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ABSTRACT 
We present Astral, a prototyping tool for mobile and Internet 
of Things interactive behaviours that streams selected desk-
top display contents onto mobile devices (smartphones and 
smartwatches) and remaps mobile sensor data into desktop 
input events (i.e., keyboard and mouse events). Interactive 
devices such as mobile phones, watches, and smart objects, 
offer new opportunities for interaction design– yet prototyp-
ing their interactive behaviour remains an implementation 
challenge. Additionally, current tools often focus on systems 
responding after an action takes place as opposed to while 
the action takes place.  With Astral, designers can rapidly 
author interactive prototypes live on mobile devices through 
familiar desktop applications. Designers can also customize 
input mappings using easing functions to author, fine-tune 
and assess rich outputs. We demonstrate the expressiveness 
of Astral through a set of prototyping scenarios with novel 
and replicated examples from past literature which reflect 
how the system might support and empower designers 
throughout the design process. 
Author Keywords 
Prototyping; design tool; interactive behaviour; smart ob-
jects; mobile interfaces.  
ACM Classification Keywords 
D.2.2. Design Tools and Techniques – User Interfaces. 
INTRODUCTION 
Smart interactive devices such as mobile devices, wearables 
and Internet of Things (IoT) objects vary widely in input and 
output, physical form, and development platforms. When 
prototyping interactive behaviors for these devices, design-
ers are faced with two options: the first option is to build pro-
totypes directly on the target device or platform. This in-
volves programming, and in some cases, circuit building or 

soldering (e.g., physical computing, IoT devices). As a re-
sult, implementation details consume the majority of design-
ers’ time and resources (e.g., code setup, learning the plat-
form at hand, programming basic visuals), instead of im-
portant early-stage high-level design decisions around inter-
action or animation or exploration of innovative alternatives 
[13]. The alternative option is to explore mobile device in-
teraction with desktop-based prototyping tools (e.g. In-
Vision, Balsamiq). Desktop applications often specialize in 
individual tasks (e.g. wireframing, prototyping standard UI 
widgets, creating animations as videos) without room for in-
tegrating different workflows [31]. Furthermore, desktop 
tools do not provide an accurate portrayal of what the inter-
actions will be like on the target device [22], especially in-
teractions that involve the target device’s physical form, or 
possible tangible or embodied interactions (e.g. shaking the 
device).  

In this paper, we explore how streaming of display contents 
and mobile sensor data can enable designers to create inter-
active mobile and IoT prototypes.  
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Figure 1. Astral (illustration) allows designers to prototype inter-
active behaviours by (1) streaming contents of a desktop display 
to a mobile device, (2) sending mobile sensor data to the desktop, 
and (3) remapping the sensor data into desktop input (e.g. mouse 
and keyboard events). 
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ASTRAL 
We introduce Astral (Figure 1), a novel prototyping tool that 
uses streaming and input remapping to enable designers to 
author, test, and fine-tune interactive behaviour in mobile 
and IoT prototypes using familiar tools. We achieve this 
through: streaming of visual desktop content, streaming of 
mobile sensor data, and input remapping for interactivity.  
Streaming Visual Content to a Mobile Display 
Astral consists of a desktop client and a mobile client appli-
cation. Designers can use Astral to stream the contents of 
their desktop display onto a mobile device screen such as a 
phone or watch. As shown in Figure 1.1, the designer selects 
a region of a web browser running Flappy Bird to stream it 
to a connected mobile display. The mobile display is then 
updated live as the desktop display updates.  
Streaming Mobile Sensor Data to Provide Input 
Next, the designer can select sensors on the mobile device 
that will provide input. Figure 1.2 shows how a designer can 
select multiple types of sensor data, such as touch, tilt, bright-
ness or microphone data. In this case, the designer enables 
the touch sensor to be streamed back to the Astral desktop 
client. Every time the designer now taps the mobile display, 
the touch location is visualized on the Astral desktop client. 
Interactivity Through Input Remapping 
Finally, as shown in Figure 1.3, the designer can remap the 
mobile sensor data to desktop keyboard or mouse inputs, and 
provide interactivity to the streamed display contents. The 
designer remaps touch events to spacebar keypresses, which 
control the bird in the web browser. Astral’s input remapping 
allows the designer to stream visuals to the mobile display, 
which are affected by mobile sensor data, thus closing the 
loop and enabling interactivity.  

More complex input remapping is possible, using different 
sensors, continuous and discrete actions, emulating states us-
ing sets of rules, or changing what is streamed to the mobile 
display, as we will demonstrate later. 
Benefits 
Astral has several benefits over prior work:  

1. Display contents and sensor data are streamed live, al-
lowing designers to test, iterate and refine interactive behav-
iour on the target device. The liveness aspect also enables 
designers to compare and explore different variations in in-
put/output mappings. 

2. Designers can use and repurpose familiar design tools 
through streaming and input remapping. One could, for ex-
ample, combine Astral with video editing tools to create in-
teractive mobile or IoT prototypes (see Scenario 4).  

3. Astral enables designers to use the same approach to pro-
totype both the interactive behaviour of mobile applications 
as well as IoT devices as enabled through mobile displays 
and sensors [28]. For instance, Astral could be used to pro-
totype IoT devices such as a smart speaker (see Scenario 5). 

RELATED WORK 
The goal of our prototyping tool is to author nuanced inter-
active behaviour on mobile devices.  In this paper, we con-
sider ‘interactive behaviour’ to be the ‘feel’ of a prototype 
[39] that cannot be easily conveyed through a physical 
sketch. The ‘feel’ emerges from not only the outputs once 
interactions happen, but also as interactions happen – a dy-
namic interplay discussed in past discussions of progressive 
feedback [57] and animation applications [16,17].  

We situate our work among extensive prior work on toolkits 
and prototyping tools that help interaction designers define 
interactive behavior.  The specific approach of our prototyp-
ing tool leverages past work on streaming sensor inputs and 
display outputs across devices, and remapping inputs across 
devices. Based on previous work, we identify a series of De-
sign Goals (DG) for Astral. 
Prototyping Tools 
In particular, we draw on prior work in prototyping tools 
where designers can quickly customize interactive behav-
iours [61] and work with sensor input [19], while  leveraging 
existing tools [3] thus reducing the need to program. 

Fast prototyping not only relies on expressiveness, but also 
the speed at which designers can preview and evaluate their 
designs. Many interface prototyping tools highlight live pro-
totyping as a feature that helps designers create interactive 
applications in both mobile contexts [33, 35, 45] and physi-
cal computing contexts [19, 20, 28]. Gummy Live [33] al-
lows designers to create mobile interfaces live and see them 
reflected in the mobile device ready for modification. Simi-
larly, de Sá et. al [45] created a tool capable of transitioning 
from sketches on the target mobile device, to Wizard of Oz 
[26] prototypes, to higher fidelity ones. Our first goal is to 
create a tool that prototypes live interactive behavior on the 
target device (DG1).  

One approach to supporting physical computing authoring is 
through specialized hardware (e.g. [3, 14, 55, 63]). Arduino 
[62] in particular requires programmers to build circuits from 
scratch, which can be difficult for novices and introduces 
more opportunities for bugs [4]. Alternatively, designers can 
repurpose existing sensors in their authoring [28, 47, 49]. 
These approaches to prototyping allow designers to address 
each sensor individually; however, they also rely heavily on 
low-level programming.  Our second goal is to provide an 
end-user interface that allows designers to explore varia-
tions among mobile sensors (DG2).   

When working on top of existing infrastructures, toolkits can 
leverage already existing functionality to quickly explore 
new types of interactions. Olsen [42] discusses how working 
with common infrastructures enables new technology com-
binations to support new solutions; for example, when pen 
input works as a mouse, mouse-based applications can now 
be used with a pen as the input device. Many prototyping 
tools in the research literature use this approach. Exemplar 



[19] and MaKey MaKey [3] discuss the possibility of map-
ping mouse and keyboard events, and Gummy-Live [33] and 
D.Macs [34] leverage streaming. Other tools (e.g. InVision, 
Adobe XD) accommodate designers working in their plat-
form by allowing them to import elements from other appli-
cations (e.g. mockups drawn in Photoshop). Our third goal is 
to further extend these principles and allow designers to 
work with existing, familiar prototyping applications 
(DG3). 
Streaming Inputs & Outputs Across Devices 
We intend to address DG1 (prototype live interactive behav-
ior on the target device) by both streaming desktop display 
output to a mobile device, and streaming mobile sensor input 
back to a desktop machine. The basic principle of streaming 
a display to another device has previously been used to create 
interactive systems in HCI research. For instance, Sikuli [59] 
takes screenshots of UI elements so that they can be anno-
tated, or to automate different tasks. Transmogrifiers [6] 
show how dynamic content of the desktop (e.g. images, web-
sites, videos) can be transformed on-the-fly to create free-
form visualizations. Prefab [12] treats the desktop as a set of 
pixels, which can be reverse-engineered and thus enables 
new behaviour implementations on existing interfaces (e.g. 
Bubble Cursor [15]).  

In addition to streaming a captured screen to another device, 
we can also extend interaction across multiple devices (e.g., 
TeamViewer1, VNC2). Semantic Snarfing [37] showed how 
a mobile device could act as a laser pointer to retrieve con-
tents of a desktop. Myers [36] also examined how mobile de-
vices could act as additional inputs to PCs (e.g. as a number 
pad). A screenshot can also hold information about the sys-
tem’s state – DeepShot [9] shows how to use a mobile device 
photo to migrate tasks across devices. The mobile device can 
also provide input to displays at a distance through its camera 
as done in Touch Projector [5], or extend the display space 
for further interaction opportunities as done in Virtual Pro-
jection [2]. We apply the idea of streaming in both directions: 
the contents of the desktop are sent to the mobile display, and 
the sensor data from the mobile device are sent to the desk-
top. Our last step is to remap mobile sensors into keyboard 
and mouse commands. 
Remapping Inputs Across Devices 
For designers to prototype interactive behaviors, they must 
not only see continuous effects from their input (DG1), but 
also examine and modify how those effects take place. Thus, 
Astral needs to fine tune mappings between inputs and out-
puts (DG4) to prototype nuanced interactive behaviors. One 
way to achieve this is through easings. Easing was a term 
used by Adobe Flash [61] to refer to the slow-in and slow-
out principle of animation [53], in which the number of in-

                                                           
1 https://www.teamviewer.com/ 
2 https://tools.ietf.org/html/rfc6143 

between frames are increased or decreased at keyframes be-
tween poses to create the illusion that an object is speeding 
up or slowing down. Adobe Flash incorporated easings as a 
default linear tween that could be applied to motion tweens. 
Penner [43] created scripts to change the character of the eas-
ing through mathematical functions (see Figure 2). We ex-
tend Penner’s [43] easing functions, which describe how an 
animation can play over time. We apply these functions to 
the continuous input values so that designers can explore 
how the output will perform as a function of the input action. 
The easing functions can serve for aesthetic experiences, as 
well as more utilitarian elements (e.g. balancing the sensitiv-
ity of an input’s effect). 
ASTRAL’S CENTRAL COMPONENTS 
The overarching idea of Astral (as illustrated in Figure 1) is 
to allow designers to quickly prototype interactive behav-
iours on mobile devices. To ensure that designers can use or 
repurpose familiar desktop applications to author and test 
mobile interactive behaviours (DG3), we designed Astral as 
a desktop client that communicates with a mobile client, for 
which designers want to author interactive behaviours. In 
this section, we provide an overview of Astral’s individual 
components. 
Main View 
When starting Astral, a simplified view is shown (Figure 
3.1). This view provides basic functionality once a device is 
connected. Upon connection (by starting Astral on the mo-
bile device), a designer can begin authoring the intended in-
teractive behavior through the use of rules and rulesets (see 
following sections). At the same time, the designer can 
choose the region of the desktop (where they designed the 
intended user interface through means of their preferred de-
sign application) that should be streamed to the mobile client. 

To select that region, the designer clicks the camera icon, and 
an overlay appears, showing exactly which part of the desk-
top will be streamed. This overlay can be scaled and trans-
lated to select the region of interest. While this selection win-
dow is shown, the contents are already streamed to the mo-
bile client, so that a designer sees the changes and can assess 
when the selection is sufficient for the task. 

The main view is intentionally kept narrow, so that it oc-
cludes the least amount of screen real estate. It further pro-
vides access to the rule editing window, where designers can 
map sensor data from a mobile device to specific events on 

 

 
Figure 2. Examples of Linear (left) and Cubic In-Out (right) 
easing functions [43]. 
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the desktop (i.e., mouse or keyboard events). Other options 
include playing and pausing of active rules, saving the cur-
rent rule sets, and displaying a visualization dashboard of the 
streamed mobile sensor data.  
Specifying Input Remapping through Rules 
Once content is streamed to the mobile device, designers can 
author an interactive behaviour by defining a rule. A rule is 
a software abstraction that contains information as to how 
mobile sensor data is mapped to keyboard and mouse events. 
To do so, the designer first clicks on the ‘plus’ sign to open 
the Rule Editing Window – a guided interface to author or 
edit an input remapping rule. The rule can now be defined 
(see a particular configuration example in Figure 3.2). First, 
the sensor (e.g., the accelerometer) of interest must be spec-
ified, which brings up an individualized interface for each 
particular sensor (examples in Figure 4), often as a live vis-
ualization of that sensor’s values. Based on the chosen sen-
sor, the next step is to select which parameter to observe 
(e.g., the x-value of the accelerometer). The third step is then 
to constrain the sensor to a range of values (e.g., between -5 
m/s2 and 5 m/s2). Note that sensor readings can be further 
transformed, such as by applying prepackaged filters. For in-
stance, we can filter acceleration values to extract gravity and 
linear acceleration values. 

 
Figure 4. Astral provides interactive visualizations for different 
sensors (clockwise from top-left: ambient light, touchscreen 
and compass). 

 
Figure 3. Annotated Astral Interface.  (1) The main window streams content to the mobile device and displays active rules.  (2) When 
adding rules, the interface shows an interactive visualization where designers select the range of sensor values to for input remapping. 



Now that the sensor input from the mobile device is speci-
fied, the designer should be able to map that input to the desk-
top input (e.g., a mouse move event). Mouse events can be 
constrained on the desktop, for example, only allowing 
mouse movements horizontally between 800 and 1000 pix-
els, or defining ranges for mouse wheel events (the default in 
Microsoft Windows being 120 pixels per step). For keyboard 
events, designers can specify a key event (i.e., down, press, 
or up) and the key that should perform that event (e.g., arrow 
left). Keys are either typed by the designer or selected from 
a list of operating system defined keys (e.g., volume controls, 
media playback, or print screen). Key selection allows for 
integration with existing applications through the use of 
shortcuts offered by that application. 

The selected desktop input can be discrete or continuous (as 
in Exemplar’s categorization of sensor values [19]). Discrete 
input is triggered when the sensor enters or exits the range of 
values, while a continuous input interpolates the value from 
the range to the destination mapping. These interpolations 
can be altered through easing functions (Figure 5). Note that 
the system automatically determines the nature of input: dis-
crete rules being mouse up and down, key up, down or 
pressed; and continuous rules being mouse move, or scroll.  

For continuous input, designers can apply easing functions. 
We used Penner’s set of easing functions [43] shown in Fig-
ure 5. To achieve this, a rule defines a range as a source se-
lection (e.g. accelerometer low and high values) and a desti-
nation selection (e.g. mouse coordinates). The current value 
and the source selection are transformed and normalized into 
a unit rectangle (1 by 1 size), which then is interpolated into 
the selected easing function. The values are then remapped 
to the new destination selection, where the outputted value 
now has the easing applied.  

The authoring process is dynamic: designers can immedi-
ately test and modify a rule as they author or edit it. If they 
do not wish for the rule to continue running (e.g., mobile de-
vice input taking over the mouse cursor), they can press the 
‘escape’ key to play or pause the live mapping. When the 
designer is finished, they can name the rule, and it will be 
added to the active ruleset in the main application window. 
Merging Several Rules into Rulesets 
Often, one interactive behaviour may require several rules 
(possibly relying on different sensors). Astral adds one layer 
of abstraction, called rulesets, which allows the combination 
of several rules. If a ruleset is active, all rules within that set 

will execute as long as the mobile device is streaming. This 
can be paused both on the interface by clicking on the 
play/pause button, or by pressing the ‘escape’ key.  

To allow for testing variations of interactive behaviours, de-
signers can create multiple rulesets and switch between them 
at any time by clicking on the tab (Figure 3.1 left and bot-
tom). When there is an active ruleset, a newly created rule 
will be added to that set and stacked vertically.  

There are two special conditions for discrete rules. A medley 
rule, which is a discrete rule that serves to switch between 
active rulesets, allows designers to test different variations of 
prototypes. Discrete rules can also have children, which al-
lows individual transitions between rules (thus simulating 
multiple states). This means that a rule with a child becomes 
inactive once it is executed, then enabling its child to become 
active. A ‘+’ button appears on hover when a child rule can 
be created. Rule hierarchy is shown through horizontal align-
ment.  
How Astral Satisfies its Design Goals 
The central components of Astral strongly followed the pre-
viously identified design goals. It satisfies DG1 with its abil-
ity of streaming sensor data from the mobile device and por-
tions of the desktop display to the mobile device. Addition-
ally, DG1 is supported by running rules in real-time and dy-
namically switching them on and off. 

The ability to configure interactive behaviour by creating and 
manipulating different rules without the need for program-
ming allows Astral to satisfy DG2. In particular, the included 
visualizations provide a higher expressive match [42] to se-
lect the right values and properties for interactive testing. 

Astral works with familiar desktop tools, such as PowerPoint 
or HTML to prototype interactive behaviour on mobile de-
vices, thus satisfying DG3. Designers can remain in their 
natural design environment. Lastly, DG4 is satisfied in that 
Astral allows for fine-tuning input mappings through the use 
of different easing functions. 
IMPLEMENTATION 
The desktop client of Astral is implemented using C# and 
WPF, whilst the mobile applications are written in Xamarin 
to allow for cross-platform mobile development (iOS, An-
droid, AndroidWear). To allow for reusable code and quickly 
adapting to newly added sensors of potential future devices, 
we developed all communication aspects in shared code, 
which uses the .NET Standard 2.0. Network connectivity is 
achieved through wireless LAN using TCP. We tested Astral 
on multiple phones (Nexus 5 and 5X, iPhone 7 and 8, Pixel 
2) and on the Sony Smartwatch 3.  

We are able to achieve relatively fast performance when 
streaming display content – 50 fps on iOS, 25 fps on Android 
– despite the mobile sensor data also being streamed back to 
the desktop (microphone, accelerometer, etc.). During test-
ing and creation of the prototypes below, we did not experi-
ence any significant delay in the transfer of sensor data. 

 
Figure 5. Available easing functions in Astral. 



INTERACTION SCENARIOS AND PROTOTYPES 
In this section, we describe a series of interaction scenarios 
that demonstrate the expressive range and power of Astral. 
Each scenario describes an Astral prototype, implemented by 
the authors, followed by a discussion of concepts that 
are demonstrated by that particular prototype. 
Scenario 1: Exploring Map Interactions 
This scenario depicts a designer, Alex, exploring possible 
one-handed physical interactions with a mobile map. 
A. Tilt to Move 
Alex wishes to explore how to navigate a mobile interactive 
map with one-handed interaction. They open an instance of 
Google Earth in a web browser on their desktop and zoom 
into a location. Using Astral, Alex creates four rules map-
ping keyboard commands to the phone’s accelerometer 
readings – tilting the mobile device to the right triggers a 
right arrow key, tilting to the left triggers the left arrow key, 
and similarly for up and down. The rules are set so that key 
commands are triggered when the acceleration passes a cer-
tain range (x: 4 to 7 triggers right, x: -4 to -7 triggers left, y: 
4 to 7 triggers down, y: -4 to -7 triggers up). Because they 
chose a keypress event, when the accelerometer enters the 
specified range, the key is pressed down, and when leaving 
the range, it is lifted up. These values are determined live 
and by exploration. Alex can select the Google Maps window 
to test individual rules and fine-tune the sensitivity. 

This scenario replicates an example from d.tools [20] that 
originally required programming for continuous navigation; 
the Astral version leverages an existing web-based map (in 
this case Google Earth), and requires no programming at all. 
The designer can choose the device sensors and the corre-
sponding keyboard interactions, and the sensor input can be 
fine-tuned to trigger keyboard interactions based on a speci-
fied threshold.  
B. Tilt-to-Zoom 
Alex wants to modify their mobile map interaction to use tilt-
to-zoom [21] (Figure 6). They create a new set of rules. First, 
Alex creates a “clutch” rule that starts the interaction – a 
touch down event that triggers the tilt-to-zoom operation and 
acts as a parent rule. They then create a rule mapping the y-
axis of the accelerometer to a (mouse) scroll event. Alex se-
lects an accelerometer range from -5 to 5, and scrolling 
range is set from -15 to 15 pixels. Astral linearly interpolates 

between both ranges by default. In testing the interaction, 
Alex is unsure if it is too sensitive, so they try an easing func-
tion (quadratic ease in/out), which makes the sensors less 
sensitive when the device is close to horizontal. Finally, Alex 
creates a rule triggered by a touch up event to end the tilt-
to-zoom operation. 

This scenario replicates an example from Hinckley et al. 
[21], incorporating the concept of motion in touch, mapping 
more than one sensor to a single function. Touch is used as a 
means to explicitly switch to one-handed zooming using tilt. 
It also shows the value and role of easing functions, which 
allow designers to specify how the mapping is carried out 
based on continuous input. Finally, it showcases how Astral 
can map continuous mobile sensor actions to continuous 
desktop actions (e.g., scrolling) within a bounded number of 
pixels. Having a parent rule means that the child rule will not 
execute until the parent rule has executed, thus enabling dif-
ferent states.   
Scenario 2: Input Variations in a Mobile Game 
Alex, our designer, wishes to test different input variations 
for a mobile game prototype (Figure 7). They open a web 
browser with the game ‘Flappy Bird’, which uses the space-
bar or mouse click to make a bird flap its wings to fly between 
pipes. Alex streams the browser content onto a mobile phone 
and creates different rulesets that will trigger the spacebar 
on a threshold. The first one is a simple tap on the touch dis-
play, similar to the original mobile game. The next version 
uses a shake gesture on the accelerometer (when the magni-
tude is greater than 8). Alex tests the shake interaction and 
finds the magnitude threshold is too high and reduces it to 6. 

 
Figure 6. Authoring the tilt-to-zoom prototype (Scenario 1B). 

 
Figure 7. Authoring different input variations for the game "Flappy Bird" where a bird flaps its wing when hitting the space key 
(Scenario 2). The following rules trigger the space key: (a) tapping, (b) blowing on the microphone, (c) shaking the device. When 
the (d) ambient light sensor detects a reading of 0, the rulesets are switched for variation testing.  



Next, they create a rule set that uses the microphone’s am-
plitude, where the player can blow into the microphone to 
trigger the spacebar. Finally, Alex creates a rule to switch 
between rule sets. The rule triggers when the ambient light 
sensors detect a reading of 0. When testing the game, the 
newly added rule allows Alex to immediately switch between 
the different input versions by covering the display.  

Designers can sequentially test a set of prototype alternatives 
to explore different solutions to the problem. Astral can use 
this approach to experiment with any variations of rules, in-
cluding sensors, thresholds, easings, or desktop inputs. The 
designer can switch between rulesets by creating a medley 
rule (in our scenario, based on the ambient light sensor). 
Scenario 3: Iterative Design of a Media Controller 
This scenario describes iterative prototyping for a watch-
based media controller that can play, pause, or change the 
volume of music on a computer (Figure 8). Each iteration 
uses a different strategy and shows how Astral supports mov-
ing from mockups to more refined high-fidelity prototypes. 
A. Interactive Paper Mockups 
Alex draws a series of paper mockups for a watch media con-
troller, takes photos of the mockups and opens them on their 
computer in a single image viewer window. Alex creates mul-
tiple states by creating child rules, specifying the transitions 
between the different states. For each state, Alex sets a new 
image capture region on the display around the correspond-
ing mockup in an image viewer. Alex confirms that the vol-
ume buttons in their sketch are large enough to interact with 
and maps the touch location on the watch to a keyboard event 
(volume up and down keys). 

The designer can use Astral to create a first interactive pro-
totype based on photographs of sketches. This prototype al-
lows the designer to preview the interfaces on the target de-
vice and thus make early decisions (e.g. determining appro-
priate button sizes). In creating transitions, the designer can 
also preview the interaction flow, simulating state transitions 
as seen in other prototyping tools (e.g. d.tools [20]).  
B. Exploring States in PowerPoint & Adobe Illustrator 
Alex wants to explore state transitions in PowerPoint using 
visuals from a higher fidelity non-interactive prototype cre-
ated in Adobe Illustrator. They create one slide for each 
state; touch events on the device view correspond to click 

events on different regions of the desktop display, e.g. the 
slide thumbnails in Powerpoint. After testing the interaction, 
Alex considers it best to have a single screen given the small 
size of the smart watch. 

This scenario again demonstrates designers’ abilities to work 
with existing tools, in this case PowerPoint and Illustrator, 
both of which are discussed as current standards [31, 60]. 
C. Creating an Interactive Image 
Alex takes one of the Adobe Illustrator designs and maps dif-
ferent locations of the image to playback controls – the pre-
vious button maps to the ‘previous song’ key, the next button 
maps to the ‘next song’ key, and the play button is mapped 
to the ‘play/pause’ key. Alex opens iTunes on their computer 
and tests the functional prototype on their watch. 

Because the designer assigns mappings, they can use multi-
ple strategies to author a prototype.  Here, Astral is used to 
create an interactive image, an alternative approach to creat-
ing user interface façades [50].  While the designer leveraged 
special keys provided by the operating system, they could 
also trigger other key combinations as well as hotkeys using 
modifier keys (e.g. control, shift).  
D. Creating a Smartwatch Prototype in Expression Blend 
Alex wants to test the visual feedback of the buttons, and thus 
programs a prototype using Microsoft Expression Blend with 
buttons that change color when pressed. Alex streams the 
running Expression Blend program to the watch and maps 
touch events on the watch to clicks on the corresponding but-
tons in the program so that the buttons provide visual feed-
back when touched on the smartwatch. Instead of linking the 
Expression Blend prototype with C# code to program the me-
dia controls, Alex uses Astral to map those regions to key-
board commands for Play/Pause, Next and Previous as in 
the interactive image. 

The sequence of paper mockups, Powerpoint, Illustrator, and 
Expression Blend shows how Astral can support different fi-
delity prototypes as the designer iterates and refines their 

 
Figure 8. Astral supports the design process in all stages by allowing (a) on-device rapid creation of interactive sketches (Scenario 
3A), (b) using slideshows to transition between states (Scenario 3B), or (c) creating interactive images (Scenario 3C). 



ideas during the design process. Astral supports designers’ 
work in familiar, powerful desktop software tools. Designers 
can use familiar GUI programming tools (e.g., web proto-
types, Expression Blend) on mobile devices that do not na-
tively support these applications.  
Scenario 4: Video-Based Prototyping 
This scenario demonstrates how designers can leverage 
video editing tools, such as Adobe AfterEffects (Figure 9). 
This strategy maps continuous input to different points in the 
video timeline to ‘scrub’ based on the current sensor data. 
A. Compass Interface 
Alex wants to test the look and feel of a compass interface. 
They create a compass mockup in Adobe Illustrator and im-
port the asset into AfterEffects. Alex creates a basic transfor-
mation in AfterEffects to rotate two Illustrator layers (the 
compass’ needle and its shadow) within a 3-second window. 
Alex then opens Astral, connects the mobile phone, and maps 
the angle of the compass sensor to the position on the video 
timeline through a mouse move event. Pointing the phone in 
different directions now updates the compass interface.  

Maudet et. al discuss how designers often use high-fidelity 
videos to convey prototype ideas to developers [31]. While 
video can show state-based animations, it does not show the 
effect of the interaction as continuous inputs are taking place. 
This example shows how Astral enables the designer to 
quickly create a working compass prototype, thus going be-
yond traditional video prototyping. Moreover, small effects 
such as the changing shadow would be relatively complex to 
achieve through programming, while it requires little effort 
in a video editing application for a skilled designer. 
B. Phone Control Panel 
Alex creates a video prototype of a phone control panel in 
Astral, which, on swiping down, progressively reveals differ-
ent options. Alex maps a mobile touch move to the mouse to 
scrub through the first portion the video in a video editing 
tool (e.g. Adobe Premiere). Next, Alex tests several easing 
functions, including a playful bounce effect animation. Once 
dragged down, the panel reveals a brightness slider control 
at the top. Alex creates another portion of the video that 
demonstrates what happens when the brightness is de-
creased, mapping a horizontal touch move event to scrub 
through that part of the video, thus creating the effect that 
the slider is being dragged.  

This example demonstrates the ability to create complex an-
imations using familiar video editing tools, which may be far 
easier to achieve than using programming. Finally, this sce-
nario demonstrates how designers can simulate multiple 
states by mapping different continuous input to different 
parts of a video timeline. 
Scenario 5: IoT Prototyping 
Astral can also extend beyond mobile prototyping into IoT 
applications (Figure 10). The following scenarios demon-
strate how Astral supports authoring physical IoT prototypes 
(through Soul-Body prototyping [28]). 
A. Smart Speaker 
Alex is prototyping applications for a “Smart Home 
Speaker”. They create a Soul-Body prototype [28] by repur-
posing a travel mug and 3D printing a translucent lid that 
encloses a smartwatch (see Figure 10). Alex selects the mi-
crophone control in Astral and chooses the ‘speech recogni-
tion’ option, which they map to different videos to simulate a 
conversation with the smart speaker, showing nuanced ani-
mations, from loading, listening, to responding. Audio is out-
put through the desktop speakers. 

This scenario demonstrates Astral’s ability to leverage the 
displays and sensors of smartwatches and mobile phones to 
extend into IoT applications, using Soul-Body Prototyping 
[28]. Within the physical prototype, the designer can test dif-
ferent visual animations and responses. 

 
Figure 9. Interactive prototypes created by Astral by mapping 
sensor data to mouse move events that scrub through video: (a) 
a compass application (Scenario 4A) and (b) a phone control 
panel (Scenario 4B). 

 
Figure 10. "Smart Home Speaker" prototype (Scenario 5) con-
sisting of a travel mug, a smart watch, a 3D-printed base to hold 
the watch and a translucent 3D printed lid that diffuses light. 



Scenario 6: Beyond the Desktop 
Finn, a graphic designer, is working on a layout which re-
quires them to constantly work with the object alignment 
functions in Adobe Illustrator – and there are no keyboard 
shortcuts! Using Astral, they stream the Alignment toolbar 
onto a phone, rerouting touches to mouse clicks that select 
the different alignment tools.  As they work, Finn can quickly 
access alignment tools on the left side of their desk. Finn can 
keep working with the mouse using their right hand and use 
the left to quickly trigger the different alignment functions. 

This scenario moves interface elements to another screen for 
customizable access as envisioned by Myers [36]; thus, it 
partially replicates Interface Facades [50], taken to an exter-
nal, peripheral device [51]. The alignment functions in Illus-
trator do not have a default hotkey and often require design-
ers to move their mouse back and forth between the object of 
interest and the control. Astral by default will move the 
mouse cursor back to the starting location when executing 
mouse down, up and click events. The mobile device moves 
the toolbar to the periphery and makes it readily accessible 
with the non-dominant hand, providing an opportunity for 
desktop-based bimanual interaction. 
DISCUSSION 
In this section, we discuss our primary evaluation approach 
– demonstration [29] – as well as specific considerations 
when designing a prototyping tool such as Astral, including 
the use of states, scale, and input locks. We relate these to 
our design rationale and heuristics for systems research [38, 
42]. 
Demonstration by Example 
We realized all twelve of the example prototypes discussed 
in our scenarios using Astral. These prototypes represent a 
combination of both novel and replicated past research sys-
tems [20, 21, 28, 36, 50, 51]. Our scenarios provide a per-
spective on how designers might work with Astral and show 
elements of threshold and ceiling [38]. Finally, we bench-
marked the performance of the image transfer, which 
reached up to 20 fps on Android, and a consistent 45 to 50 
fps on iOS. 
The Use of ‘States’ 
States are a common approach followed in prototyping tools, 
as they can be used to quite intuitively describe the flow of 
the interaction. In Astral, states can be used to manage mul-
tiple sensors (one per sensor). Astral supports states in two 
main ways. First, different states can be configured by using 
parent rules, as shown in Scenarios 1B, and Scenarios 3A–
3D. Second, Astral supports different states by scrubbing 
through different parts of a video, as demonstrated in Sce-
nario 4D. Rather than supporting more complex states 
through a hierarchical state model, we focused on facilitating 
the fine-tuning of the mapping and interplay between the mo-
bile sensor inputs and outputs (DG2 and DG4). While a pure 
state model approach could enable more complex applica-
tions, it would complicate prototyping the ‘feel’ aspects of 

interactive behaviour, as state models tend to favour a trig-
ger-action model. 
Scale 
As demonstrated in our scenarios, Astral allows designers to 
quickly get started (threshold) and achieve fairly expressive 
results (ceiling). However, we have only examined a small 
subset of the range of interaction possibilities with these 
types of inputs and this type of tool. Since the input re-
mapping is constrained by what is supported by existing ap-
plications, the level of complexity that can be supported by 
Astral prototypes is bounded by the capabilities of those ap-
plications. Yet, Astral’s ceiling can be further increased by 
relying on scripts or custom coded applications that respond 
to desktop mouse and/or keyboard events.  
Overcoming ‘Input Locks’ 
In some cases, we observed issues with input locks when us-
ing Astral. Once a mouse move event is selected, the mouse 
would start reacting to the incoming sensor data. It then be-
came impossible to move the cursor with the physical mouse. 
To preserve the ability to test behaviours live as they are au-
thored, we remedied this by adding a toggle with the ‘escape’ 
key to enable or disable the live preview. 
LIMITATIONS 
We next list some technical limitations of the current imple-
mentation of Astral. 
Single Device 
At the moment, Astral supports one mobile device per desk-
top system, which constrains and simplifies the workflow. 
This is also tied to a technical limitation of desktops, as 
mouse and keyboard commands only can be sent to a single 
focused program, meaning that a side by side comparison as 
done in Scenario 1-B would not be possible on the desktop. 
Device Relativism 
Mappings of mouse and screen coordinates may not carry 
across different computers with different resolutions. One 
way to address this is to use device coordinates. Another po-
tential concern is that window sizes are not fixed, so once the 
workspace has changed the mappings may no longer work. 
There are some workarounds to this latter concern: for in-
stance, it is possible to store the position and sizes of the win-
dows and associate them to the rules, so that when a ruleset 
executes it adjusts the window sizes. Finally, Astral currently 
does not support full-screen applications. Mobile phones and 
smartwatches also have a wide variation within their resolu-
tions and sensors. Additionally, some sensors may not be 
available on each device, and some sensors may have device-
specific readings. 
FUTURE WORK 
Astral provides a starting point for richer potential applica-
tions for mobile prototyping and Internet of Things. We next 
discuss some potential avenues for future work. 
Increasing Complexity 
One way to extend Astral would be to examine how to sup-
port more complex dimensions than the current mouse and 



keyboard events. Additionally, it would be interesting to ex-
amine how to integrate Astral’s authoring of behaviours onto 
the more traditional state model to afford more complex ap-
plications. 
Multimodal Output 
Astral currently streams the desktop display contents only. It 
would be interesting to explore other possible mobile out-
puts. For instance, sounds (if used) are currently limited to 
be played on the desktop, but Astral could be extended to 
also stream these sounds to the mobile device.  
Evaluating Astral in Interaction Design Practice 
We are interested in understanding Astral’s utility for inter-
action designers. An observational study would help us un-
derstand how the workflow fits interaction designers. Ideally, 
this would involve an in-situ evaluation over a period of time, 
as designers all have individual setups (i.e. preferred appli-
cations, workflows, customized interfaces). A field study 
would unveil how Astral could be integrated into their exist-
ing practices, and common usage strategies.  
CONCLUSION 
This paper presented Astral, a prototyping tool that allows 
designers to author and fine-tune interactive behaviours from 
mobile sensor data. By streaming selected desktop display 
contents onto the mobile device, and by converting the mo-
bile sensor data into mouse and keyboard events, we em-
power designers to repurpose existing applications in new 
and interesting ways. We also allow designers to transform 
input through easing functions, so that they can fine-tune 
how the output changes as the input takes place. Our design 
decisions are informed by current literature, and we demon-
strated the expressive power of Astral through a broad range 
of usage scenarios. Our scenarios included: exploration, fine-
tuning and comparison; prototyping alternatives; supporting 
different stages in the design process; repurposing the video 
timeline; IoT prototyping; and beyond the desktop. We hope 
our exploration can propel designers’ conversations around 
interactive behaviour and mitigate some of the challenges of 
transitioning from design to implementation. 
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