
University of Calgary

PRISM: University of Calgary's Digital Repository

Science Science Research & Publications

2018-07

Astral: Prototyping Mobile and IoT Interactive

Behaviours via Streaming and Input Remapping

Ledo, David; Vermeulen, Jo; Carpendale, Sheelagh; Greenberg,

Saul; Oehlberg, Lora A.; Boring, Sebastian

Ledo, D., Vermeulen, J., Carpendale, S., Greenberg, S., Oehlberg, L., and Boring, S. (2018). Astral:

Prototyping Mobile and IoT Interactive Behaviours via Streaming and Input Remapping (Report

2018-1107-06). Calgary, AB. : Department of Computer Science, University of Calgary.

http://hdl.handle.net/1880/107617

technical report

https://creativecommons.org/licenses/by/4.0

Unless otherwise indicated, this material is protected by copyright and has been made available

with authorization from the copyright owner. You may use this material in any way that is

permitted by the Copyright Act or through licensing that has been assigned to the document. For

uses that are not allowable under copyright legislation or licensing, you are required to seek

permission.

Downloaded from PRISM: https://prism.ucalgary.ca

Astral: Prototyping Mobile and IoT Interactive Behaviours
via Streaming and Input Remapping

David Ledo1, Jo Vermeulen2, Sheelagh Carpendale1,
Saul Greenberg1, Lora Oehlberg1, Sebastian Boring3

1Department of Computer Science, University of Calgary, Canada {first.last@ucalgary.ca}
2Department of Computer Science, Aarhus University, Denmark jo.vermeulen@cs.au.dk

3Department of Computer Science, University of Copenhagen, Denmark sebastian.boring@di.ku.dk

ABSTRACT
We present Astral, a prototyping tool for mobile and Internet
of Things interactive behaviours that streams selected desk-
top display contents onto mobile devices (smartphones and
smartwatches) and remaps mobile sensor data into desktop
input events (i.e., keyboard and mouse events). Interactive
devices such as mobile phones, watches, and smart objects,
offer new opportunities for interaction design– yet prototyp-
ing their interactive behaviour remains an implementation
challenge. Additionally, current tools often focus on systems
responding after an action takes place as opposed to while
the action takes place. With Astral, designers can rapidly
author interactive prototypes live on mobile devices through
familiar desktop applications. Designers can also customize
input mappings using easing functions to author, fine-tune
and assess rich outputs. We demonstrate the expressiveness
of Astral through a set of prototyping scenarios with novel
and replicated examples from past literature which reflect
how the system might support and empower designers
throughout the design process.
Author Keywords
Prototyping; design tool; interactive behaviour; smart ob-
jects; mobile interfaces.
ACM Classification Keywords
D.2.2. Design Tools and Techniques – User Interfaces.
INTRODUCTION
Smart interactive devices such as mobile devices, wearables
and Internet of Things (IoT) objects vary widely in input and
output, physical form, and development platforms. When
prototyping interactive behaviors for these devices, design-
ers are faced with two options: the first option is to build pro-
totypes directly on the target device or platform. This in-
volves programming, and in some cases, circuit building or

soldering (e.g., physical computing, IoT devices). As a re-
sult, implementation details consume the majority of design-
ers’ time and resources (e.g., code setup, learning the plat-
form at hand, programming basic visuals), instead of im-
portant early-stage high-level design decisions around inter-
action or animation or exploration of innovative alternatives
[13]. The alternative option is to explore mobile device in-
teraction with desktop-based prototyping tools (e.g. In-
Vision, Balsamiq). Desktop applications often specialize in
individual tasks (e.g. wireframing, prototyping standard UI
widgets, creating animations as videos) without room for in-
tegrating different workflows [31]. Furthermore, desktop
tools do not provide an accurate portrayal of what the inter-
actions will be like on the target device [22], especially in-
teractions that involve the target device’s physical form, or
possible tangible or embodied interactions (e.g. shaking the
device).

In this paper, we explore how streaming of display contents
and mobile sensor data can enable designers to create inter-
active mobile and IoT prototypes.

TECHNICAL REPORT (cite as)
Ledo, D., Vermeulen, J., Carpendale, S., Greenberg, S., Oehlberg,
L., and Boring, S. (2018). Astral: Prototyping Mobile and IoT
Interactive Behaviours via Streaming and Input Remapping.
Report 2018-1107-06, Department of Computer Science,
University of Calgary, Calgary, AB, Canada, T2N 1N4. July.

Figure 1. Astral (illustration) allows designers to prototype inter-
active behaviours by (1) streaming contents of a desktop display
to a mobile device, (2) sending mobile sensor data to the desktop,
and (3) remapping the sensor data into desktop input (e.g. mouse
and keyboard events).

mailto:%7bfirst.last@ucalgary.ca
mailto:jo.vermeulen@cs.au.dk
mailto:sebastian.boring@di.ku.dk

ASTRAL
We introduce Astral (Figure 1), a novel prototyping tool that
uses streaming and input remapping to enable designers to
author, test, and fine-tune interactive behaviour in mobile
and IoT prototypes using familiar tools. We achieve this
through: streaming of visual desktop content, streaming of
mobile sensor data, and input remapping for interactivity.
Streaming Visual Content to a Mobile Display
Astral consists of a desktop client and a mobile client appli-
cation. Designers can use Astral to stream the contents of
their desktop display onto a mobile device screen such as a
phone or watch. As shown in Figure 1.1, the designer selects
a region of a web browser running Flappy Bird to stream it
to a connected mobile display. The mobile display is then
updated live as the desktop display updates.
Streaming Mobile Sensor Data to Provide Input
Next, the designer can select sensors on the mobile device
that will provide input. Figure 1.2 shows how a designer can
select multiple types of sensor data, such as touch, tilt, bright-
ness or microphone data. In this case, the designer enables
the touch sensor to be streamed back to the Astral desktop
client. Every time the designer now taps the mobile display,
the touch location is visualized on the Astral desktop client.
Interactivity Through Input Remapping
Finally, as shown in Figure 1.3, the designer can remap the
mobile sensor data to desktop keyboard or mouse inputs, and
provide interactivity to the streamed display contents. The
designer remaps touch events to spacebar keypresses, which
control the bird in the web browser. Astral’s input remapping
allows the designer to stream visuals to the mobile display,
which are affected by mobile sensor data, thus closing the
loop and enabling interactivity.

More complex input remapping is possible, using different
sensors, continuous and discrete actions, emulating states us-
ing sets of rules, or changing what is streamed to the mobile
display, as we will demonstrate later.
Benefits
Astral has several benefits over prior work:

1. Display contents and sensor data are streamed live, al-
lowing designers to test, iterate and refine interactive behav-
iour on the target device. The liveness aspect also enables
designers to compare and explore different variations in in-
put/output mappings.

2. Designers can use and repurpose familiar design tools
through streaming and input remapping. One could, for ex-
ample, combine Astral with video editing tools to create in-
teractive mobile or IoT prototypes (see Scenario 4).

3. Astral enables designers to use the same approach to pro-
totype both the interactive behaviour of mobile applications
as well as IoT devices as enabled through mobile displays
and sensors [28]. For instance, Astral could be used to pro-
totype IoT devices such as a smart speaker (see Scenario 5).

RELATED WORK
The goal of our prototyping tool is to author nuanced inter-
active behaviour on mobile devices. In this paper, we con-
sider ‘interactive behaviour’ to be the ‘feel’ of a prototype
[39] that cannot be easily conveyed through a physical
sketch. The ‘feel’ emerges from not only the outputs once
interactions happen, but also as interactions happen – a dy-
namic interplay discussed in past discussions of progressive
feedback [57] and animation applications [16,17].

We situate our work among extensive prior work on toolkits
and prototyping tools that help interaction designers define
interactive behavior. The specific approach of our prototyp-
ing tool leverages past work on streaming sensor inputs and
display outputs across devices, and remapping inputs across
devices. Based on previous work, we identify a series of De-
sign Goals (DG) for Astral.
Prototyping Tools
In particular, we draw on prior work in prototyping tools
where designers can quickly customize interactive behav-
iours [61] and work with sensor input [19], while leveraging
existing tools [3] thus reducing the need to program.

Fast prototyping not only relies on expressiveness, but also
the speed at which designers can preview and evaluate their
designs. Many interface prototyping tools highlight live pro-
totyping as a feature that helps designers create interactive
applications in both mobile contexts [33, 35, 45] and physi-
cal computing contexts [19, 20, 28]. Gummy Live [33] al-
lows designers to create mobile interfaces live and see them
reflected in the mobile device ready for modification. Simi-
larly, de Sá et. al [45] created a tool capable of transitioning
from sketches on the target mobile device, to Wizard of Oz
[26] prototypes, to higher fidelity ones. Our first goal is to
create a tool that prototypes live interactive behavior on the
target device (DG1).

One approach to supporting physical computing authoring is
through specialized hardware (e.g. [3, 14, 55, 63]). Arduino
[62] in particular requires programmers to build circuits from
scratch, which can be difficult for novices and introduces
more opportunities for bugs [4]. Alternatively, designers can
repurpose existing sensors in their authoring [28, 47, 49].
These approaches to prototyping allow designers to address
each sensor individually; however, they also rely heavily on
low-level programming. Our second goal is to provide an
end-user interface that allows designers to explore varia-
tions among mobile sensors (DG2).

When working on top of existing infrastructures, toolkits can
leverage already existing functionality to quickly explore
new types of interactions. Olsen [42] discusses how working
with common infrastructures enables new technology com-
binations to support new solutions; for example, when pen
input works as a mouse, mouse-based applications can now
be used with a pen as the input device. Many prototyping
tools in the research literature use this approach. Exemplar

[19] and MaKey MaKey [3] discuss the possibility of map-
ping mouse and keyboard events, and Gummy-Live [33] and
D.Macs [34] leverage streaming. Other tools (e.g. InVision,
Adobe XD) accommodate designers working in their plat-
form by allowing them to import elements from other appli-
cations (e.g. mockups drawn in Photoshop). Our third goal is
to further extend these principles and allow designers to
work with existing, familiar prototyping applications
(DG3).
Streaming Inputs & Outputs Across Devices
We intend to address DG1 (prototype live interactive behav-
ior on the target device) by both streaming desktop display
output to a mobile device, and streaming mobile sensor input
back to a desktop machine. The basic principle of streaming
a display to another device has previously been used to create
interactive systems in HCI research. For instance, Sikuli [59]
takes screenshots of UI elements so that they can be anno-
tated, or to automate different tasks. Transmogrifiers [6]
show how dynamic content of the desktop (e.g. images, web-
sites, videos) can be transformed on-the-fly to create free-
form visualizations. Prefab [12] treats the desktop as a set of
pixels, which can be reverse-engineered and thus enables
new behaviour implementations on existing interfaces (e.g.
Bubble Cursor [15]).

In addition to streaming a captured screen to another device,
we can also extend interaction across multiple devices (e.g.,
TeamViewer1, VNC2). Semantic Snarfing [37] showed how
a mobile device could act as a laser pointer to retrieve con-
tents of a desktop. Myers [36] also examined how mobile de-
vices could act as additional inputs to PCs (e.g. as a number
pad). A screenshot can also hold information about the sys-
tem’s state – DeepShot [9] shows how to use a mobile device
photo to migrate tasks across devices. The mobile device can
also provide input to displays at a distance through its camera
as done in Touch Projector [5], or extend the display space
for further interaction opportunities as done in Virtual Pro-
jection [2]. We apply the idea of streaming in both directions:
the contents of the desktop are sent to the mobile display, and
the sensor data from the mobile device are sent to the desk-
top. Our last step is to remap mobile sensors into keyboard
and mouse commands.
Remapping Inputs Across Devices
For designers to prototype interactive behaviors, they must
not only see continuous effects from their input (DG1), but
also examine and modify how those effects take place. Thus,
Astral needs to fine tune mappings between inputs and out-
puts (DG4) to prototype nuanced interactive behaviors. One
way to achieve this is through easings. Easing was a term
used by Adobe Flash [61] to refer to the slow-in and slow-
out principle of animation [53], in which the number of in-

1 https://www.teamviewer.com/
2 https://tools.ietf.org/html/rfc6143

between frames are increased or decreased at keyframes be-
tween poses to create the illusion that an object is speeding
up or slowing down. Adobe Flash incorporated easings as a
default linear tween that could be applied to motion tweens.
Penner [43] created scripts to change the character of the eas-
ing through mathematical functions (see Figure 2). We ex-
tend Penner’s [43] easing functions, which describe how an
animation can play over time. We apply these functions to
the continuous input values so that designers can explore
how the output will perform as a function of the input action.
The easing functions can serve for aesthetic experiences, as
well as more utilitarian elements (e.g. balancing the sensitiv-
ity of an input’s effect).
ASTRAL’S CENTRAL COMPONENTS
The overarching idea of Astral (as illustrated in Figure 1) is
to allow designers to quickly prototype interactive behav-
iours on mobile devices. To ensure that designers can use or
repurpose familiar desktop applications to author and test
mobile interactive behaviours (DG3), we designed Astral as
a desktop client that communicates with a mobile client, for
which designers want to author interactive behaviours. In
this section, we provide an overview of Astral’s individual
components.
Main View
When starting Astral, a simplified view is shown (Figure
3.1). This view provides basic functionality once a device is
connected. Upon connection (by starting Astral on the mo-
bile device), a designer can begin authoring the intended in-
teractive behavior through the use of rules and rulesets (see
following sections). At the same time, the designer can
choose the region of the desktop (where they designed the
intended user interface through means of their preferred de-
sign application) that should be streamed to the mobile client.

To select that region, the designer clicks the camera icon, and
an overlay appears, showing exactly which part of the desk-
top will be streamed. This overlay can be scaled and trans-
lated to select the region of interest. While this selection win-
dow is shown, the contents are already streamed to the mo-
bile client, so that a designer sees the changes and can assess
when the selection is sufficient for the task.

The main view is intentionally kept narrow, so that it oc-
cludes the least amount of screen real estate. It further pro-
vides access to the rule editing window, where designers can
map sensor data from a mobile device to specific events on

Figure 2. Examples of Linear (left) and Cubic In-Out (right)
easing functions [43].

https://www.teamviewer.com/
https://tools.ietf.org/html/rfc6143

the desktop (i.e., mouse or keyboard events). Other options
include playing and pausing of active rules, saving the cur-
rent rule sets, and displaying a visualization dashboard of the
streamed mobile sensor data.
Specifying Input Remapping through Rules
Once content is streamed to the mobile device, designers can
author an interactive behaviour by defining a rule. A rule is
a software abstraction that contains information as to how
mobile sensor data is mapped to keyboard and mouse events.
To do so, the designer first clicks on the ‘plus’ sign to open
the Rule Editing Window – a guided interface to author or
edit an input remapping rule. The rule can now be defined
(see a particular configuration example in Figure 3.2). First,
the sensor (e.g., the accelerometer) of interest must be spec-
ified, which brings up an individualized interface for each
particular sensor (examples in Figure 4), often as a live vis-
ualization of that sensor’s values. Based on the chosen sen-
sor, the next step is to select which parameter to observe
(e.g., the x-value of the accelerometer). The third step is then
to constrain the sensor to a range of values (e.g., between -5
m/s2 and 5 m/s2). Note that sensor readings can be further
transformed, such as by applying prepackaged filters. For in-
stance, we can filter acceleration values to extract gravity and
linear acceleration values.

Figure 4. Astral provides interactive visualizations for different
sensors (clockwise from top-left: ambient light, touchscreen
and compass).

Figure 3. Annotated Astral Interface. (1) The main window streams content to the mobile device and displays active rules. (2) When
adding rules, the interface shows an interactive visualization where designers select the range of sensor values to for input remapping.

Now that the sensor input from the mobile device is speci-
fied, the designer should be able to map that input to the desk-
top input (e.g., a mouse move event). Mouse events can be
constrained on the desktop, for example, only allowing
mouse movements horizontally between 800 and 1000 pix-
els, or defining ranges for mouse wheel events (the default in
Microsoft Windows being 120 pixels per step). For keyboard
events, designers can specify a key event (i.e., down, press,
or up) and the key that should perform that event (e.g., arrow
left). Keys are either typed by the designer or selected from
a list of operating system defined keys (e.g., volume controls,
media playback, or print screen). Key selection allows for
integration with existing applications through the use of
shortcuts offered by that application.

The selected desktop input can be discrete or continuous (as
in Exemplar’s categorization of sensor values [19]). Discrete
input is triggered when the sensor enters or exits the range of
values, while a continuous input interpolates the value from
the range to the destination mapping. These interpolations
can be altered through easing functions (Figure 5). Note that
the system automatically determines the nature of input: dis-
crete rules being mouse up and down, key up, down or
pressed; and continuous rules being mouse move, or scroll.

For continuous input, designers can apply easing functions.
We used Penner’s set of easing functions [43] shown in Fig-
ure 5. To achieve this, a rule defines a range as a source se-
lection (e.g. accelerometer low and high values) and a desti-
nation selection (e.g. mouse coordinates). The current value
and the source selection are transformed and normalized into
a unit rectangle (1 by 1 size), which then is interpolated into
the selected easing function. The values are then remapped
to the new destination selection, where the outputted value
now has the easing applied.

The authoring process is dynamic: designers can immedi-
ately test and modify a rule as they author or edit it. If they
do not wish for the rule to continue running (e.g., mobile de-
vice input taking over the mouse cursor), they can press the
‘escape’ key to play or pause the live mapping. When the
designer is finished, they can name the rule, and it will be
added to the active ruleset in the main application window.
Merging Several Rules into Rulesets
Often, one interactive behaviour may require several rules
(possibly relying on different sensors). Astral adds one layer
of abstraction, called rulesets, which allows the combination
of several rules. If a ruleset is active, all rules within that set

will execute as long as the mobile device is streaming. This
can be paused both on the interface by clicking on the
play/pause button, or by pressing the ‘escape’ key.

To allow for testing variations of interactive behaviours, de-
signers can create multiple rulesets and switch between them
at any time by clicking on the tab (Figure 3.1 left and bot-
tom). When there is an active ruleset, a newly created rule
will be added to that set and stacked vertically.

There are two special conditions for discrete rules. A medley
rule, which is a discrete rule that serves to switch between
active rulesets, allows designers to test different variations of
prototypes. Discrete rules can also have children, which al-
lows individual transitions between rules (thus simulating
multiple states). This means that a rule with a child becomes
inactive once it is executed, then enabling its child to become
active. A ‘+’ button appears on hover when a child rule can
be created. Rule hierarchy is shown through horizontal align-
ment.
How Astral Satisfies its Design Goals
The central components of Astral strongly followed the pre-
viously identified design goals. It satisfies DG1 with its abil-
ity of streaming sensor data from the mobile device and por-
tions of the desktop display to the mobile device. Addition-
ally, DG1 is supported by running rules in real-time and dy-
namically switching them on and off.

The ability to configure interactive behaviour by creating and
manipulating different rules without the need for program-
ming allows Astral to satisfy DG2. In particular, the included
visualizations provide a higher expressive match [42] to se-
lect the right values and properties for interactive testing.

Astral works with familiar desktop tools, such as PowerPoint
or HTML to prototype interactive behaviour on mobile de-
vices, thus satisfying DG3. Designers can remain in their
natural design environment. Lastly, DG4 is satisfied in that
Astral allows for fine-tuning input mappings through the use
of different easing functions.
IMPLEMENTATION
The desktop client of Astral is implemented using C# and
WPF, whilst the mobile applications are written in Xamarin
to allow for cross-platform mobile development (iOS, An-
droid, AndroidWear). To allow for reusable code and quickly
adapting to newly added sensors of potential future devices,
we developed all communication aspects in shared code,
which uses the .NET Standard 2.0. Network connectivity is
achieved through wireless LAN using TCP. We tested Astral
on multiple phones (Nexus 5 and 5X, iPhone 7 and 8, Pixel
2) and on the Sony Smartwatch 3.

We are able to achieve relatively fast performance when
streaming display content – 50 fps on iOS, 25 fps on Android
– despite the mobile sensor data also being streamed back to
the desktop (microphone, accelerometer, etc.). During test-
ing and creation of the prototypes below, we did not experi-
ence any significant delay in the transfer of sensor data.

Figure 5. Available easing functions in Astral.

INTERACTION SCENARIOS AND PROTOTYPES
In this section, we describe a series of interaction scenarios
that demonstrate the expressive range and power of Astral.
Each scenario describes an Astral prototype, implemented by
the authors, followed by a discussion of concepts that
are demonstrated by that particular prototype.
Scenario 1: Exploring Map Interactions
This scenario depicts a designer, Alex, exploring possible
one-handed physical interactions with a mobile map.
A. Tilt to Move
Alex wishes to explore how to navigate a mobile interactive
map with one-handed interaction. They open an instance of
Google Earth in a web browser on their desktop and zoom
into a location. Using Astral, Alex creates four rules map-
ping keyboard commands to the phone’s accelerometer
readings – tilting the mobile device to the right triggers a
right arrow key, tilting to the left triggers the left arrow key,
and similarly for up and down. The rules are set so that key
commands are triggered when the acceleration passes a cer-
tain range (x: 4 to 7 triggers right, x: -4 to -7 triggers left, y:
4 to 7 triggers down, y: -4 to -7 triggers up). Because they
chose a keypress event, when the accelerometer enters the
specified range, the key is pressed down, and when leaving
the range, it is lifted up. These values are determined live
and by exploration. Alex can select the Google Maps window
to test individual rules and fine-tune the sensitivity.

This scenario replicates an example from d.tools [20] that
originally required programming for continuous navigation;
the Astral version leverages an existing web-based map (in
this case Google Earth), and requires no programming at all.
The designer can choose the device sensors and the corre-
sponding keyboard interactions, and the sensor input can be
fine-tuned to trigger keyboard interactions based on a speci-
fied threshold.
B. Tilt-to-Zoom
Alex wants to modify their mobile map interaction to use tilt-
to-zoom [21] (Figure 6). They create a new set of rules. First,
Alex creates a “clutch” rule that starts the interaction – a
touch down event that triggers the tilt-to-zoom operation and
acts as a parent rule. They then create a rule mapping the y-
axis of the accelerometer to a (mouse) scroll event. Alex se-
lects an accelerometer range from -5 to 5, and scrolling
range is set from -15 to 15 pixels. Astral linearly interpolates

between both ranges by default. In testing the interaction,
Alex is unsure if it is too sensitive, so they try an easing func-
tion (quadratic ease in/out), which makes the sensors less
sensitive when the device is close to horizontal. Finally, Alex
creates a rule triggered by a touch up event to end the tilt-
to-zoom operation.

This scenario replicates an example from Hinckley et al.
[21], incorporating the concept of motion in touch, mapping
more than one sensor to a single function. Touch is used as a
means to explicitly switch to one-handed zooming using tilt.
It also shows the value and role of easing functions, which
allow designers to specify how the mapping is carried out
based on continuous input. Finally, it showcases how Astral
can map continuous mobile sensor actions to continuous
desktop actions (e.g., scrolling) within a bounded number of
pixels. Having a parent rule means that the child rule will not
execute until the parent rule has executed, thus enabling dif-
ferent states.
Scenario 2: Input Variations in a Mobile Game
Alex, our designer, wishes to test different input variations
for a mobile game prototype (Figure 7). They open a web
browser with the game ‘Flappy Bird’, which uses the space-
bar or mouse click to make a bird flap its wings to fly between
pipes. Alex streams the browser content onto a mobile phone
and creates different rulesets that will trigger the spacebar
on a threshold. The first one is a simple tap on the touch dis-
play, similar to the original mobile game. The next version
uses a shake gesture on the accelerometer (when the magni-
tude is greater than 8). Alex tests the shake interaction and
finds the magnitude threshold is too high and reduces it to 6.

Figure 6. Authoring the tilt-to-zoom prototype (Scenario 1B).

Figure 7. Authoring different input variations for the game "Flappy Bird" where a bird flaps its wing when hitting the space key
(Scenario 2). The following rules trigger the space key: (a) tapping, (b) blowing on the microphone, (c) shaking the device. When
the (d) ambient light sensor detects a reading of 0, the rulesets are switched for variation testing.

Next, they create a rule set that uses the microphone’s am-
plitude, where the player can blow into the microphone to
trigger the spacebar. Finally, Alex creates a rule to switch
between rule sets. The rule triggers when the ambient light
sensors detect a reading of 0. When testing the game, the
newly added rule allows Alex to immediately switch between
the different input versions by covering the display.

Designers can sequentially test a set of prototype alternatives
to explore different solutions to the problem. Astral can use
this approach to experiment with any variations of rules, in-
cluding sensors, thresholds, easings, or desktop inputs. The
designer can switch between rulesets by creating a medley
rule (in our scenario, based on the ambient light sensor).
Scenario 3: Iterative Design of a Media Controller
This scenario describes iterative prototyping for a watch-
based media controller that can play, pause, or change the
volume of music on a computer (Figure 8). Each iteration
uses a different strategy and shows how Astral supports mov-
ing from mockups to more refined high-fidelity prototypes.
A. Interactive Paper Mockups
Alex draws a series of paper mockups for a watch media con-
troller, takes photos of the mockups and opens them on their
computer in a single image viewer window. Alex creates mul-
tiple states by creating child rules, specifying the transitions
between the different states. For each state, Alex sets a new
image capture region on the display around the correspond-
ing mockup in an image viewer. Alex confirms that the vol-
ume buttons in their sketch are large enough to interact with
and maps the touch location on the watch to a keyboard event
(volume up and down keys).

The designer can use Astral to create a first interactive pro-
totype based on photographs of sketches. This prototype al-
lows the designer to preview the interfaces on the target de-
vice and thus make early decisions (e.g. determining appro-
priate button sizes). In creating transitions, the designer can
also preview the interaction flow, simulating state transitions
as seen in other prototyping tools (e.g. d.tools [20]).
B. Exploring States in PowerPoint & Adobe Illustrator
Alex wants to explore state transitions in PowerPoint using
visuals from a higher fidelity non-interactive prototype cre-
ated in Adobe Illustrator. They create one slide for each
state; touch events on the device view correspond to click

events on different regions of the desktop display, e.g. the
slide thumbnails in Powerpoint. After testing the interaction,
Alex considers it best to have a single screen given the small
size of the smart watch.

This scenario again demonstrates designers’ abilities to work
with existing tools, in this case PowerPoint and Illustrator,
both of which are discussed as current standards [31, 60].
C. Creating an Interactive Image
Alex takes one of the Adobe Illustrator designs and maps dif-
ferent locations of the image to playback controls – the pre-
vious button maps to the ‘previous song’ key, the next button
maps to the ‘next song’ key, and the play button is mapped
to the ‘play/pause’ key. Alex opens iTunes on their computer
and tests the functional prototype on their watch.

Because the designer assigns mappings, they can use multi-
ple strategies to author a prototype. Here, Astral is used to
create an interactive image, an alternative approach to creat-
ing user interface façades [50]. While the designer leveraged
special keys provided by the operating system, they could
also trigger other key combinations as well as hotkeys using
modifier keys (e.g. control, shift).
D. Creating a Smartwatch Prototype in Expression Blend
Alex wants to test the visual feedback of the buttons, and thus
programs a prototype using Microsoft Expression Blend with
buttons that change color when pressed. Alex streams the
running Expression Blend program to the watch and maps
touch events on the watch to clicks on the corresponding but-
tons in the program so that the buttons provide visual feed-
back when touched on the smartwatch. Instead of linking the
Expression Blend prototype with C# code to program the me-
dia controls, Alex uses Astral to map those regions to key-
board commands for Play/Pause, Next and Previous as in
the interactive image.

The sequence of paper mockups, Powerpoint, Illustrator, and
Expression Blend shows how Astral can support different fi-
delity prototypes as the designer iterates and refines their

Figure 8. Astral supports the design process in all stages by allowing (a) on-device rapid creation of interactive sketches (Scenario
3A), (b) using slideshows to transition between states (Scenario 3B), or (c) creating interactive images (Scenario 3C).

ideas during the design process. Astral supports designers’
work in familiar, powerful desktop software tools. Designers
can use familiar GUI programming tools (e.g., web proto-
types, Expression Blend) on mobile devices that do not na-
tively support these applications.
Scenario 4: Video-Based Prototyping
This scenario demonstrates how designers can leverage
video editing tools, such as Adobe AfterEffects (Figure 9).
This strategy maps continuous input to different points in the
video timeline to ‘scrub’ based on the current sensor data.
A. Compass Interface
Alex wants to test the look and feel of a compass interface.
They create a compass mockup in Adobe Illustrator and im-
port the asset into AfterEffects. Alex creates a basic transfor-
mation in AfterEffects to rotate two Illustrator layers (the
compass’ needle and its shadow) within a 3-second window.
Alex then opens Astral, connects the mobile phone, and maps
the angle of the compass sensor to the position on the video
timeline through a mouse move event. Pointing the phone in
different directions now updates the compass interface.

Maudet et. al discuss how designers often use high-fidelity
videos to convey prototype ideas to developers [31]. While
video can show state-based animations, it does not show the
effect of the interaction as continuous inputs are taking place.
This example shows how Astral enables the designer to
quickly create a working compass prototype, thus going be-
yond traditional video prototyping. Moreover, small effects
such as the changing shadow would be relatively complex to
achieve through programming, while it requires little effort
in a video editing application for a skilled designer.
B. Phone Control Panel
Alex creates a video prototype of a phone control panel in
Astral, which, on swiping down, progressively reveals differ-
ent options. Alex maps a mobile touch move to the mouse to
scrub through the first portion the video in a video editing
tool (e.g. Adobe Premiere). Next, Alex tests several easing
functions, including a playful bounce effect animation. Once
dragged down, the panel reveals a brightness slider control
at the top. Alex creates another portion of the video that
demonstrates what happens when the brightness is de-
creased, mapping a horizontal touch move event to scrub
through that part of the video, thus creating the effect that
the slider is being dragged.

This example demonstrates the ability to create complex an-
imations using familiar video editing tools, which may be far
easier to achieve than using programming. Finally, this sce-
nario demonstrates how designers can simulate multiple
states by mapping different continuous input to different
parts of a video timeline.
Scenario 5: IoT Prototyping
Astral can also extend beyond mobile prototyping into IoT
applications (Figure 10). The following scenarios demon-
strate how Astral supports authoring physical IoT prototypes
(through Soul-Body prototyping [28]).
A. Smart Speaker
Alex is prototyping applications for a “Smart Home
Speaker”. They create a Soul-Body prototype [28] by repur-
posing a travel mug and 3D printing a translucent lid that
encloses a smartwatch (see Figure 10). Alex selects the mi-
crophone control in Astral and chooses the ‘speech recogni-
tion’ option, which they map to different videos to simulate a
conversation with the smart speaker, showing nuanced ani-
mations, from loading, listening, to responding. Audio is out-
put through the desktop speakers.

This scenario demonstrates Astral’s ability to leverage the
displays and sensors of smartwatches and mobile phones to
extend into IoT applications, using Soul-Body Prototyping
[28]. Within the physical prototype, the designer can test dif-
ferent visual animations and responses.

Figure 9. Interactive prototypes created by Astral by mapping
sensor data to mouse move events that scrub through video: (a)
a compass application (Scenario 4A) and (b) a phone control
panel (Scenario 4B).

Figure 10. "Smart Home Speaker" prototype (Scenario 5) con-
sisting of a travel mug, a smart watch, a 3D-printed base to hold
the watch and a translucent 3D printed lid that diffuses light.

Scenario 6: Beyond the Desktop
Finn, a graphic designer, is working on a layout which re-
quires them to constantly work with the object alignment
functions in Adobe Illustrator – and there are no keyboard
shortcuts! Using Astral, they stream the Alignment toolbar
onto a phone, rerouting touches to mouse clicks that select
the different alignment tools. As they work, Finn can quickly
access alignment tools on the left side of their desk. Finn can
keep working with the mouse using their right hand and use
the left to quickly trigger the different alignment functions.

This scenario moves interface elements to another screen for
customizable access as envisioned by Myers [36]; thus, it
partially replicates Interface Facades [50], taken to an exter-
nal, peripheral device [51]. The alignment functions in Illus-
trator do not have a default hotkey and often require design-
ers to move their mouse back and forth between the object of
interest and the control. Astral by default will move the
mouse cursor back to the starting location when executing
mouse down, up and click events. The mobile device moves
the toolbar to the periphery and makes it readily accessible
with the non-dominant hand, providing an opportunity for
desktop-based bimanual interaction.
DISCUSSION
In this section, we discuss our primary evaluation approach
– demonstration [29] – as well as specific considerations
when designing a prototyping tool such as Astral, including
the use of states, scale, and input locks. We relate these to
our design rationale and heuristics for systems research [38,
42].
Demonstration by Example
We realized all twelve of the example prototypes discussed
in our scenarios using Astral. These prototypes represent a
combination of both novel and replicated past research sys-
tems [20, 21, 28, 36, 50, 51]. Our scenarios provide a per-
spective on how designers might work with Astral and show
elements of threshold and ceiling [38]. Finally, we bench-
marked the performance of the image transfer, which
reached up to 20 fps on Android, and a consistent 45 to 50
fps on iOS.
The Use of ‘States’
States are a common approach followed in prototyping tools,
as they can be used to quite intuitively describe the flow of
the interaction. In Astral, states can be used to manage mul-
tiple sensors (one per sensor). Astral supports states in two
main ways. First, different states can be configured by using
parent rules, as shown in Scenarios 1B, and Scenarios 3A–
3D. Second, Astral supports different states by scrubbing
through different parts of a video, as demonstrated in Sce-
nario 4D. Rather than supporting more complex states
through a hierarchical state model, we focused on facilitating
the fine-tuning of the mapping and interplay between the mo-
bile sensor inputs and outputs (DG2 and DG4). While a pure
state model approach could enable more complex applica-
tions, it would complicate prototyping the ‘feel’ aspects of

interactive behaviour, as state models tend to favour a trig-
ger-action model.
Scale
As demonstrated in our scenarios, Astral allows designers to
quickly get started (threshold) and achieve fairly expressive
results (ceiling). However, we have only examined a small
subset of the range of interaction possibilities with these
types of inputs and this type of tool. Since the input re-
mapping is constrained by what is supported by existing ap-
plications, the level of complexity that can be supported by
Astral prototypes is bounded by the capabilities of those ap-
plications. Yet, Astral’s ceiling can be further increased by
relying on scripts or custom coded applications that respond
to desktop mouse and/or keyboard events.
Overcoming ‘Input Locks’
In some cases, we observed issues with input locks when us-
ing Astral. Once a mouse move event is selected, the mouse
would start reacting to the incoming sensor data. It then be-
came impossible to move the cursor with the physical mouse.
To preserve the ability to test behaviours live as they are au-
thored, we remedied this by adding a toggle with the ‘escape’
key to enable or disable the live preview.
LIMITATIONS
We next list some technical limitations of the current imple-
mentation of Astral.
Single Device
At the moment, Astral supports one mobile device per desk-
top system, which constrains and simplifies the workflow.
This is also tied to a technical limitation of desktops, as
mouse and keyboard commands only can be sent to a single
focused program, meaning that a side by side comparison as
done in Scenario 1-B would not be possible on the desktop.
Device Relativism
Mappings of mouse and screen coordinates may not carry
across different computers with different resolutions. One
way to address this is to use device coordinates. Another po-
tential concern is that window sizes are not fixed, so once the
workspace has changed the mappings may no longer work.
There are some workarounds to this latter concern: for in-
stance, it is possible to store the position and sizes of the win-
dows and associate them to the rules, so that when a ruleset
executes it adjusts the window sizes. Finally, Astral currently
does not support full-screen applications. Mobile phones and
smartwatches also have a wide variation within their resolu-
tions and sensors. Additionally, some sensors may not be
available on each device, and some sensors may have device-
specific readings.
FUTURE WORK
Astral provides a starting point for richer potential applica-
tions for mobile prototyping and Internet of Things. We next
discuss some potential avenues for future work.
Increasing Complexity
One way to extend Astral would be to examine how to sup-
port more complex dimensions than the current mouse and

keyboard events. Additionally, it would be interesting to ex-
amine how to integrate Astral’s authoring of behaviours onto
the more traditional state model to afford more complex ap-
plications.
Multimodal Output
Astral currently streams the desktop display contents only. It
would be interesting to explore other possible mobile out-
puts. For instance, sounds (if used) are currently limited to
be played on the desktop, but Astral could be extended to
also stream these sounds to the mobile device.
Evaluating Astral in Interaction Design Practice
We are interested in understanding Astral’s utility for inter-
action designers. An observational study would help us un-
derstand how the workflow fits interaction designers. Ideally,
this would involve an in-situ evaluation over a period of time,
as designers all have individual setups (i.e. preferred appli-
cations, workflows, customized interfaces). A field study
would unveil how Astral could be integrated into their exist-
ing practices, and common usage strategies.
CONCLUSION
This paper presented Astral, a prototyping tool that allows
designers to author and fine-tune interactive behaviours from
mobile sensor data. By streaming selected desktop display
contents onto the mobile device, and by converting the mo-
bile sensor data into mouse and keyboard events, we em-
power designers to repurpose existing applications in new
and interesting ways. We also allow designers to transform
input through easing functions, so that they can fine-tune
how the output changes as the input takes place. Our design
decisions are informed by current literature, and we demon-
strated the expressive power of Astral through a broad range
of usage scenarios. Our scenarios included: exploration, fine-
tuning and comparison; prototyping alternatives; supporting
different stages in the design process; repurposing the video
timeline; IoT prototyping; and beyond the desktop. We hope
our exploration can propel designers’ conversations around
interactive behaviour and mitigate some of the challenges of
transitioning from design to implementation.
REFERENCES
1. Dominikus Baur, Sebastian Boring, and Steven Feiner.

2012. Virtual projection: exploring optical projection as
a metaphor for multi-device interaction. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '12). ACM, New York, NY, USA,
1693-1702. DOI:
http://dx.doi.org/10.1145/2207676.2208297

2. Beginner's Mind Collective and David Shaw. 2012. Ma-
key Makey: improvising tangible and nature-based user
interfaces. In Proceedings of the Sixth International Con-
ference on Tangible, Embedded and Embodied Interac-
tion (TEI '12), Stephen N. Spencer (Ed.). ACM, New
York, NY, USA, 367-370. DOI:
https://doi.org/10.1145/2148131.2148219

3. Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones.
2016. Crossed Wires: Investigating the Problems of
End-User Developers in a Physical Computing Task.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI '16). ACM, New
York, NY, USA, 3485-3497. DOI:
https://doi.org/10.1145/2858036.2858533

4. Sebastian Boring, Dominikus Baur, Andreas Butz, Sean
Gustafson, and Patrick Baudisch. 2010. Touch projector:
mobile interaction through video. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '10). ACM, New York, NY, USA, 2287-
2296. DOI: https://doi.org/10.1145/1753326.1753671

5. John Brosz, Miguel A. Nacenta, Richard Pusch, Sheel-
agh Carpendale, and Christophe Hurter. 2013. Trans-
mogrification: causal manipulation of visualizations.
In Proceedings of the 26th annual ACM symposium on
User interface software and technology (UIST '13).
ACM, New York, NY, USA, 97-106. DOI:
https://doi.org/10.1145/2501988.2502046

6. Tsung-Hsiang Chang and Yang Li. 2011. Deep shot: a
framework for migrating tasks across devices using mo-
bile phone cameras. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI
'11). ACM, New York, NY, USA, 2163-2172. DOI:
https://doi.org/10.1145/1978942.1979257

7. Morgan Dixon, Alexander Nied, and James Fogarty.
2014. Prefab layers and prefab annotations: extensible
pixel-based interpretation of graphical interfaces. In Pro-
ceedings of the 27th annual ACM symposium on User
interface software and technology (UIST ‘14). ACM,
New York, NY, USA, 221-230.
https://doi.org/10.1145/2642918.2647412

8. Saul Greenberg. 2007. Toolkits and interface creativ-
ity. Multimedia Tools and Applications, 32(2), Springer,
139-159.
https://doi.org/10.1007/s11042-006-0062-y

9. Saul Greenberg and Chester Fitchett. 2001. Phidgets:
easy development of physical interfaces through physi-
cal widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technol-
ogy (UIST '01). ACM, New York, NY, USA, 209-218.
DOI=http://dx.doi.org/10.1145/502348.502388

10. Tovi Grossman and Ravin Balakrishnan. 2005. The
bubble cursor: enhancing target acquisition by dynamic
resizing of the cursor's activation area. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '05). ACM, New York, NY,
USA, 281-290.
DOI=http://dx.doi.org/10.1145/1054972.1055012

11. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: sketching dy-
namic and interactive illustrations. In Proceedings of
the 27th annual ACM symposium on User interface

https://doi.org/10.1145/2148131.2148219
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/1753326.1753671
https://doi.org/10.1145/2501988.2502046
https://doi.org/10.1145/2642918.2647412
https://doi.org/10.1007/s11042-006-0062-y

software and technology (UIST '14). ACM, New York,
NY, USA, 395-405. DOI:
https://doi.org/10.1145/2642918.2647375

12. Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Ume-
tani, and George Fitzmaurice. 2016. SKUID: sketching
dynamic drawings using the principles of 2D anima-
tion. In ACM SIGGRAPH 2016 Talks (SIGGRAPH
'16). ACM, New York, NY, USA, Article 84, 1 pages.
DOI: https://doi.org/10.1145/2897839.2927410

13. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring sensor-based inter-
actions by demonstration with direct manipulation and
pattern recognition. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI '07). ACM, New York, NY, USA, 145-154.
DOI: https://doi.org/10.1145/1240624.1240646

14. Björn Hartmann, Scott R. Klemmer, Michael Bern-
stein, Leith Abdulla, Brandon Burr, Avi Robinson-
Mosher, and Jennifer Gee. 2006. Reflective physical
prototyping through integrated design, test, and analy-
sis. In Proceedings of the 19th annual ACM sympo-
sium on User interface software and technology (UIST
'06). ACM, New York, NY, USA, 299-308.
https://doi.org/10.1145/1166253.1166300

15. Ken Hinckley and Hyunyoung Song. 2011. Sensor syn-
aesthesia: touch in motion, and motion in touch. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '11). ACM, New York,
NY, USA, 801-810. DOI:
https://doi.org/10.1145/1978942.1979059

16. Lars Erik Holmquist. 2005. Prototyping: generating
ideas or cargo cult designs?. interactions 12, 2 (March
2005), 48-54.
DOI=http://dx.doi.org/10.1145/1052438.1052465

17. David Ledo, Fraser Anderson, Ryan Schmidt, Lora Oeh-
lberg, Saul Greenberg, and Tovi Grossman. 2017. Pin-
eal: Bringing Passive Objects to Life with Embedded
Mobile Devices. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI
‘17). ACM, New York, NY, USA, 2583-2593.
https://doi.org/10.1145/3025453.3025652

18. David Ledo, Steven Houben, Jo Vermeulen, Nicolai
Marquardt, Lora Oehlberg and Saul Greenberg. 2018.
Evaluation Strategies for HCI Toolkit Research.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ‘18). ACM, New
York, NY, USA (To Appear).
https://doi.org/10.1145/3173574.3173610

19. Nolwenn Maudet, Germán Leiva, Michel Beaudouin-
Lafon, and Wendy Mackay. 2017. Design Breakdowns:
Designer-Developer Gaps in Representing and Inter-
preting Interactive Systems. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW '17). ACM, New

York, NY, USA, 630-641. DOI:
https://doi.org/10.1145/2998181.2998190

20. Jan Meskens, Kris Luyten, and Karin Coninx. 2009.
Shortening user interface design iterations through
realtime visualisation of design actions on the target
device. In Visual Languages and Human-Centric Com-
puting, 2009. VL/HCC 2009. IEEE Symposium on, pp.
132-135. 10.1109/VLHCC.2009.5295281

21. Jan Meskens, Kris Luyten, and Karin Coninx. 2010. D-
Macs: building multi-device user interfaces by demon-
strating, sharing and replaying design actions. In Pro-
ceedings of the 23nd annual ACM symposium on User
interface software and technology (UIST '10). ACM,
New York, NY, USA, 129-138. DOI:
https://doi.org/10.1145/1866029.1866051

22. Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin
Coninx. 2008. Gummy for multi-platform user inter-
face designs: shape me, multiply me, fix me, use me.
In Proceedings of the working conference on Advanced
visual interfaces (AVI '08). ACM, New York, NY,
USA, 233-240. DOI:
https://doi.org/10.1145/1385569.1385607

23. Brad Myers. Mobile devices for control. 2002. In Inter-
national Conference on Mobile Human-Computer In-
teraction, Springer, Berlin, Heidelberg 1-8.
https://doi.org/10.1007/3-540-45756-9_1

24. Brad Myers, Choon Hong Peck, Jeffrey Nichols, Dave
Kong, and Robert Miller. 2001. Interacting at a dis-
tance using semantic snarfing. In International Confer-
ence on Ubiquitous Computing. Springer, Berlin, Hei-
delberg pp. 305-314. https://doi.org/10.1007/3-540-
45427-6_26

25. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, present, and future of user interface software
tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March
2000), 3-28. http://dx.doi.org/10.1145/344949.344959

26. Brad Myers, Sun Young Park, Yoko Nakano, Greg
Mueller, and Andrew Ko. How designers design and
program interactive behaviors. 2008. In Proc. Visual
Languages and Human-Centric Computing, 2008.
VL/HCC 2008. IEEE Symposium on, pp. 177-184.
10.1109/VLHCC.2008.4639081

27. Dan R. Olsen, Jr.. 2007. Evaluating user interface sys-
tems research. In Proceedings of the 20th annual ACM
symposium on User interface software and technol-
ogy (UIST ‘07). ACM, New York, NY, USA, 251-258.
https://doi.org/10.1145/1294211.1294256

28. Robert Penner. Robert Penner's Programming Macro-
media Flash MX. McGraw-Hill, Inc., 2002.

29. Marco de Sá, Luís Carriço, Luís Duarte, and Tiago
Reis. 2008. A mixed-fidelity prototyping tool for mo-
bile devices. In Proceedings of the working conference
on Advanced visual interfaces (AVI '08). ACM, New

https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2897839.2927410
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1166253.1166300
https://doi.org/10.1145/1978942.1979059
https://doi.org/10.1145/3025453.3025652
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/2998181.2998190
https://doi.org/10.1109/VLHCC.2009.5295281
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1385569.1385607
https://doi.org/10.1007/3-540-45756-9_1
https://doi.org/10.1007/3-540-45427-6_26
https://doi.org/10.1007/3-540-45427-6_26
http://dx.doi.org/10.1145/344949.344959
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1145/1294211.1294256

York, NY, USA, 225-232. DOI:
https://doi.org/10.1145/1385569.1385606

30. Valkyrie Savage, Colin Chang, and Björn Hartmann.
2013. Sauron: embedded single-camera sensing of
printed physical user interfaces. In Proceedings of the
26th annual ACM symposium on User interface software
and technology (UIST ‘13). ACM, New York, NY,
USA, 447-456.
http://dx.doi.org/10.1145/2501988.2501992

31. Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann.
2012. Midas: fabricating custom capacitive touch sen-
sors to prototype interactive objects. In Proceedings of
the 25th annual ACM symposium on User interface soft-
ware and technology (UIST ‘12). ACM, New York, NY,
USA, 579-588.
https://doi.org/10.1145/2380116.2380189

32. Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phil-
lips, and Nicolas Roussel. 2006. User interface façades:
towards fully adaptable user interfaces. In Proceedings
of the 19th annual ACM symposium on User interface
software and technology (UIST '06). ACM, New York,
NY, USA, 309-318. DOI:
https://doi.org/10.1145/1166253.1166301

33. Desney S. Tan, Brian Meyers, and Mary Czerwinski.
2004. WinCuts: manipulating arbitrary window regions
for more effective use of screen space. In CHI '04 Ex-
tended Abstracts on Human Factors in Computing Sys-
tems (CHI EA '04). ACM, New York, NY, USA, 1525-
1528. DOI: https://doi.org/10.1145/985921.986106

34. Frank Thomas, Ollie Johnston, and Disney Anima-
tion. 1981. The illusion of life. Abbeville Press, New
York.

35. (Eds.). ACM, New York, NY, USA, 170-171.
DOI=http://dx.doi.org/10.1145/223355.223485

36. Nicolas Villar, James Scott, Steve Hodges, Kerry Ham-
mil, and Colin Miller. (2012) .NET Gadgeteer: A Plat-
form for Custom Devices. In Pervasive Computing. Per-
vasive 2012. Lecture Notes in Computer Science, vol
7319. Springer, Berlin, Heidelberg. 216-233
https://doi.org/10.1007/978-3-642-31205-2_14

37. Jo Vermeulen, Kris Luyten, Karin Coninx, and Nicolai
Marquardt. 2014. The design of slow-motion feedback.
In Proceedings of the 2014 conference on Designing in-
teractive systems (DIS '14). ACM, New York, NY,
USA, 267-270. DOI:
https://doi.org/10.1145/2598510.2598604

38. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: using GUI screenshots for search and auto-
mation. In Proceedings of the 22nd annual ACM sympo-
sium on User interface software and technology (UIST
‘09). ACM, New York, NY, USA, 183-192.
https://doi.org/10.1145/1622176.1622213

39. The Tools Designers are Using Today (2015 Survey)
http://tools.subtraction.com/ – Accessed April 01, 2018.

40. Adobe Animate (formerly Adobe Flash)
https://www.adobe.com/ca/products/animate.html – Ac-
cessed April 01, 2018.

41. Arduino http://arduino.cc – Accessed April 01, 2018.
42. Microsoft MakeCode https://makecode.com/ – Ac-

cessed April 01, 2018.

https://doi.org/10.1145/1385569.1385606
http://dx.doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/2380116.2380189
https://doi.org/10.1007/978-3-642-31205-2_14
https://doi.org/10.1145/2598510.2598604
https://doi.org/10.1145/1622176.1622213
http://tools.subtraction.com/
https://www.adobe.com/ca/products/animate.html
http://arduino.cc/
https://makecode.com/

	Astral: Prototyping Mobile and IoT Interactive Behaviours via Streaming and Input Remapping
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	TECHNICAL REPORT (cite as)
	ASTRAL
	Streaming Visual Content to a Mobile Display
	Streaming Mobile Sensor Data to Provide Input
	Interactivity Through Input Remapping
	Benefits

	Related Work
	Prototyping Tools
	Streaming Inputs & Outputs Across Devices
	Remapping Inputs Across Devices

	ASTRAL’s Central Components
	Main View
	Specifying Input Remapping through Rules
	Merging Several Rules into Rulesets
	How Astral Satisfies its Design Goals

	Implementation
	Interaction Scenarios and Prototypes
	Scenario 1: Exploring Map Interactions
	A. Tilt to Move
	B. Tilt-to-Zoom

	Scenario 2: Input Variations in a Mobile Game
	Scenario 3: Iterative Design of a Media Controller
	A. Interactive Paper Mockups
	B. Exploring States in PowerPoint & Adobe Illustrator
	C. Creating an Interactive Image
	D. Creating a Smartwatch Prototype in Expression Blend

	Scenario 4: Video-Based Prototyping
	A. Compass Interface
	B. Phone Control Panel

	Scenario 5: IoT Prototyping
	A. Smart Speaker

	Scenario 6: Beyond the Desktop

	DISCUSSION
	Demonstration by Example
	The Use of ‘States’
	Scale
	Overcoming ‘Input Locks’

	LIMITATIONS
	Single Device
	Device Relativism

	Future Work
	Increasing Complexity
	Multimodal Output
	Evaluating Astral in Interaction Design Practice

	Conclusion
	REFERENCES

