
Interactive Poster: Using Edge Plucking for Interactive Graph Exploration

Nelson Wong* and Sheelagh Carpendale*

Department of Computer Science, University of Calgary

ABSTRACT
Excessive edge density in graphs can cause serious readability
issues. Edge Plucking, an interactive tool that clarifies node-edge
relationships by bending edges while preserving node positions,
extends previous exploration tools that have been designed to
address edge congestion.

CR Categories: I.3.6[Computer Graphics]:Interaction Techniques

Keywords: information visualization, graph layout, navigation,
interaction, edge congestion

1 INTRODUCTION
Graphs are useful for representing information that has entities
that can be mapped to nodes and relationships that can be mapped
to edges. However, graphs can be complex to lay out and difficult
to read. For instance, high edge density may cause edges that are
close to one another to overlap, or to pass underneath nodes. We
call these phenomena edge congestion [3]. One research direction
to address edge congestion is to improve the graph layout [1].
However, this is a difficult task and involves node repositioning,
which for some information is not suitable. This includes graphs
representing road maps, airline routes, and telecommunication
networks, and other information where nodes carry either
geographical information or other spatially explicit information.
 To address this issue, we developed EdgeLens [5] which is an
interactive technique that pushes edges away from its centre while
preserving the locations of nodes. Subsequently we have
expanded on this direction, developing Edge Plucking [4] which is
another interactive technique that can clarify the confusion caused
by edge congestion without moving any node positions. In stead
of pushing edges like EdgeLens, Edge Plucking pulls edges. We
will describe the concept of Edge Plucking, followed by its
interaction and algorithm.

2 EDGE PLUCKING
Edge Plucking is intended to provide users with the ability to
temporarily move edges (one at a time or as a group); in so doing,
the technique helps clarify graph structure, node-edge
relationships, and associated information. Our plucking metaphor
is taken from everyday life. For example, as in Figure 1, when one
wants to peek through a set of closed Venetian blinds, one may
run a finger down then peek through it. Also, when one releases
the blinds, they will return to their original shape. Edge Plucking
simulates this plucking action for use in graph exploration.
 To pluck edges, one drags the cursor across one or more edges.
Moving the cursor across edges will pull them to the direction that
the cursor is moving (Figure 2). As long as the mouse button is
held, edges will be plucked when the cursor moves across them.
Once the mouse button is released, all edges will return to their
original positions.

 Edge Plucking includes a variant visual response depending on
the location of the point on the edge from which plucking is
initiated. This variation in visual response appears quite natural in
that the longer part of the edge appears more stretched and the
shorter part of the edge seems to have somewhat less tension.
Also, the shape of the curve gets tighter, in that the bend gets
much sharper, as the pluck point approaches a node. While this
does introduce the possibility of a sharp bend, it also keeps the
shape of the edge more neatly within the boundaries set by the
edge’s nodes. This is illustrated in Figure 3: a) is the untouched
edge; b) through d) show different shapes of a plucked edge from
smooth to a sharper curve.
 To support exploration at different areas of a graph, the plucked
edges can be pinned by a right mouse click. The edges that are
pinned keep the exact shape they had the moment they were
pinned. Other edges can be plucked while some edges are pinned.
Pins can be removed after exploration, and then edges will return
to their original shape.

2.1 Edge Plucking Algorithm
A plucked edge is composed of two connecting cubic Bézier
curves. They are controlled by seven control points (cp), where
cp1, cp2, cp3, and cp4 control one curve, and cp4, cp5, cp6, and
cp7 control the other curve. Control points cp1 and cp2 have the
same location as node n1, and control points cp6 and cp7 are both
located at node n2. The middle control point, cp4, is shared by
both curves, and is located at the mouse cursor mc.
 When the mouse cursor touches the edge at mc, the edge is
considered as two line segments joined at mc. The first step is to
assess which line segment n1 to mc or mc to n2 is shorter. The
control point on the shortest line segment will be calculated first.

Figure 1. Running a finger down a set of closed Venetian blinds

a

b

Figure 2. Edges are plucked in different directions

*e-mail: {yw,sheelagh}@cs.ucalgary.ca

In Figure 4 this segment n1 to mc is shorter and, as a result, cp3
will be calculated first using the formula:

dc = dn * r

where dc is the distance from cp3 to mc, dn is the distance from
n1 to mc, and r is a number between 0 and 1. While r can be
interactively adjusted, the current default for r, as used in the
illustrations in this paper, was arrived at through observation and
is 0.3. In Figure 4, the control point for the longer line segment,
cp5, is placed between mc and n2 using the same distance dc just
calculated for the shorter line segment. This places the two
calculated control points equidistant from mc and all three are on
the original edge and thus are co-linear.
 At this point the mouse has touched the edge and we are ready
for the edge to be plucked. When the mouse cursor moves, and
consequently mc, the co-linear relationship between cp3, mc, and
cp5 is maintained. The three points move in the same direction
and distance as mc moves, maintaining a parallel relationship to
the original edge (Figure 5). Maintaining this co-linearity and
using cubic Bezier splines, in spite of the fact that the end control
points must be doubled at the nodes in order to get four control
points per segment, does provide us with C2 continuity at the
location of the mouse cursor. This visual continuity seems
important to provide the feedback that the edge is still a single
edge and is responding as a unit.

2.2 Applying Edge Plucking
Similar to EdgeLens, Edge Plucking moves edges apart, revealing
underlying information and disambiguating node-edge
relationships. However, Edge Plucking does offer particular
advantages when clarifying graph structure. Since one can use

Edge Plucking to interact with one or more edges and pin them
separately, it is able to aid exploration of a graph (or portion of).
Figure 6 shows an example with both EdgeLens and Edge
Plucking separately applied on the same portion of a graph. In
Figure 6a there are seven nodes connected by several edges that
are all lying along the slight circular arc. Applying an EdgeLens
to the region of interest does reveal the structure (Figure 6b);
however, it can be difficult to choose just the right position to
achieve a reasonable spread to the edges and the structure is still
somewhat difficult to decipher. Instead, one can use Edge
Plucking (Figure 6c to 6h) more deliberately. Following through
from Figure 6c each edge is plucked and pinned to the side,
gradually revealing the structure. Pinning all six edges clarifies
the relationships between nodes. While Edge Plucking can be
effective with larger graphs, we have illustrated this discussion
with a small graph so that the static images will be clear. Much of
the effectiveness is a result of the motion that is caused by
plucking. For instance, the motion caused by plucking an edge or
group of edges makes long edges easy to follow as suggested by
Ware and Bobrow [2].

3 CONCLUSION
In this paper we described Edge Plucking, an interactive technique
that clarifies graph structures. One can use it to temporarily pluck
edges apart to reveal hidden structures while preserving node
position.

ACKNOWLEDGEMENTS
This work was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

REFERENCE
[1] Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. 1999. Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.
[2] Ware, C. and Bobrow, R. 2004. Motion to Support Rapid Interactive

Queries on Node-Link Diagrams. ACM Transactions on Applied
Perception, Vol. 1(1), 3-18.

[3] Wong, N. 2005. EdgeLens: An Interactive Technique for Mitigating
Edge Congestion in Graphs. MSc Thesis, Dept. of Computer
Science, University of Calgary, Calgary, AB, Canada T2N 1N4.

[4] Wong, N., and Carpendale, S. 2005. Supporting Interactive Graph
Exploration with Edge Plucking. Technical Report 2005-808-01,
Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada, Aug.

[5] Wong, N., Carpendale, S., and Greenberg, S. 2003. EdgeLens: An
Interactive Method for Managing Edge Congestion in Graphs.
Proceedings of the IEEE Symposium on Information Visualization
(InfoVis 2003), 51-58.

a

b

c

d

Figure 3. An edges is being plucked in different ways: a) the
original graph; b) the edge is plucked in the middle; c) the edge is
plucked on the right side of the edge; d) the edge is plucked very

close to the right node

Figure 4. Illustrate how cp3 and cp5 are calculated

Figure 5. cp3 and cp5 move in the same direction and distance as
the cursor

 a

 b

 c

 d

 e f g h

Figure 6. Exploring a cluster of nodes in a graph: a) the original
graph; b) EdgeLens is applied; c) through h) Edge Plucking is used

separate the edges within the cluster of nodes

