, radial-space filling, and icicle plot, as shown in Figure .. e radial cladogram

is only connected to the three other views at “AA” and hence has independent layout and presenta-

tion parameters. Should the “AA” icon be selected on any of the four views (setting the interaction

scope to the analytical abstraction state), a performed filtering operation would affect all four views,

changing the spatial arrangement of the unfiltered subset.

Lark includes several awareness features to help establish the coordination of interactions more

explicitly. When a view-pane icon is touched and an interaction scope is selected, the pipeline edge

connecting this view-panewith others that will be affected, is highlighted. is feature was illustrated

previously in Figure .. Similarly, at the start of an interaction gesture, the edge highlights to indicate



(a) To clone a section of the pipeline the view-pane CCP
icon is touched.

(b) e finger is dragged away from the icon.

(c) As the distance increases, the cloned pipeline branch
gains opacity.

(d) On release, the creation of the cloned branch is con-
firmed and interface decorators are added to the view-
pane.

Figure .: Interaction technique for cloning an existing pipeline branch.

that an interaction is about to occur and which other views it will affect. is helps to maintain

common ground among collaborators by explicitly indicating the shared objects in the workspace,

as also discussed by Chuah and Roth []. In addition, the pipeline CCP icons are indicative of

previous operations on the views connecting them. Both “P” and “AA” icons show the percentage of

data that has been filtered (see Figure .), while the layout icon shows which tree layout is currently

selected (see Figure .). is gives a high-level overview of what’s happening at that particular

CCP. Since the encoded metadata is intended to provide a quick overview of a state, encoding has

been restricted to a single variable that is most important for that state.

. Pipeline Cloning

e concept of pipeline cloning arose from observation of two different information task scenarios.

One occurs during individual work and one occurs between collaborators. e individual scenario

involves reaching a point in a data analysis sequence where one would like to compare a variation

of one’s current view to the current view. e collaboration scenario involves a team member being



interested in a particular view and deciding to commence work starting from that view. Both of

these scenarios lead to the need for an independent—not linked—but identical view. Creating new

pipeline branches off a CCP icon is sometimes insufficient, as newly created CCP are initialized to

an unaltered default state. e cloning feature addresses this need to duplicate an existing pipeline

branch. Cloning a section of the pipeline makes a deep copy of each of the pipeline states, beginning

with the selected state and moving down the pipeline to include the view state. is allows one to

explore alternative configurations of the pipeline, based on previous modifications. Note that a new

branch differs from a clone in that each of the pipeline states of a new branch are initialized to some

default value, while a clone is a duplication of the selected pipeline.

A similar interaction technique to the one used in creating a new branch is employed in cloning.

Instead of interacting with the CCP icon on the pipeline visualization (as done when creating a new

pipeline branch, see Section ..), clones are created by interactingwith theCCP icons bordering the

view-pane (see Figure .) . Pressing on a view-pane CCP icon and employing the same touch-drag-

release to outside of the view-pane boundary creates a new clone of a section of the pipeline. is

interaction sequence is illustrated in Figure .. e section of the pipeline to be cloned is chosen

from whichever CCP icon it is operated from. As the touch is dragged further away from the view

window, the opacity of the cloned branch proportionally increases. Confirmation of the operation

is made by releasing the touch anywhere outside of the view-pane’s boundary. Cancellation of the

operation is done by releasing anywhere inside the view-pane. Notice in Figure .(d) that the

cloned pipeline branch also includes the filtering and labelling operations of its parent.

Informal user feedback suggested that when initiating a cloning operation, people expected that

the same CCP as the selected view-pane icon would be the branching point of the cloned branch.

Currently, this CCP is the first pipeline state to be cloned and the preceding CCP is the branch-

ing point of the newly created pipeline. For example, in Figure ., the spatial layout CCP icon is

touched to initiate the cloning operation (see Figure .(a)). is results in the creation of a cloned

pipeline, branching from the “AA” CCP, and the spatial layout state is the first cloned CCP in the

newly created branch (see Figure .(d)). e interaction that was expected is that initiating the

cloning operation from the spatial layout CCP icon would result in a cloned pipeline branching from



the spatial layout state, and the first cloned CCP is the presentation state. Informal comments from

people who tried Lark suggested that this would be themore intuitive result of the cloning operation.

Adjusting Lark’s implementation to follow this more intuitive outcome would require the addition of

a data set icon to the bordering CCP icons around the view-pane. Without this addition there would

be no way to clone the complete pipeline branch. Also, this modification would allow the view-pane

to be cloned, a feature that is currently not supported by Lark’s interface.

. Summary

In this chapter I introduced Lark’s interface and interaction design as seen from the perspective of

someone using the system. is discussion began with an overview of Lark’s visualization environ-

ment (Section .), deconstructed into the visual design of the view-panes and themeta-visualization,

Section .. and Section .. respectively. Lark’s meta-visualization is structured aer the under-

lying visualization pipeline; a juxtaposed conceptual pipeline and the pipeline represented via the

meta-visualization are presented in Figure .. Section . moves into describing Lark’s interac-

tion design. New views and branches off existing pipelines are created with a touch-drag-release in-

teraction technique. Since Lark was developed for use on a large tabletop display, this interaction

technique is particularly well suited for a touch-sensitive display. Section . overviews the avail-

able interactions with the hierarchical data visualization that are contained within view-panes. is

overview is connected with the concept of scoped interaction and Section .. describes how this is

achieved within Lark. Next, the coordination of interactions within the visualization workspace is

presented (Section ..), alongwith further details of the visual representation of themeta-visualization.

Section . introduces pipeline cloning, the last interaction design concept. Here, the motivation for

the ability to duplicate specific sections of an existing pipeline is presented and the interaction tech-

nique for doing so is described and illustrated.

Building from this overview of Lark’s interface design, the next chapter investigates the underly-

ing soware architecture design. is succeeding chapter describes the internal soware mechanics

and engineering principles that made Lark’s implementation possible.



Chapter 

Implementation of Lark

In the previous chapter, I discussed Lark’s visual and interaction design, as seen from the perspec-

tive of a person who is using the system. To use a automobile analogy, in this chapter I will look

under the hood, presenting Lark from a system architecture and development perspective. Our dis-

cussion will also include the technical challenges encountered and the decisions made during Lark’s

implementation.

As mentioned in Section ., the utility of the visualization reference model ranges from concep-

tual to pragmatic. Early work by Haeberli [] and Upson et al. [] used the data flow model

both as a means to organize their systems external visual interface, as well as the system’s internal

soware architecture. We continue with this tradition in architecting Lark: the visualization pipeline

is the structuralmodel within the visual workspace as well as throughout the design of the underlying

system architecture. is implementation approach realizes Lark’s soware engineering design chal-

lenge of creating a visualization pipeline-centric soware architecture, as discussed in Section ...

To support this pipeline-centric design, I design and implemented two libraries—Elm and Snow-

Monkey—to serve as integral components in Lark’s system architecture. Lark, as an Information

Visualization (IV) application, integrates the Elm and SnowMonkey librarieswith existing tech-

nologies from the Large Display Framework (LDF) [Isenberg et al., ] and the OpenGL graphics

library [Shreiner and e Khronos OpenGL ARB Working Group, ]. e implementation of

these three soware components—Elm, SnowMonkey, and Lark—total over , lines of code.

OpenGL
Rendering

Large Display
Framework

SnowMonkey
Tree Visualization Library

Elm
Tree Representation Library

Lark
Interactive Visual Interface

Figure .: Lark’s system architecture stack. e Elm, SnowMonkey, and Lark components
where developed specifically in order to realize the larger Lark system, in addition to uti-
lizing existing technologies from the Large Display Framework and OpenGL.

Figure . illustrates how these components are interconnected to form Lark’s system architecture

stack.

Each of the components in the architecture stack will be discussed in detail within this chap-

ter, with the exception of OpenGL and LDF. OpenGL is a well established and extensively docu-

mented [Shreiner and e Khronos OpenGL ARB Working Group, ; Wright et al., ] com-

puter graphics library whose discussion is beyond the scope of this thesis. Although LDF has been

described in previous work [Isenberg et al., ], it is not as well known when compared to a library

like OpenGL; therefore, LDF will receive a cursory overview.

is chapter is structured as follows. We begin with a high level discussion of Lark’s system

architecture and its close relation to the visualization pipeline. We then use the structure of Figure .

to organize the presentation of the components in the system architecture, following a bottom-up

approach. e design of the Elm library is introduced and its implementation details are discussed.

Next, the SnowMonkey library is presented, along with a discussion focusing around the separation

of pipeline states within the application programming interface (API). Lastly, the Lark application,

found at the top of the architecture stack, is discussed. e chapter is concluded with an overview of

Lark’s implementation details.



DataTransformation

Spatial Mapping

Transformation

Presentation
Transformation

ViewTransformation

Data Analytical
Abstraction

Spatial
Layout Presentation View

Elm SnowMonkey Lark

Figure .: e visualization pipeline and the specific soware components which implement
sections of the pipeline. e same colourization of soware components from Figure .
is used in this diagram.

. Lark’s System Architecture and e Visualization Pipeline

e soware architecture design of Lark closely resembles the visualization pipeline. is theoreti-

cal pipeline models the transformation of raw data into interactive computer graphics as a series of

chained data processing steps. Architecting soware aer the visualization pipeline means that data

processing occurs sequentially through a series of discrete transformations, and the movement of

processed data from one pipeline step to the next is well defined and separated in the API.

Figure . illustrates the specific soware components from Lark’s system architecture stack

which implement the various sections of the visualization pipeline. At the beginning of the pipeline

implementation is the Elm library, which is solely responsible for providing a generic hierarchi-

cal data structure. Elm implements the data state of the visualization pipeline. e SnowMonkey

library transforms the hierarchical data from Elm into a visual presentation. SnowMonkey imple-

ments a section of the visualization pipeline from the data transformation through to the presentation

state. Each of the pipeline states in SnowMonkey are implemented as discrete, data cachingmodules.

e final component in the pipeline implementation is the Lark application which covers the view

transformation and the view state. Lark uses OpenGL for rendering the view and LDF for the user

interface.

e naming convention of Lark’s soware components is based on flora and faunae: a tree, a

primate, and a bird. At the bottom of the architecture stack is a tree library, appropriately named

elm, the common name of the genus of deciduous and semi-deciduous trees commonly found in the



northern hemisphere [Encyclopedia of Life, c]. Next, the tree visualization library gets its name

from the Japanese macaque, or snow monkey, the northernmost living primate apart from Homo

sapiens and an Old World monkey who makes its habitat in the highlands and forested mountains

of Japan [Encyclopedia of Life, b]. Lastly, larks are a medium-sized bird from the order Passer-

iformes (commonly known as “perching birds” [Edwards and Harshman, ]) and are primarily

found in the Old World—Europe, Asia, and Africa [Encyclopedia of Life, a]. e idea behind

these creatures is that Lark’s soware begins with trees, expands to primates that live in forests, and

moves on to birds that live in forests and beyond.

. Elm: Tree Representation Library

At the bottom of the architecture stack is Elm, a soware library for representing hierarchically struc-

tured data, oen simply referred to as trees (as introduced in Section .). It handles themanagement

of the hierarchical structure, while providing flexibility as to the composition of the hierarchy. Elm is

a generic, standalone library which implements the initial data state of the visualization pipeline, as

shown in Figure .. It provides a structure to the raw data which can be accessed from subsequent

states in the pipeline. e structure and access mechanisms are optimized for performance in order

to avoid potential performance bottlenecks in the subsequent states.

e development of Elm was necessary in order to satisfy the need for an uncompromising and

consistent manifestation of the pipeline-centric design throughout the different tiers of the Lark sys-

tem’s API, beginning with the lowest tier. is is why existing soware libraries for data hierarchies,

such as the Boost Graph Library [Siek et al., ] and the tree.hh Library [Peeters, ], were

not used.

Elm is written in C++ and supports generic data types through the use of templates and multi-

ple inheritance. e core Elm library contains , lines of code and the accompanying unit tests

contain , lines of code. e individual C++ classes which make up the core Elm library are illus-

trated in Figure ., using UML class diagram notation. Note, that while the relationships between

classes are accurately reflected in the diagram, the full API specification for each of these classes has

been simplified (e. g., only  of the  defined methods in the Tree class are shown). e smallest



0..1

parent
0..*

edges

1

parent

1

child

 1..* vertices 1 root 0..* edges

Vertex()
preorderVertexTraversal()
postorderVertexTraversal()
levelorderVertexTraversal()

- parent : Edge*
- edges : std::vector<Edge*>

Vertex
{abstract}

Edge()

parent : Vertex*
child : Vertex*

Edge
{abstract}

+ addEdge(Edge*)
+ preorderVertexTraversal(VisitVertex*)
+ postorderVertexTraversal(VisitVertex*)
+ levelorderVertexTraversal(VisitVertex*)
+ initialize()
+ getMaxDepth()
+ getMaxVertexWeight()
+ getMinVertexWeight()
+ getMaxEdgeWeight()
+ getMinEdgeWeight()
+ getVerticesSize()
+ getEdgesSize()
+ getLeafVerticesSize()
+ getLeafVertices()
+ getVertex(size_t)
+ getEdge(size_t)

- root : Vertex*
- vertices : std::hash_map<size_t, Vertex*>
- edges : std::hash_map<size_t, Edge*>

Tree

TreeElement()

id : size_t
label : std::string
weight : double

TreeElement
{abstract}

NullVertexNullVertex

VertexTemplate
VertexType

EdgeTemplate
EdgeType

DataTemplate()

data : Type*

DataTemplate
Type

«binds»
EdgeType

«binds»
VertexType

VistVertex()
+ visit(Vertex*)

«interface»
VisitVertex

Figure .: An overview of the individual classes which comprise the Elm library and their re-
lationship to one another, illustrated using UML class diagram notation.



components of Elm are the Edge and Vertex classes. An Edge links two Vertex objects together

and a Vertex stores an adjacency list of child edges, as well as its connecting parent edge. is bidi-

rectional tree implementation enables navigation up and down the hierarchy beginning from either

an Edge or a Vertex. Tree objects control the management of all the individual Edge and Vertex

objects which comprise to form the definition of a single hierarchy. e Tree class is the entry point

for performing preorder (depth-first), postorder, and level-order (breadth-first) tree traversals, as

well as querying other tree attributes, such as the maximum depth of the tree, etc.. e vertices

and edges hash maps contained in Tree are used for quick lookups of vertices and edges based on a

unique id identifier, an attribute of the parent TreeElement class of Vertex and Edge. TreeEle-

ment also provides label and weight attributes. e latter attribute provides support for weighted

trees and can be used in defining an evolutionary tree, also known as a phylogenetic tree, where edge

weight stores the time between speciation events [Baum and Offner, ].

All the container classes (e. g., std::hash_map and std::vector) used to store vertices and

edges within the Elm library use either the abstract Vertex or Edge class as the type of the con-

tainer’s elements. e VertexTemplate and EdgeTemplate classes, derived from these abstract

classes, can reference arbitrary objects with the template data member, defined within DataTem-

plate. Tree objects can therefore contain heterogeneous collections of data types attached via the

VertexTemplate and EdgeTemplate objects that comprise the hierarchy. Listing . presents an

example which illustrates this concept. Notice that the types of tree vertices in this example are a

mixture of NullVertex, VertexTemplate<Circle>, and VertexTemplate<Square> data types,

afforded by Elm’s flexible API. Once all the vertices and edges have been added to the tree, the ini-

tialize() method is called which computes the meta-data tree attributes, such as the maximum

depth of the tree, maximum/minimum vertex/edge weight, etc.. Extracting data object references

from the tree requires type casting via a dynamic_cast.

Tree traversal in Elm is performed via the VisitVertex interface. Objects that implement this

interface are passed in as arguments to one of the vertex traversal methods—preorder, postorder, and

level-order—in Tree. e traversal methods navigate the tree, visiting each of the tree vertices in the

appropriate order, calling the vist(Vertex*) method on the passed in VisitVertex object for



each traversed Vertex object. e implemented visit(Vertex*) method performs the necessary

processing on the Vertex, accessing the parent Edge if necessary.

class Square {

double length;

public:

Square(double l) : length(l) { }

};

class Circle {

double radius;

public:

Circle(double r) : radius(r) { }

};

int main() {

Elm::NullVertex* root = new Elm::NullVertex();

Elm::Tree* tree = new Elm::Tree(root);

/* Create circle vertices and square edges. */

for(int i = 0; i < 4; i++){

Elm::VertexTemplate<Circle>* vertex =

new Elm::VertexTemplate<Circle>(new Circle(5.0));

Elm::EdgeTemplate<Square>* edge =

new Elm::EdgeTemplate<Square>(root, vertex, new Square(4.0));

tree->addEdge(edge);

}

/* Create square vertices and circle edges. */

for(int i = 0; i < 4; i++){

Elm::VertexTemplate<Square>* vertex =

new Elm::VertexTemplate<Square>(new Square(5.0));

Elm::EdgeTemplate<Circle>* edge =

new Elm::EdgeTemplate<Circle>(root, vertex, new Circle(8.0));

tree->addEdge(edge);

}

tree->initialize();

return 1;

}

Listing .: ExampleC++ source code illustrating howa tree of heterogeneous data is created us-
ing the Elm library. Here a tree with eight leaf vertices—four VertexTemplate<Circle>
and four VertexTemplate<Square> objects—at a depth of one is created and initialized.

Since the initial release of the C++ version of Elm in early , the library has been ported to

both Java and C, released under the names ElmJ and ElmCs respectively. ElmJ was publicly re-



leased under the GNULesser Public License [Free Soware Foundation, ] onMay ,  and is

available for download from http://innovis.cpsc.ucalgary.ca/Software/ElmJ. Both ElmJ and ElmCs

include a New Hampshire tree format, or simplyNewick format [Wikipedia, b] file parser which

is found outside of the core Elm library in the C++ version.

. SnowMonkey: Tree Visualization Library

e SnowMonkey library builds on Elm, implementing the data transformation to presentation state

section of the visualization pipeline (see Figure .). e goal of SnowMonkey’s pipeline imple-

mentation is to keep different pipeline states separate and discrete. is is achieved via two main

features: caching encapsulated data from previous pipeline states, and the addition of pipeline state

specific meta-data at each pipeline transformation. Data is processed from one pipeline state to the

next by encapsulating and making a cache of this incoming data, applying the pipeline transforma-

tion to the cache, and then adding any pipeline transformation specific meta-data. For example,

when data items (comprised of vertices and edges) move from the analytical abstraction state to the

spatial layout state, the spatial mapping transformation augments these items with geometrical meta-

data, assigning each vertex and edge a position, size, and shape. Caching makes it possible for later

pipeline states to modify definitions made by earlier states. e pipeline transform operates on the

cache rather than the encapsulated data, meaning the data defined at an earlier state is le unal-

tered. For example, the presentation transformation handles emphasizing specific data items. is

emphasis might involve modifying the position and size of data items (e. g., fish eye distortion), two

properties that were defined previously by the spatial mapping transformation. Since this emphasis

operationwithin the presentation transformationmodifies a cache of the data items position and size,

the underlying value defined by the spatial layout transformation is le unaltered. Furthermore, this

is an important feature as the visualization pipeline must support an arbitrary number of branches at

any pipeline state. Since pipeline transformations never modify the data defined at previous pipeline

transformations, multiple pipeline branches do not interfere with each other.

SnowMonkey is written in C++, building on the Elm library which is its only dependency. e

core SnowMonkey library contains , lines of code and the accompanying unit tests contain



http://innovis.cpsc.ucalgary.ca/Software/Elm4J

1.
.*

ve

rt
ic

es

 1

ro
ot

1
 a

na
ly

tic
al

A
bs

tr
ac

tio
nT

re
e

 0

..1

pa
re

nt

0.
.*

ed

ge
s

0.
.*

ed
ge

s

1

pa
re

nt1

ch
ild1 pa

re
nt

1
 a

na
ly

tic
al

A
bs

tr
ac

tio
nT

re
e La

yo
ut

Ty
pe

Si
ze

tr

ee
La

yo
ut

s

 1

tr
ee

La
yo

ut
s

 1

la
yo

ut

 0

..*

ve
rt

ic
es

 0

..*

ed
ge

s

1 la
yo

ut

 1

la
yo

ut

 0

..*

ve
rt

ic
es

 1

la
yo

ut

 1

la
yo

ut

 0

..*

ve
rt

ic
es

 0
..*

ve

rt
ic

es

1 ve
rt

ex

1 ve
rt

ex

1 ve
rt

ex

1 ve
rt

ex

 0

..*

ed
ge

s

1 la
yo

ut

 0

..*

ed
ge

s

1 la
yo

ut

 0

..*

ed
ge

s

1 la
yo

ut

 1

ed

ge

1 ve
rt

ex

1

an
al

yt
ic

al
A

bs
tr

ac
tio

nT
re

e

 1

la
yo

ut
M

an
ag

er

 1

ro

ot

1.

.*

ve
rt

ic
es

1

pr
es

en
ta

tio
nT

re
e1

pr
es

en
ta

tio
nT

re
e 0.
.*

ed
ge

s

 0

..1

pa
re

nt

0.
.*

ed

ge
s

1

ch
ild1

pa
re

nt

 1

ed
ge

 1

ve
rt

ex

1 pr
es

en
ta

tio
nT

re
e

+
 u

pd
at

eO
bs

er
ve

r(
)

«i
nt

er
fa

ce
»

O
bs

er
ve

r
+

 a
tt

ac
hO

bs
er

ve
r(

)
+

 d
et

ac
hO

bs
er

ve
r(

)
+

 n
ot

ify
O

bs
er

ve
rs

()

-
ob

se
rv

er
s

:

 s
td

::l
is

t<
O

bs
er

ve
r*

>

Su
bj

ec
t

{a
bs

tr
ac

t}

+
 p

re
or

de
rV

er
te

xT
ra

ve
rs

al
()

+
 p

os
to

rd
er

Ve
rt

ex
Tr

av
er

sa
l()

-
tr

ee
 :

El
m

::T
re

e*

El
m

M
ed

ia
to

r

+
 is

Tr
av

er
sa

bl
e(

)

-
an

al
yt

ic
al

A
bs

tr
ac

tio
nT

re
e

:

 A
na

ly
tic

al
A

bs
tr

ac
tio

nT
re

e*
-

ed
ge

 :
El

m
::E

dg
e*

-
pa

re
nt

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

-
ch

ild
 : A

na
ly

tic
al

A
bs

tr
ac

tio
nV

er
te

x*
-

fo
cu

s
: b

oo
le

an

A
na

ly
tic

al
A

bs
tr

ac
tio

nE
dg

e

+
 tr

ee
La

yo
ut

()
+

 g
et

Ro
ot

()
+

 g
et

La
yo

ut
Ve

rt
ex

()
+

 g
et

La
yo

ut
Ed

ge
()

«i
nt

er
fa

ce
»

Tr
ee

La
yo

ut
In

te
rf

ac
e

+
 p

re
or

de
rV

er
te

xT
ra

ve
rs

al
()

+
 p

os
to

rd
er

Ve
rt

ex
Tr

av
er

sa
l()

+
 g

et
La

yo
ut

(L
ay

ou
tT

yp
e)

-
an

al
yt

ic
al

A
bs

tr
ac

tio
nT

re
e

:

 A
na

ly
tic

al
A

bs
tr

ac
tio

nT
re

e*
-

cu
rr

en
tL

ay
ou

tT
yp

e
: L

ay
ou

tT
yp

e
-

tr
ee

La
yo

ut
s

:

 T
re

eL
ay

ou
tI

nt
er

fa
ce

[L
ay

ou
tT

yp
eS

iz
e]

La
yo

ut
M

an
ag

er

+
 p

re
or

de
rV

er
te

xT
ra

ve
rs

al
()

+
 p

os
to

rd
er

Ve
rt

ex
Tr

av
er

sa
l()

-
el

m
M

ed
ia

to
r

: E
lm

M
ed

ia
to

r*
-

ro
ot

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap

 <
A

na
ly

tic
al

A
bs

tr
ac

tio
nV

er
te

x*
>

-
ed

ge
s

: s
td

::h
as

h_
m

ap

 <
A

na
ly

tic
al

A
bs

tr
ac

tio
nE

dg
e*

>

A
na

ly
tic

al
A

bs
tr

ac
tio

nT
re

e

+
 is

Tr
av

er
sa

bl
e(

)
+

 p
os

to
rd

er
Tr

av
er

sa
l()

+
 p

re
or

de
rT

ra
ve

rs
al

()

-
an

al
yt

ic
al

A
bs

tr
ac

tio
nT

re
e

:

 A
na

ly
tic

al
A

bs
tr

ac
tio

nT
re

e*
-

ve
rt

ex
 :

El
m

::V
er

te
x*

-
pa

re
nt

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nE
dg

e*
-

ed
ge

s
:

 s

td
::v

ec
to

r<
A

na
ly

tic
al

A
bs

tr
ac

tio
nE

dg
e*

>
-

fo
cu

s
: b

oo
le

an

A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x

-
ve

rt
ex

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

La
yo

ut
Ve

rt
ex

{a
bs

tr
ac

t}

-
ed

ge
 : A

na
ly

tic
al

A
bs

tr
ac

tio
nE

dg
e*

La
yo

ut
Ed

ge
{a

bs
tr

ac
t}

-
la

yo
ut

 :
C

la
do

gr
am

La
yo

ut
*

-
ed

ge
 : A

na
ly

tic
al

A
bs

tr
ac

tio
nE

dg
e*

-
lin

e
: L

in
e

C
la

do
gr

am
La

yo
ut

Ed
ge

-
la

yo
ut

 :
R

ad
ia

lC
la

do
gr

am
La

yo
ut

*
-

ed
ge

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nE
dg

e*
-

pa
re

nt
A

ng
le

 :
do

ub
le

-
pa

re
nt

R
ad

iu
s

: d
ou

bl
e

-
ch

ild
A

ng
le

 :
do

ub
le

-
ch

ild
R

ad
iu

s
: d

ou
bl

e

R
ad

ia
lC

la
do

gr
am

La
yo

ut
Ed

ge

-
la

yo
ut

 :
Ic

ic
le

La
yo

ut
*

-
ed

ge
 : A

na
ly

tic
al

A
bs

tr
ac

tio
nE

dg
e*

Ic
ic

le
La

yo
ut

Ed
ge

-
la

yo
ut

 :
Su

nb
ur

st
La

yo
ut

*
-

ed
ge

 : A
na

ly
tic

al
A

bs
tr

ac
tio

nE
dg

e*

Su
nb

ur
st

La
yo

ut
Ed

ge

+
 r

en
de

rT
re

e(
Ve

rt
ex

R
en

de
re

r*
, E

dg
eR

en
de

re
r*

)

-
pr

es
en

ta
tio

nT
re

e
: P

re
se

nt
at

io
nT

re
e

Tr
ee

R
en

de
re

r

+
 r

en
de

rV
er

te
x(

Pr
es

en
ta

tio
nV

er
te

x*
)

«i
nt

er
fa

ce
»

Ve
rt

ex
R

en
de

re
r

+
 r

en
de

rE
dg

e(
Pr

es
en

ta
tio

nE
dg

e*
)

«i
nt

er
fa

ce
»

Ed
ge

R
en

de
re

r

-
la

yo
ut

M
an

ag
er

 :
La

yo
ut

M
an

ag
er

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap

 <
C

la
do

gr
am

La
yo

ut
Ve

rt
ex

*>
-

ed
ge

s
: s

td
::h

as
h_

m
ap

 <

C
la

do
gr

am
La

yo
ut

Ed
ge

*>

C
la

do
gr

am
La

yo
ut

-
la

yo
ut

 :
C

la
do

gr
am

La
yo

ut
*

-
ve

rt
ex

 :

 A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

-
po

si
tio

n
: P

oi
nt

2D

C
la

do
gr

am
La

yo
ut

Ve
rt

ex

-
la

yo
ut

 :R
ad

ia
lC

la
do

gr
am

La
yo

ut
*

-
ve

rt
ex

 :

 A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

-
ra

di
us

 :
do

ub
le

-
an

gl
e

: d
ou

bl
e

R
ad

ia
lC

la
do

gr
am

La
yo

ut
Ve

rt
ex

-
la

yo
ut

 :
Su

nb
ur

st
La

yo
ut

*
-

ve
rt

ex
 :

 A

na
ly

tic
al

A
bs

tr
ac

tio
nV

er
te

x*
-

st
ar

tA
ng

le
 :

do
ub

le
-

en
dA

ng
le

 :
do

ub
le

-
in

ne
rR

ad
iu

s
: d

ou
bl

e
-

ou
te

rR
ad

iu
s

: d
ou

bl
e

Su
nb

ur
st

La
yo

ut
Ve

rt
ex

-
la

yo
ut

 :
Ic

ic
le

La
yo

ut
*

-
ve

rt
ex

 :

 A
na

ly
tic

al
A

bs
tr

ac
tio

nV
er

te
x*

-
bo

un
ds

 :
Bo

un
di

ng
Bo

x

Ic
ic

le
La

yo
ut

Ve
rt

ex

-
la

yo
ut

M
an

ag
er

 :
La

yo
ut

M
an

ag
er

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap

 <
Su

nb
ur

st
La

yo
ut

Ve
rt

ex
*>

-
ed

ge
s

: s
td

::h
as

h_
m

ap

 <
Su

nb
ur

st
La

yo
ut

Ed
ge

*>
-

ve
rt

ex
Bo

rd
er

 :
do

ub
le

-
tr

ee
C

en
tr

e
: P

oi
nt

2D
-

st
ar

tA
ng

le
 :

do
ub

le

Su
nb

ur
st

La
yo

ut

-
la

yo
ut

M
an

ag
er

 :
La

yo
ut

M
an

ag
er

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap

 <
R

ad
ia

lC
la

do
gr

am
La

yo
ut

Ve
rt

ex
*>

-
ed

ge
s

: s
td

::h
as

h_
m

ap

 <
R

ad
ia

lC
la

do
gr

am
La

yo
ut

Ed
ge

*>
-

ve
rt

ex
Bo

rd
er

 :
do

ub
le

-
tr

ee
C

en
tr

e
: P

oi
nt

2D
-

st
ar

tA
ng

le
 :

do
ub

le

R
ad

ia
lC

la
do

gr
am

La
yo

ut

-
la

yo
ut

M
an

ag
er

 :
La

yo
ut

M
an

ag
er

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap

 <
Ic

ic
le

La
yo

ut
Ve

rt
ex

*>
-

ed
ge

s
: s

td
::h

as
h_

m
ap

 <

Ic
ic

le
La

yo
ut

Ed
ge

*>

Ic
ic

le
La

yo
ut

+
 is

Tr
av

er
sa

bl
e(

)
+

 p
os

to
rd

er
Tr

av
er

sa
l()

+
 p

re
or

de
rT

ra
ve

rs
al

()

-
pr

es
en

ta
tio

nT
re

e
:

 P

re
se

nt
at

io
nT

re
e*

-
ve

rt
ex

 :
La

yo
ut

Ve
rt

ex
*

-
pa

re
nt

 :
Pr

es
en

ta
tio

nE
dg

e*
-

ed
ge

s
: s

td
::v

ec
to

r

 <
Pr

es
en

ta
tio

nE
dg

e*
>

-
fo

cu
s

: b
oo

le
an

-
sh

ow
La

be
l :

 b
oo

le
an

Pr
es

en
ta

tio
nV

er
te

x

+
 is

Tr
av

er
sa

bl
e(

)

-
pr

es
en

ta
tio

nT
re

e
:

 P

re
se

nt
at

io
nT

re
e*

-
ed

ge
 :

La
yo

ut
Ed

ge
*

-
pa

re
nt

 :
Pr

es
en

ta
tio

nV
er

te
x*

-
ch

ild
 :

Pr
es

en
ta

tio
nV

er
te

x*
-

fo
cu

s
: b

oo
le

an

Pr
es

en
ta

tio
nE

dg
e

+
 p

re
or

de
rV

er
te

xT
ra

ve
rs

al
()

+
 p

os
to

rd
er

Ve
rt

ex
Tr

av
er

sa
l()

-
la

yo
ut

M
an

ag
er

 :
La

yo
ut

M
an

ag
er

*
-

ro
ot

 :
Pr

es
en

ta
tio

nV
er

te
x*

-
ve

rt
ic

es
 :

st
d:

:h
as

h_
m

ap
-

ed
ge

s
: s

td
::h

as
h_

m
ap

Pr
es

en
ta

tio
nT

re
e

Le
ge

nd

O
bs

er
ve

r
D

es
ig

n
Pa

tt
er

n

V
is

ua
liz

at
io

n
Pi

pe
lin

e
C

om
po

ne
nt

s:

D
at

a

A
na

ly
tic

al
 A

bs
tr

ac
tio

n

Sp
at

ia
l L

ay
ou

t

Pr
es

en
ta

tio
n

V
ie

w

Fi
gu

re
.
:

A
n
ov

er
vi
ew

of
th

ei
nd

iv
id

ua
lc

la
ss
es

w
hi

ch
co

m
pr

ise
th

eS
no

w
M

on
ke

yl
ib

ra
ry

an
d
th

ei
rr

el
at
io

ns
hi

p
to

on
ea

no
th

er
,i
llu

st
ra

te
d

us
in

g
U
M

L
cl
as

sd
ia
gr

am
no

ta
tio

n.



, lines of code. e individual classes whichmake up SnowMonkey are illustrated in Figure .,

using UML class diagram notation. is diagram has been annotated with the classification of in-

dividual classes according to the specific stages of the visualization pipeline that they implement.

Coordination of changes occurring at each pipeline state is done through use of the observer design

pattern [Gamma et al., , p. ], which notifies subsequent pipeline stages that the encapsulated

data has been modified and the caches must be updated.

Notice in Figure . that the SnowMonkey library includes classes labelled as data and view

state components, contrary to the range of implemented pipeline components as indicated in Fig-

ure .. ese components are wrappers (e. g., the adapter soware design pattern [Gamma et al.,

, p. ]) between the different library API. For example, the SnowMonkey::ElmMediator

(located on the far le side of Figure .) wraps an Elm::Tree object, inheriting from the Snow-

Monkey::Subject class such that the observer design pattern can be used with Elm::Tree objects

within SnowMonkey. is design makes use of the mediator soware design pattern [Gamma et al.,

, p. ]. Similarly for the SnowMonkey::TreeRenderer object, seen on the far right side of

Figure .. Moreover, these data and view state components do not implement any of the pipeline

state data processing logic, but rather function as necessary interfaces between the different API.

As mentioned previously, the goal of SnowMonkey’s pipeline implementation is to keep the dif-

ferent states separate and discrete from one another. Figure . illustrates this division between

pipeline states. Each state references objects of the preceding pipeline state and succeeding pipeline

states are never referenced. For example, SnowMonkey::AnalyticalAbstractionTree contains

a reference to SnowMonkey::ElmMediator, which in turn references Elm::Tree, however Snow-

Monkey::ElmMediator has no reference to SnowMonkey::AnalyticalAbstractionTree. is

discrete layering of pipeline states allows for the creation of numerous pipeline branches which build

upon preceding pipeline states. Furthermore, separation between pipeline states (e. g., such that

changes to the presentation state does not affect the spatial layout state) is integral in realizing al-

gorithmic support for scoped interaction throughout the pipeline. Changes to a particular pipeline

state are localized to that state, affecting the subsequent but never preceding pipeline states.



. Lark: Interactive Visual Interface

At the top of the soware architecture stack is Lark, the application which ties in SnowMonkey with

LDF and OpenGL to create the visualization workspace, as seen throughout Chapter  (e. g., Fig-

ure .). LDF is an interaction framework which uses an underlying buffer concept [Isenberg et al.,

] to enable scalable, interactive response of interface components for large displays. e frame-

work handles object management via a scene graph, and like Lark, uses OpenGL for rendering. Lark

is also responsible for integrating the end products of SnowMonkey’s visualization pipeline into LDF’s

API for visual interfaces and rendering this geometry with OpenGL. Lark leverages LDF to provide

spatial flexibility for all visual components within the workspace, allowing components to be freely

oriented and positioned throughout the workspace; as LDF provides the implementation of interac-

tion techniques such as integrated rotation and translation (RNT) [Kruger et al., ]. Lark is de-

coupled from SnowMonkey such that it would be straightforward to use different windowing toolkits

to implement the end user interface of the system, while keeping all the back end functionality pro-

vided by Elm and SnowMonkey. is ability has already been exercised, as Lark is available under

Microso Windows using the Qt user interface framework [Nokia Corporation, ] and Mac OS

X using the Cocoa framework [Apple Inc., ]. e Lark application measures contains ,

lines of code.

. Summary

In this chapter I introduced the underlying soware architecture of the Lark system. I discussed how

Lark was architected aer the visualization pipeline, with a well defined separation between the dif-

ferent pipeline states within the API. e remainder of this chapter was organized aer Figure .,

which illustrates the soware components which make up Lark’s system architecture stack. In Sec-

tion ., I introduced the Elm library and discussed its implementation details. Elm is a generic

library for hierarchical structured data, originally written in C++ and later ported to both Java and

C. I then introduced SnowMonkey in Section ., presenting an overview of the library. Next, the

Lark application is discussed in Section ., which integrates the SnowMonkey library with LDF and

OpenGL into the end user application.



Chapter 

Conclusion

Real-world information continues to grow in size and complexity, making the analysis and inter-

pretation of this data an ever increasing challenge. Both information visualization and collaborative

team work have been suggested as important factors in addressing these information complexity

challenges [omas and Cook, ]. Information visualization has the potential to provide differ-

ent ways of examining and exploring the data. Collaborative data analysis can combine the analytic

power of multiple individuals, with the possibility of including varying types and levels of expertise,

potentially leading to increased quality of solutions and discoveries. However, while considerable

research is being conducted in both the areas of Information Visualization (IV) and Computer-

Supported Cooperative Work (CSCW), comparatively less research examines the interplay between

them. is is especially true for co-located collaborative scenarios. In this work I have strived to

bridge this gap, investigating how collaborative data analysis can be supported within an informa-

tion visualization environment.

In this thesis I have focused on supporting small groups of people working together in a syn-

chronous co-located environment who make use of information visualizations in their analysis pro-

cess. Within this space I am particularly interested in mixed-focus collaboration—team work char-

acterized by frequent changes in collaboration styles, which span the range from loosely coupled,

individual work to closely coupled, group work [Gutwin and Greenberg, ]. To facilitate mixed-

focus collaboration, I investigated how to support changing collaboration styles within a collabora-

tive information visualization workspace. To this end, I identified three concepts—temporal flexi-

bility, spatial flexibility, and scoped interaction—which play an important role in this type of work

scenario.

ese concepts formed the basis for my research challenges and structured the conceptualiza-

tion, design, and implementation of Lark: a coordinated multiple views (CMV) visualization envi-

ronment where the relationships and connections between individual views are illustrated through

an integrated meta-visualization [Weaver, ]. e meta-visualization is modelled aer the vi-

sualization pipeline and provides several distinct stages in which group members can coordinate

their interactions—these stages are identified as collaboration coordination points (CCP). Making

the relationships and connections between the individual views visually explicit supports workspace

awareness. e CCP can help empower group members with the freedom to work in concert or

independently. Furthermore, Lark instantiates a coherent interactive visualization collaboration en-

vironment with direct visual and algorithmic support for the coordination of data analysis actions

over shared large displays.

In this thesis I present a novel approach to the coordination of interactions between multiple

people working together in a co-located collaborative visualization environment. e coordination

of interactions can help facilitate mixed-focus collaborative work by supporting both individual and

group work, and the transitions between these different levels of collaboration. By investigating the

synergy of information visualization and collaborative teamwork, this thesis demonstrates promising

strategies for addressing present day information complexity challenges.

In this final chapter, I summarize the research contributions that I have made in the conceptu-

alization, design, and implementation of Lark. I also discuss future research opportunities leading

from this work. Section . reintroduces the research challenges of this thesis, originally outlined in

Chapter , and Section . summarizes the research contributions made in this thesis. To further

contextualize my research contributions, Section . presents an example collaborative data analysis

scenario, like the one fromChapter , whichmakes use of Lark in the analysis process. Directions for

future research are reflected upon in Section ., and Section . contains the concluding thoughts

of this thesis.



. Research Challenges

Chapter  outlined three research challenges when supporting changing collaboration styles for syn-

chronous co-located collaborative work within a shared digital workspace. I will now repeat these

challenges and in the following sections describe the extent to which each of these challenges have

been addressed in this thesis.

. Howcanweprovide temporal flexibility for data analysis activities? Recent evidence suggests

that temporal flexibility among information analysis tasks is common practice among team

workers [Isenberg et al., ]. I will investigate how to support this behaviour, particularly I

will consider supporting concurrent interaction and not requiring any specific temporal flow

of activities, thus allowing team members to follow their own unique analysis approaches.

. How canwe provide spatial flexibility for visualizations and collaborators around the shared

digital workspace? Since changing collaboration cohesion in large workspaces is commonly

accompanied by changing teammember locations, it is important for artifacts in theworkspace

to be mobile as well. In my research, I will provide a flexible approach to workspace organiza-

tion that can allow team members to establish their own work areas [Scott et al., ], thus

providing support for team members to coordinate their actions [Kruger et al., ].

. How can we provide scoped interaction? Empowering team workers with the ability to work

in parallel without interfering with each other’s task is crucial for collaboration [Scott et al.,

a]. My research investigates howeach interactionwithin a digital workspace can be scoped

in amanner that immediately and persistently informs all workers, thus supporting concurrent

and asynchronous interaction.

. Contributions

e contributions that I make in this thesis fall under the area of information visualization for syn-

chronous co-located collaborative work. is work is an attempt to advance the goal of supporting

changing collaboration styles within shared digital workspaces. To this end, I have identified three

research challenges that this thesis focuses on—temporal flexibility, spatial flexibility, and scoped



interaction—listed above in Section .. My research contributions indirectly and directly address

these research challenges. Indirectly, an extensive research effort was invested into designing and

implementing a system intended to support synchronous co-located collaboration on large tabletop

displays. e results of this investment was the Lark system, which is a contribution in itself. e

embodiment of Lark also presents innovative research concepts of its own. Many of these concepts

directly address the aforementioned research challenges of this thesis. e following list summarizes

both the indirect and direct research contributions that I make in this thesis:

Lark System: e design and implementation of the Lark system, designed to support changing col-

laboration styles by allowing people to switch between tightly and loosely coupled work within

a CMV environment.

Pipeline Meta-visualization: Structuring the coordination betweenmultiple views of a visualization

aer the theoretical visualization pipeline, and explicitly representing this structure within the

collaborative workspace through an integrated meta-visualization.

Collaboration Coordination Points: Using the discrete states within the visualization pipeline as

CCP to explicitly define how views are coordinated with one another.

Workspace Awareness: Using an integrated meta-visualization to provide workspace awareness to

collaborators working in a CMV environment. e meta-visualization informs collaborators

about the connections and relationships between the individual visualizations.

Temporal Flexibility: Actualization of the concept of temporal flexibility—requiring no specific tem-

poral ordering of activities—within Lark. is allows team members to follow their own

unique analysis approaches and leave any number of visualizations open for later investiga-

tion. is contribution addresses research challenge No. .

Spatial Flexibility: All interface components within Lark environment can be individually placed,

scaled, and organized through out the workspace, realizing the concept of spatial flexibility.

is flexible approach to workspace usage supports mobility among team members, which is a



common factor in changing collaboration styles [Scott et al., a]. Furthermore, Lark’s real-

ization of spatial flexibility allows people to work side-by-side from each other on completely

different visualizations, as well as across the table from each other on the same visualization.

is contribution addresses research challenge No. .

Scoped Interaction: Lark actualizes the concept of scoped interaction by enabling the explicit defi-

nition of an interaction’s scope via the CCP icons bordering the visualization view-pane. e

extent of an interaction’s effect is made visually explicit in the integrated meta-visualization,

further adding to individual and group awareness. is contribution addresses research chal-

lenge No. .

History of Visualization Process Models: A detailed literature review of the history of visualization

process models is presented in Chapter . is survey traced the evolution of the conceptu-

alized visualization process and identified how these ideas have been captured in formalized

models.

In addition to themajor contributions listed above, there are severalminor contributions which came

out of the realization of Lark. ese interface innovations and soware engineering contributions

include:

• e use of CCP to provide light-weight visualizations of the current state of the visualization

pipeline to support workspace awareness.

• e ability to dynamically clone sections of the visualization pipeline.

• Explicitly using the visualization pipeline as a branching tree structure, with visualization views

at the leaf vertices of the tree.

• Using an integratedmeta-visualization to explicitly communicatewhich viewswithin theworkspace

are the same.

• e distinction of value and view operations, such as filtering, within Lark’s visualization en-

vironment.



• e public release of ElmJ, the Java port of the Elm tree representation library, under theGNU

Lesser Public License [Free Soware Foundation, ].

. Example Collaborative Scenario Using Lark

In Chapter , to explain the type of collaboration I investigate in this thesis, I described an example

scenario which followed a fictitious team of three biologists—Alice, Bob, and Carlos—working to-

gether to analyze data from their latest experiment. In this scenario the fictitious team made use of

paper-based visualizations and charts of their experiment data, with digital tools being absent from

this component of the analysis process. In this section I revisit this example scenario, illustrating

how this fictitious team of biologists could conduct their collaborative data analysis in a digital con-

text using Lark. Similarly to the scenario in Section ., the motivation behind the three biologists’

collaboration, in a synchronous co-located environment, is due to the large number of genes and

the complexity of the biological networks used in this experiment. e following scenario descrip-

tion identifies key aspects of the collaborative process and how these aspects are supported by Lark’s

collaborative environment.

.. Parallel Work

e three biologists come together around a large tabletop display, load their data into Lark, and

begin their investigation. Since they do not know what to expect from their data, they first enter into

an exploratory analysis phase. To broaden their data coverage, they initially decide to explore the

data in parallel to look for interesting patterns individually. Alice, Bob, and Carlos all create separate

branches from the data source, as shown in Figure .. Alice wants to get an overview of the data and

chooses to change presentation details by switching to an appropriate colour scale, adding labels, and

filtering out data that she deems uninteresting. Bob takes a different approach and wants to explore

the largest hierarchical branch first. He filters on the analytical abstraction state by touching the “AA”

icon on the view. By performing a filter gesture he now filters parts of the data, and a new layout

is created that only shows the remaining information in a larger size (e. g., value filtering). Carlos

creates two different views branched at “Spatial Layout” and decides to do a comparative exploration

to see if any representation will help him to see patterns in the data better.



(a) e position of the three biologists around the tabletop display during the parallel work phase.

(b) Screen shot of the visualization workspace during the parallel work phase.

Figure .: Parallel work: InitiallyAlice, Bob, andCarlos start by exploring the datawith entirely
separate views of the same data set.



is initial work partitioning outlines some of the collaboration features wewant to address. First

of all, spatial flexibility allows the three biologists to organize themselves around the tabletop display

in the way they feel is most appropriate. e area where the biologists conduct their information ex-

ploration is of their own choosing, not the system’s. On the three sides of the table, the biologists can

establish personal territories in which they place their visualization views. By establishing a com-

pletely independent interaction scope at the data level, all three can work in parallel without affecting

each others’ views of the data. As to freedom of collaboration style, in this scenario, all three team

members chose to work in parallel. Lastly, Lark is also designed so that interactions are temporally

flexible. As illustrated in this scenario, data analysis can be started from many different perspectives:

from identifying data items through use of colour and labelling, to concentrating on a subsection

of the larger data set by filtering, to exploring different layout options. Also, no global interactions

interfere with the sequence each group member chooses.

.. Parallel and Joint Work

While Alice has found some interesting patterns in the data that she wants to examine, Carlos was not

as successful with his approach. Carlos walks over to Bob’s work area and glances over his shoulder,

noticing that Bob is closely examining an interesting branch. To avoid disturbing Bob, Carlos simply

creates a new view from “P” and closely watches Bob’s interactions. As the work continues, Bob

and Carlos start a closer discussion of the data and decide to enlarge one of the views, examining

data details together (see Figure .). We see that Alice, Bob, and Carlos are working in different

collaboration styles. Alice is in loosely coupled collaboration to the other two, while Bob and Carlos

work more closely together. In this scenario, spatial flexibility lets Bob and Carlos reposition and

resize the view they are jointly analysing. By specifically establishing a closely linked interaction

scope, Carlos can follow Bob’s interactions with the data for a while until they join in more closely

coupled work. Alice’s work remains separate.

.. Joint Work

As our three team members continue with their work, they create a number of different views of the

data that they want to compare and organize in the workspace. When they want to save a certain



(a) e position of the three biologists around the tabletop display during the parallel and joint work phase.

(b) Screen shot of the visualization workspace during the parallel and joint work phase.

Figure .: Parallel and joint work: Bob and Carlos are discussing a view together while Alice
still focuses on her own analysis.



state, they clone complete branches and continue their work from the new branch. At some point all

three decide to come together to see what they have found, closely discussing and negotiating their

findings. Figure . shows Bob, Carlos, and Alice having moved to one area of the workspace to

discuss one view together. As the views that were created in the meantime are still in the workspace,

they can see how each team member progressed through the analysis. If the discussion makes closer

examination of the data necessary, each view can be further interacted upon.

In this example, the biologists returned to previously examined items in discussing their find-

ings. is is an example of temporal flexibility and is supported in Lark, in part by removing the

sequencing of actions, and in part by allowing any work paths to be le available within the working

environment. Keeping the work paths of this data exploration history, in evidence on the display,

provides parallels to the freedoms of working with printed visualizations. e reorganization of both

workspace items and biologists around the display is another example of spatial flexibility; here it is

used in the transition between different styles of collaboration. In this joint work phase of the col-

laborative work session, new views and clones of existing views are dynamically created. Scoped

interaction is utilized such that the interactions on these views will not unintentionally modify ex-

isting views within the workspace.

. Future Work

In this thesis I have strived to advance a research goal that cannot be achieved in a single thesis alone.

My thesis is but a few steps towards this goal, and as such, there is much work le to do. e future

research opportunities which arise from this thesis are numerous, and in this section I will discuss a

few of these potential research directions.

ere are a series of improvements and extensions that could be made to Lark’s implementa-

tion. A commonly requested feature from the people who tried Lark is the ability to merge pipeline

branches. Proper support for this system behaviour requires a full suite of set operations for per-

forming merges, such as: union, intersection, and complement. Merging operations could also be

generalized to provide algorithmic support for questions such as: “showme all the common elements

in these two views.” A second commonly requested feature is algorithmic support for automatic spa-



(a) e position of the three biologists around the tabletop display during the joint work phase.

(b) Screen shot of the visualization workspace during joint work.

Figure .: Joint work: Bob, Carlos, andAlice havemoved to the samework region and enlarged
one view to discuss.



tial organization of the meta-visualization and view-panes. Lark does not organize the workspace

in any predefined manner, leaving it up to the people using the system to determine how interface

components should be organized. While this system behaviour is important for the emergence of

collaborative group dynamics [Tang et al., ], an automatic layout feature could also be provided

on demand. Another extension would be to support additional data types and operations. In its cur-

rent implementation, Lark supports the visualization of hierarchical data and provides a compelling,

though limited, set of operations on this type of data. is could be extended to support additional

types of data and a larger set of available operations on these data types.

It would also be interesting to investigate how Lark’s collaboration concepts apply to alternative

environments. While Lark was designed for tabletop interaction, it has also been frequently used on

a large dual monitor, high-resolution desktop setup. Interestingly, many of the tabletop features such

as free rotation for collaboration communication [Kruger et al., ], were also used in a similar

communicative manner in the desktop setup. is would be an interesting direction for future work.

Furthermore, it would also be compelling to explore how Lark could be extrapolated to support dis-

tributed or mixed-presence collaborative environments.

ere are also a few known usability issues within Lark which need to be addressed. For instance,

pipeline branches cannot be deleted in the current version of Lark. While this feature could be easily

implemented, it represents a serious usability issue in the current system. Another usability con-

cern that requires further investigation is conflict resolution polices for concurrent access to shared

resources, a common issue in any event based system. Lark currently uses a first-come-first-serve

policy, which is the most straightforward in terms of implementation, however it might not be the

most usable.

Informal feedback from people suggested that interaction with Lark’s pipelinemeta-visualization

does need to be learned and practised, as the whole interaction paradigm is quite different from fa-

miliar soware. Further investigation into the possible advantages of meta-visualizations are indeed

warranted, a suggestion echoed byWeaver []. Furthermore, a formal evaluation of effectiveness,

efficiency, and satisfaction [Gutwin and Greenberg, ] of the Lark system would also be appro-

priate. Aer addressing the necessary system improvement identified though such an evaluation, a



field deployment of Lark would also be an important direction for future work.

Moving to more theoretical territory, an avenue of future research could be pursued is the ex-

tension of Lark’s visualization process model. Lark’s model is similar to the pipeline introduced by

Carpendale []. As illustrated in Figure ., Carpendale’s pipeline could be extended to add addi-

tional resolution to the data representation state, potentially following the approach by Chi and Riedl

[], separating this pipeline state into two distinct states.

Lastly, Lark’s integrated meta-visualization is based on the visualization pipeline. Exploring dif-

ferent structuring models for the meta-visualization would be another compelling future research

direction.

. esis Conclusion

In this thesis I have presented Lark, a collaborative information visualization system that has been

designed to provide active support for collaboration by setting the data-visualization within a meta-

visualization. is meta-visualization is based on the information visualization pipeline and uses the

levels within the pipeline to create collaboration coordination points.

My research was motivated by the benefits and requirements of face-to-face collaboration with

information visualizations. With the possibility of simultaneous, concurrent interaction with a visu-

alization on a shared large display comes the need to support the coordination of joint data analysis

efforts. Lark was designed to support a range of collaboration styles by providing collaborative coor-

dination mechanisms in an extended coordinated multiple views system. For the individual analysts

this provides a new type of interaction withmultiple views of the same data that are near to hand. For

team work, the view structure can inform collaborators about not only what they have done, but how

their work relates to what their team members have done, and the locally scoped interaction controls

help coordinate collaboration. e primary benefit of Lark is an effective visual analysis mechanism

for both individual and team work, help team members to switch between both types of work, and

build on each others’ findings.



Bibliography

Keith Andrews and Helmut Heidegger (). Information slices: visualising and exploring large
hierarchies using cascading, semicircular discs. In Proceedings of the IEEE Symposium on
Information Visualization, – → p. 

Apple Inc. (). Cocoa – Mac OS X Technology Overview – Apple Developer. Retrieved March
, , from http://developer.apple.com/technologies/mac/cocoa.html → p. 

Kevin Baker, Saul Greenberg, and Carl Gutwin (). Empirical development of a heuristic
evaluation methodology for shared workspace groupware. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work (CSCW), –. New York, NY, USA: ACM Press.
doi:./. → p. , 

Michelle Q. Wang Baldonado, Allison G. Woodruff, and Allan Kuchinsky (). Guidelines for
using multiple views in information visualization. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI), –. New York, NY, USA: ACM Press.
doi:./. → p. , , , , , , , , , , , , 

David A. Baum and Susan Offner (). Phylogenics and tree-thinking. American Biology Teacher
():– → p. , 

Richard A. Becker and William S. Cleveland (). Brushing scatterplots. Technometrics
():–. doi:./ → p. 

Mathilde M. Bekker, Judith S. Olson, and Gary M. Olson (). Analysis of gestures in
face-to-face design teams provides guidance for how to use groupware in design. In Proceedings
of the Conference on Designing Interactive Systems (DIS), –. New York, NY, USA: ACM
Press. doi:./. → p. 

Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and David L. Wheeler
(). GenBank. Nucleic Acids Research ():–. doi:./nar/gki → p. 

Sara A. Bly (). A use of drawing surfaces in different collaborative settings. In Proceedings of
the ACM Conference on Computer Supported Cooperative Work (CSCW), –. New York, NY,
USA: ACM Press. doi:./. → p. 

Susan E. Brennan, Klaus Mueller, Greg Zelinsky, IV Ramakrishnan, David S. Warren, and Arie
Kaufman (). Toward a multi-analyst, collaborative framework for visual analytics. In
Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), –.
Los Alamitos, CA, USA: IEEE Computer Society. doi:./VAST.. → p. , 

http://developer.apple.com/technologies/mac/cocoa.html
http://dx.doi.org/10.1145/587078.587093
http://dx.doi.org/10.1145/345513.345271
http://dx.doi.org/10.2307/1269768
http://dx.doi.org/10.1145/225434.225452
http://dx.doi.org/10.1093/nar/gki063
http://dx.doi.org/10.1145/62266.62286
http://dx.doi.org/10.1109/VAST.2006.261439

Ken W. Brodlie (). Exploring Geovisualization, chap. Models of Collaborative Visualization,
–. Kidlington, UK: Elsevier Ltd. → p. 

Christoph Buchheim, Michael Jünger, and Sebastian Leipert (). Improving Walker’s algorithm
to run in linear time. In Revised Papers from the th International Symposium on Graph Drawing
(GD), –. London, UK: Springer-Verlag. doi:./--- → p. 

Stuart K. Card and Jock D. Mackinlay (). e structure of the information visualization design
space. In Proceedings of the IEEE Symposium on Information Visualization, –. Los Alamitos,
CA, USA: IEEE Computer Society. doi:./INFVIS.. → p. , 

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman (Eds.) (). Readings in Information
Visualization: Using Vision to ink. San Francisco, CA, USA: Morgan Kaufmann → p. , , ,
, , , , 

Marianne Sheelagh erese Carpendale (). A framework for elastic presentation space. Ph.D.
thesis, Simon Fraser University, Burnaby, BC, Canada. doi:./ → p. viii, xiv, , ,
, , , , 

Ed H. Chi (). Expressiveness of the data flow and data state models in visualization systems. In
Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), –. New York,
NY, USA: ACM Press. doi:./. → p. , , 

Ed H. Chi and John T. Riedl (). An operator interaction framework for visualization systems.
In Proceedings of the IEEE Symposium on Information Visualization, –. Los Alamitos, CA,
USA: IEEE Computer Society. doi:./INFVIS.. → p. xii, , , , , , , ,
, , , , , , 

Mei C. Chuah and Steven F. Roth (). Visualizing common ground. In Proceedings of the
International Conference on Information Visualization (IV), –. Los Alamitos, CA, USA:
IEEE Computer Society → p. 

Christopher Collins and Sheelagh Carpendale (). VisLink: revealing relationships amongst
visualizations. IEEE Transactions on Visualization and Computer Graphics (Proceedings of the
IEEE Conference on Information Visualization) ():–. doi:./TVCG..
→ p. xiii, , , , 

Christopher Mervin Collins (). Interactive Visualizations of Natural Language. Ph.D. thesis,
University of Toronto, Toronto, ON, Canada → p. 

omas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest (). Introduction to Algorithms.
MIT Press → p. , 

Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale (). Human-computer interaction.
Prentice Hall International → p. 

Selan R. dos Santos and Ken W. Brodlie (). Gaining understanding of multivariate and
multidimensional data through visualization. Computers and Graphics ():–.
doi:./j.cag... → p. , 



http://dx.doi.org/10.1007/3-540-36151-0
http://dx.doi.org/10.1109/INFVIS.1997.636792
http://dx.doi.org/10.1145/932254
http://dx.doi.org/10.1145/1556262.1556327
http://dx.doi.org/10.1109/INFVIS.1998.729560
http://dx.doi.org/10.1109/TVCG.2007.70611
http://dx.doi.org/10.1016/j.cag.2004.03.013

David Duke, Malcolm Wallace, Rita Borgo, and Colin Runciman (). Fine-grained visualization
pipelines and lazy functional languages. IEEE Transactions on Visualization and Computer
Graphics ():–. doi:./TVCG.. → p. , , 

David J. Duke, Ken W. Brodlie, and David A. Duce (). Building an ontology of visualization. In
Poster Proceedings of the IEEE Conference on Visualization (VIS). Los Alamitos, CA, USA: IEEE
Computer Society. doi:./VIS.. → p. 

Scott V. Edwards and John Harshman (). Passeriformes: perching birds, passerine birds.
Retrieved March , , from e Tree of Life Web Project
http://tolweb.org/Passeriformes//.. → p. 

Mary Elwart-Keys, David Halonen, Marjorie Horton, Robert Kass, and Paul Scott (). User
interface requirements for face to face groupware. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), –. New York, NY, USA: ACM Press.
doi:./. → p. , , 

Encyclopedia of Life (a). Alaudidae. Retrieved March , , from http://eol.org/pages/
→ p. 

Encyclopedia of Life (b). Macaca fuscata (Blyth, ). Retrieved March , , from
http://eol.org/pages/ → p. 

Encyclopedia of Life (c). Ulmus. Retrieved March , , from http://eol.org/pages/
→ p. 

Free Soware Foundation (). GNU Lesser General Public License, Version . Retrieved March
, , from http://www.gnu.org/licenses/lgpl.html → p. , 

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (). Design Patterns: Elements
of Reusable Object-Oriented Soware. Addison-Wesley → p. 

T. Ryan Gregory (). Understanding evolutionary trees. Evolution: Education and Outreach
():–. doi:./s---x → p. 

Jonathan L. Gross and Jay Yellen (). Grapheory and Its Applications. Chapman & Hall/CRC,
nd ed. → p. , 

Carl Gutwin and Saul Greenberg (). Design for individuals, design for groups: tradeoffs
between power and workspace awareness. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW), –. New York, NY, USA: ACM Press.
doi:./. → p. , , , , , 

Carl Gutwin and Saul Greenberg (). e mechanics of collaboration: developing low cost
usability evaluation methods for shared workspaces. In Proceedings of the IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
–. Los Alamitos, CA, USA: IEEE Computer Society. doi:./ENABL.. →
p. , , , , 



http://dx.doi.org/10.1109/TVCG.2006.145
http://dx.doi.org/10.1109/VIS.2004.10
http://tolweb.org/Passeriformes/15868/2008.06.24
http://dx.doi.org/10.1145/97243.97299
http://eol.org/pages/7572
http://eol.org/pages/1037940
http://eol.org/pages/60724
http://www.gnu.org/licenses/lgpl.html
http://dx.doi.org/10.1007/s12052-008-0035-x
http://dx.doi.org/10.1145/289444.289495
http://dx.doi.org/10.1109/ENABL.2000.883711

Carl Gutwin, Saul Greenberg, and Mark Roseman (). Workspace awareness in real-time
distributed groupware: framework, widgets, and evaluation. In People and Computers XI:
Proceedings of the HCI’, –. London, UK: Springer-Verlag → p. 

Robert B. Haber and David A. McNabb (). Visualization in Scientific Computing, chap.
Visualization Idioms: A Conceptual Model for Scientific Visualization Systems, –. Los
Alamitos, CA, USA: IEEE Computer Society → p. viii, , , , , , , 

Paul E. Haeberli (). ConMan: a visual programming language for interactive graphics. ACM
SIGGRAPH Computer Graphics ():–. doi:./. → p. , , 

Jefferson Y. Han (). Low-cost multi-touch sensing through frustrated total internal reflection.
In Proceedings of the ACM Symposium on User Interface Soware and Technology (UIST),
–. New York, NY, USA: ACM Press. doi:./. → p. 

Jeffrey Heer and Maneesh Agrawala (). Design considerations for collaborative visual analytics.
Information Visualization ():–. doi:./palgrave.ivs. → p. , , , 

Jeffrey Heer, Stuart K. Card, and James A. Landay (). prefuse: a toolkit for interactive
information visualization. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), –. New York, NY, USA: ACM Press.
doi:./. → p. 

Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala (). Graphical histories for
visualization: supporting analysis, communication, and evaluation. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of the IEEE Symposium on Information
Visualization) :–. doi:./TVCG.. → p. 

Petra Isenberg and Sheelagh Carpendale (). Interactive tree comparison for co-located
collaborative information visualization. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of the IEEE Conference on Information Visualization) ():– →
p. , , , , , , , , , , , , , , , , , , , , , , 

Petra Isenberg and Danyel Fisher (). Collaborative brushing and linking for co-located
collaborative visual analytics of document collections. Computer Graphics Forum (Proceedings of
the Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis)) ():–.
doi:./j.-...x → p. 

Petra Isenberg, Anthony Tang, and Sheelagh Carpendale (). An exploratory study of visual
information analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), –. ACM Press. doi:./. → p. xiii, , , , , ,
, , , , , 

Tobias Isenberg, André Miede, and Sheelagh Carpendale (). A buffer framework for
supporting responsive interaction in information visualization interfaces. In Proceedings of the
International Conference on Creating, Connecting and Collaborating through Computing (C),
–. Los Alamitos, CA, USA: IEEE Computer Society. doi:./C.. → p. , ,




http://dx.doi.org/10.1145/378456.378494
http://dx.doi.org/10.1145/1095034.1095054
http://dx.doi.org/10.1057/palgrave.ivs.9500167
http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1109/TVCG.2008.137
http://dx.doi.org/10.1111/j.1467-8659.2009.01444.x
http://dx.doi.org/10.1145/1357054.1357245
http://dx.doi.org/10.1109/C5.2006.4

T.J. Jankun-Kelly (). Visualizing Visualization: A Model and Framework for Visualization
Exploration. Ph.D. thesis, University of California, Davis, Davis, CA, USA → p. 

Paul E. Keel (). Collaborative visual analytics: inferring from the spatial organization and
collaborative use of information. In Proceedings of the IEEE Symposium on Visual Analytics
Science and Technology (VAST), –. Los Alamitos, CA, USA: IEEE Computer Society.
doi:./VAST.. → p. , 

Russell Kruger, M. Sheelagh T. Carpendale, Stacey D. Scott, and Anthony Tang (). Fluid
integration of rotation and translation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), –. ACM Press. doi:./. →
p. , , , , , 

Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Saul Greenberg (). How people use
orientation on tables: comprehension, coordination and communication. In Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work, –. New York, NY,
USA: ACM Press. doi:./. → p. 

Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Saul Greenberg (). Roles of
orientation in tabletop collaboration: comprehension, coordination and communication. Journal
of Computer Supported Collaborative Work (-):–. doi:./s--- →
p. 

Wolfgang Krüger, Christian-A. Bohn, Bernd Fröhlich, Heinrich Schüth, Wolfgang Strauss, and
Gerold Wesche (). e responsive workbench: a virtual work environment. Computer
():–. doi:./. → p. , 

Munir Mandviwalla and Lorne Olfman (). What do groups need? a proposed set of generic
groupware requirements. ACM Transactions on Computer-Human Interaction (TOCHI)
():–. doi:./. → p. , , 

Kim Marriott and Peter Sbarski (). Compact layout of layered trees. In Proceedings of the
Australasian Conference on Computer Science, –. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc. → p. 

Hassan Masum (). TOOL: the open opinion layer. First Monday () → p. 

Tamara Munzner (). H: laying out large directed graphs in d hyperbolic space. In
Proceedings of the IEEE Symposium on Information Visualization, –. Los Alamitos, CA, USA:
IEEE Computer Society → p. 

Tamara Munzner (). Guest editor’s introduction: information visualization. IEEE Computer
Graphics and Applications ():– → p. 

Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong Zhou ().
TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility. In
Proceedings of the International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), –. New York, NY, USA: ACM Press. doi:./. → p. ,




http://dx.doi.org/10.1109/VAST.2006.261415
http://dx.doi.org/10.1145/1054972.1055055
http://dx.doi.org/10.1145/958160.958219
http://dx.doi.org/10.1007/s10606-004-5062-8
http://dx.doi.org/10.1109/2.391040
http://dx.doi.org/10.1145/196699.196715
http://dx.doi.org/10.1145/1201775.882291

National Center for Biotechnology Information (). GenBank Growth. Retrieved March ,
, from http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html → p. 

Nokia Corporation (). Products — Qt – A cross-platform application and UI framework.
Retrieved March , , from http://qt.nokia.com/products → p. 

Donald Norman (). e Design of Everyday ings. Doubleday Business → p. 

Chris L. North and Ben Shneiderman (). A taxonomy of multiple window coordinations.
Tech. Rep. CS-TR-, University of Maryland → p. 

Chris L. North and Ben Shneiderman (a). Snap-together visualization: a user interface for
coordinating visualizations via relational schemata. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI), –. New York, NY, USA: ACM Press.
doi:./. → p. , 

Chris L. North and Ben Shneiderman (b). Snap-together visualization: can users construct
and operate coordinated visualizations? International Journal of Human-Computer Studies
():–. doi:./ijhc.. → p. 

NVIDIA Corporation (). GeForce . Retrieved March , , from
http://www.nvidia.com/page/geforce_.html → p. 

Stephen Palmer and Irvin Rock (). Rethinking perceptual organization: the role of uniform
connectedness. Psychonomic Bulletin and Review ():– → p. 

Tim Pattison and Matthew Phillips (). View coordination architecture for information
visualisation. In Proceedings of the Asia-Pacific Symposium on Visualization (APVis), –.
Darlinghurst, Australia, Australia: Australian Computer Society → p. , 

Kasper Peeters (). tree.hh: an STL-like C++ tree class. Retrieved March , , from
http://tree.phi-sci.com/ → p. 

David Pinelle, Carl Gutwin, and Saul Greenberg (). Task analysis for groupware usability
evaluation: modeling shared-workspace tasks with the mechanics of collaboration. ACM
Transactions on Computer-Human Interaction (TOCHI) ():–.
doi:./. → p. 

Meredith Ringel, Kathy Ryall, Chia Shen, Clion Forlines, and Frederic Vernier (). Release,
relocate, reorient, resize: fluid techniques for document sharing on multi-user interactive tables.
In Extended Abstracts of the SIGCHI Conference on Human Factors in Computing Systems (CHI),
–. New York, NY, USA: ACM Press. doi:./. → p. 

Jonathan C. Roberts (). On encouraging multiple views for visualisation. In Proceedings of the
International Conference on Information Visualization (IV), –. Los Alamitos, CA, USA: IEEE
Computer Society. doi:./IV.. → p. , 

Yvonne Rogers and Siân Lindley (). Collaborating around vertical and horizontal large
interactive displays: which way is best? Interacting with Computers ():–.
doi:./j.intcom... → p. , 



http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
http://qt.nokia.com/products
http://dx.doi.org/10.1145/345513.345282
http://dx.doi.org/10.1006/ijhc.2000.0418
http://www.nvidia.com/page/geforce_7900.html
http://tree.phi-sci.com/
http://dx.doi.org/10.1145/966930.966932
http://dx.doi.org/10.1145/985921.986085
http://dx.doi.org/10.1109/IV.1998.694193
http://dx.doi.org/10.1016/j.intcom.2004.07.008

Kathy Ryall, Clion Forlines, Chia Shen, and Meredith Ringel Morris (). Exploring the effects
of group size and table size on interactions with tabletop shared-display groupware. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW), –.
New York, NY, USA: ACM Press. doi:./. → p. 

Stacey D. Scott, M. Sheelagh T. Carpendale, and Stefan Habelski (). Storage bins: mobile
storage for collaborative tabletop displays. IEEE Computer Graphics and Applications
():–. doi:./MCG.. → p. 

Stacey D. Scott, M. Sheelagh T. Carpendale, and Kori M. Inkpen (). Territoriality in
collaborative tabletop workspaces. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW), –. ACM Press. doi:./. → p. , , ,
, , 

Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk (a). System guidelines for co-located,
collaborative work on a tabletop display. In Proceedings of European Conference
Computer-Supported Cooperative Work (ECSCW), –. Kluwer Academic Press → p. , ,
, , , , , , , , , , , , , 

Stacey D. Scott, Regan L. Mandryk, and Kori M. Inkpen (b). Understanding children’s
collaborative interactions in shared environments. Journal of Computer Assisted Learning
():–. doi:./j.-...x → p. 

Chia Shen, Neal B. Lesh, Frédéric D. Vernier, Clion Forlines, and Jeana Frost (). Sharing and
building digital group histories. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW), –. New York, NY, USA: ACM Press.
doi:./. → p. 

Chia Shen, Kathy Ryall, Clion Forlines, Alan Esenther, Frederic D. Vernier, Katherine Everitt,
Mike Wu, Daniel Wigdor, Meredith Ringel Morris, Mark Hancock, and Edward Tse ().
Informing the design of direct-touch tabletops. IEEE Computer Graphics and Applications
():–. doi:./MCG.. → p. 

Chia Shen, Frédéric D. Vernier, Clion Forlines, and Meredith Ringel (). DiamondSpin: an
extensible toolkit for around-the-table interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), –. New York, NY, USA: ACM Press.
doi:./. → p. 

Ben Shneiderman (). Tree visualization with Tree-maps: a -d space-filling approach. ACM
Transactions on Graphics :– → p. 

Ben Shneiderman (). e eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings of the IEEE Symposium on Visual Languages, –. Los
Alamitos, CA, USA: IEEE Computer Society. doi:./VL.. → p. 

Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, and Steven M. Jacobs (). Designing
the User Interface: Strategies for Effective Human-Computer Interaction. Boston, MA, USA:
Addison-Wesley, th ed. → p. 



http://dx.doi.org/10.1145/1031607.1031654
http://dx.doi.org/10.1109/MCG.2005.86
http://dx.doi.org/10.1145/1031607.1031655
http://dx.doi.org/10.1046/j.0266-4909.2003.00022.x
http://dx.doi.org/10.1145/587078.587124
http://dx.doi.org/10.1109/MCG.2006.109
http://dx.doi.org/10.1145/985692.985714
http://dx.doi.org/10.1109/VL.1996.545307

Dave Shreiner and e Khronos OpenGL ARB Working Group (). OpenGL Programming
Guide: e Official Guide to Learning OpenGL, Versions . and .. Boston, MA, USA:
Addison-Wesley, th ed. → p. , 

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine (). e Boost Graph Library: User
Guide and Reference Manual. Boston, MA, USA: Addison-Wesley → p. 

SMART Technologies ULC (). (DViT) Digital Vision Touch Technology. Retrieved March ,
, from http://smarttech.com/DViT/ → p. 

Hideyuki Suzuki and Hiroshi Kato (). Interaction-level support for collaborative learning:
AlgoBlock—an open programming language. In Proceedings of the International Conference on
Computer Supported Collaborative Learning (CSCL), –. Hillsdale, NJ, USA: Lawrence
Erlbaum Associates Inc. → p. 

Peter Tandler, orsten Prante, Christian Müller-Tomfelde, Norbert Streitz, and Ralf Steinmetz
(). Connectables: dynamic coupling of displays for the flexible creation of shared
workspaces. In Proceedings of the ACM Symposium on User Interface Soware and Technology
(UIST), –. New York, NY, USA: ACM Press. doi:./. → p. 

Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh Carpendale ().
Collaborative coupling over tabletop displays. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), –. ACM Press.
doi:./. → p. , , , , , 

John C. Tang (). Findings from observational studies of collaborative work. International
Journal of Man-Machine Studies ():–. doi:./-()-A → p. , 

James J. omas and Kristin A. Cook (Eds.) (). Illuminating the path: the research and
development agenda for visual analytics. National Visualization and Analytics Center → p. , 

Melanie K. Tory and Torsten Möller (). Rethinking visualization: a high-level taxonomy. In
Proceedings of the IEEE Symposium on Information Visualization, –. Los Alamitos, CA,
USA: IEEE Computer Society. doi:./INFOVIS.. → p. xi, , 

Edward Rolf Tue (). e Visual Display of Quantitative Information. Cheshire, CT, USA:
Graphics Press LLC, nd ed. → p. 

Craig Upson, omas Faulhaber, Jr., David Kamins, David H. Laidlaw, David Schlegel, Jefrey
Vroom, Robert Gurwitz, and Andries van Dam (). e application visualization system: a
computational environment for scientific visualization. IEEE Computer Graphics and
Applications ():–. doi:./. → p. xii, , , , , , , , 

Stephen Voida, Matthew Tobiasz, Julie Stromer, Petra Isenberg, and Sheelagh Carpendale ().
Getting practical with interactive tabletop displays: designing for dense data, “fat fingers,” diverse
interactions, and face-to-face collaboration. In Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces (ITS), –. New York, NY, USA: ACM Press → p. 



http://smarttech.com/DViT/
http://dx.doi.org/10.1145/502348.502351
http://dx.doi.org/10.1145/1124772.1124950
http://dx.doi.org/10.1016/0020-7373(91)90039-A
http://dx.doi.org/10.1109/INFOVIS.2004.59
http://dx.doi.org/10.1109/38.31462

Matthew O. Ward (). XmdvTool: integrating multiple methods for visualizing multivariate
data. In Proceedings of the IEEE Symposium on Information Visualization, –.
doi:./VISUAL.. → p. 

Colin Ware (). Information Visualization: Perception for Design. San Francisco, CA, USA:
Morgan Kaufmann, nd ed. → p. 

Chris Weaver (). Building highly-coordinated visualizations in Improvise. In Proceedings of the
IEEE Symposium on Information Visualization, –. Los Alamitos, CA, USA: IEEE
Computer Society. doi:./INFOVIS.. → p. , 

Chris Weaver (). Visualizing coordination in situ. In Proceedings of the IEEE Symposium on
Information Visualization, –. Los Alamitos, CA, USA: IEEE Computer Society.
doi:./INFOVIS.. → p. xiii, , , , , , , , , 

Chris Weaver (a). Metavisual exploration and analysis of DEVise coordination in Improvise.
In Proceedings of the International Conference on Coordinated and Multiple Views in Exploratory
Visualization, –. Los Alamitos, CA, USA: IEEE Computer Society. doi:./CMV..
→ p. 

Christopher Eric Weaver (b). Improvise: a user interface for interactive construction of
highly-coordinated visualizations. Ph.D. thesis, University of Wisconsin at Madison, Madison,
WI, USA → p. , , 

Pierre Wellner (). Interacting with paper on the DigitalDesk. Communications of the ACM
():–. doi:./. → p. , 

Daniel Wigdor, Chia Shen, Clion Forlines, and Ravin Balakrishnan (). Perception of
elementary graphical elements in tabletop and multi-surface environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI), –. New York, NY,
USA: ACM Press. doi:./. → p. , , 

e Free Encyclopedia Wikipedia (a). Retrieved March , , from http://en.wikipedia.org
→ p. 

e Free Encyclopedia Wikipedia (b). Newick format. Retrieved March , , from
http://en.wikipedia.org/w/index.php?title=Newick_format&oldid= → p. 

e Free Encyclopedia Wikipedia (c). Size of Wikipedia. Retrieved March , , from
http://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid= → p. 

Charles G. Willis, Brad Ruhfel, Richard B. Primack, Abraham J. Miller-Rushing, and Charles C.
Davis (). Phylogenetic patterns of species loss in thoreau’s woods are driven by climate
change. Proceedings of the National Academy of Sciences ():–.
doi:./pnas. → p. 

Jason Wood, Helen Wright, and Ken Brodlie (). CSCV—computer supported collaborative
visualization. In Proceedings of BCS Displays Group International Conference on Visualization and
Modelling. Academic Press → p. 



http://dx.doi.org/10.1109/VISUAL.1994.346302
http://dx.doi.org/10.1109/INFOVIS.2004.12
http://dx.doi.org/10.1109/INFOVIS.2005.38
http://dx.doi.org/10.1109/CMV.2006.14
http://dx.doi.org/10.1145/159544.159630
http://dx.doi.org/10.1145/1240624.1240701
http://en.wikipedia.org
http://en.wikipedia.org/w/index.php?title=Newick_format&oldid=349041266
http://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid=347275537
http://dx.doi.org/10.1073/pnas.0806446105

Richard S. Wright, Jr., Benjamin Lipchak, and Nicholas Haemel (). OpenGL SuperBible:
Comprehensive Tutorial and Reference. Boston, MA, USA: Addison-Wesley, th ed. → p. 

Mike Wu and Ravin Balakrishnan (). Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. In Proceedings of the ACM Symposium on User
Interface Soware and Technology (UIST), –. New York, NY, USA: ACM Press.
doi:./. → p. 

Beth Yost and Chris North (). e perceptual scalability of visualization. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of the IEEE Symposium on Information
Visualization) ():–. doi:./TVCG.. → p. 

Jiaje Zhang and Donald A. Norman (). Representations in distributed cognitive tasks.
Cognitive Science ():–. doi:./-()- → p. 



http://dx.doi.org/10.1145/964696.964718
http://dx.doi.org/10.1109/TVCG.2006.184
http://dx.doi.org/10.1016/0364-0213(94)90021-3

Appendix A

Permission forUse ofPreviousPublications

University of Calgary
Department of Computer Science

2500 University Drive
Calgary, Alberta, Canada

T2N 1N4

Permission for the Use of

Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale (2009). Lark: Coordinating co-located
collaboration with information visualization. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of the IEEE Conference on Information Visualization) 15(6): 1065-1072.
doi:10.1109/TVCG.2009.162

In signing this form I give Matthew Andrew Tobiasz permission to use work from the co-authored
paper listed above in this thesis and to have this work microfilmed.

__ ________________________
Petra Isenberg Date

University of Calgary
Department of Computer Science

2500 University Drive
Calgary, Alberta, Canada

T2N 1N4

Permission for the Use of

Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale (2009). Lark: Coordinating co-located
collaboration with information visualization. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of the IEEE Conference on Information Visualization) 15(6): 1065-1072.
doi:10.1109/TVCG.2009.162

In signing this form I give Matthew Andrew Tobiasz permission to use work from the co-authored
paper listed above in this thesis and to have this work microfilmed.

__ ________________________
Sheelagh Carpendale Date

	Abstract
	Acknowledgements
	Dedication
	Publications
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Motivation
	Research Context
	Background
	Example Collaborative Scenario
	Parallel Work
	Parallel and Joint Work
	Joint Work
	Collaboration Scenario Synopsis

	Research Challenges
	Thesis Organization

	Related Work
	Scientific and Information Visualization
	History of Visualization Process Models
	Data Flow Model
	ConMan: A Data Flow Metaphor for Visualization:
	Application Visualization System's Visualization Cycle
	Haber:1990's Data Flow Model
	Use and Extension of the Data Flow Model

	Data State Model
	Operator Interaction Framework
	Visualization Reference Model
	Carpendale:1999:PhD's Presentation Space
	Visualization Pipelines Compared

	Hierarchical Data
	Definition of a Tree
	Visualization of a Tree

	Collaboration
	Computer-Supported Cooperative Work
	Tabletop
	Collaborative Information Visualization
	Design Guidelines for Co-located Collaborative Information Visualization Systems

	Coordinated Multiple Views
	Meta-visualization
	Summary

	Lark: Collaboration Concept
	Background
	Overview of Lark
	Design Process
	Support Changing Collaboration Styles
	Large Digital Tabletop
	Direct-Touch Interaction Design
	Coordinated Multiple Views System
	Temporal Flexibility
	Spatial Flexibility
	Scoped Interaction
	Integrated Meta-visualization
	Visualization Pipeline
	Visualization Pipeline-Centric Software Architecture

	Discussion
	Summary

	Interacting with Lark
	Lark's Information Visualization Environment
	View Representation
	Meta-visualization

	Visual Collaboration Coordination
	View Generation
	Pipeline Creation and Branching

	Lark Interactions
	Setting Interaction Scope
	Coordinated Interactions

	Pipeline Cloning
	Summary

	Implementation of Lark
	Lark's System Architecture and The Visualization Pipeline
	Elm: Tree Representation Library
	SnowMonkey: Tree Visualization Library
	Lark: Interactive Visual Interface
	Summary

	Conclusion
	Research Challenges
	Contributions
	Example Collaborative Scenario Using Lark
	Parallel Work
	Parallel and Joint Work
	Joint Work

	Future Work
	Thesis Conclusion

	Bibliography
	Permission for Use of Previous Publications

