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Abstract
We present the generalized space-time cube, a descriptive model for visualizations of temporal data. Visualizations are described
as operations on the cube, which transform the cube’s 3D shape into readable 2D visualizations. Operations include extracting
subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy
of elementary space-time cube operations and explain how these operations can be combined and parameterized. The generalized
space-time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all
datasets that can be represented in two dimensions plus time (e.g. geo-spatial, videos, networks, multivariate data). The proper
choice of space-time cube operations depends on many factors, for example, density or sparsity of a cube. Hence, we propose a
characterization of structures within space-time cubes, which allows us to discuss strengths and limitations of operations. We
finally review interactive systems that support multiple operations, allowing a user to customize his view on the data. With this
framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as well as encourage
the exploration of new techniques and systems. This paper is an extension of Bach et al.’s (2014) work.

Keywords: space-time Cubes, temporal data, information visualization, video visualization, network visualization

ACM CCS: H.5.m. Information Interfaces and Presentation (e.g. HCI): Miscellaneous

1. Introduction

Temporal datasets are ubiquitous but notoriously hard to visualize,
especially rich datasets that involve more than one dimension in
addition to time, such as videos, dynamic networks, multivariate
and geo-spatial data.

Previous work on novel visualizations for temporal data has dra-
matically advanced the field of information visualization (infovis).
However, there are so many different techniques today that it has
become hard for both researchers and designers to get a clear picture
of (i) what has been done, (ii) how to compare and chose visual-
izations and (iii) how much of the design space of temporal data

visualizations remains to be explored. For similar reasons, teaching
this research topic to students is challenging. Therefore, there is a
clear need to structure and organize previous work in the area of
temporal data visualization.

Part of the problem is that infovis researchers have mostly fo-
cused on nomenclature. Most familiar charts have an agreed-upon
name, for example, small multiples or scatter plots, and this tra-
dition has been continued in infovis, where each newly published
visualization technique is given a different name. Many textbooks
and surveys list existing techniques by their name, both for general
visualizations [Har99] and for temporal visualizations [AMST11].

c© 2016 The Authors
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Figure 1: Examples of space-time cube operations, performed on a generalized space-time cube to describe visualizations.

Figure 2: Two conceptually similar temporal visualization tech-
niques showing: (a) the evolution of crime statistics per state; (b)
the evolution of high school population per district.
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Figure 3: Two visualizations using small multiples to show the
same indicator data for four countries over 6 years, but which are
conceptually different.

Figure 4: A space-time cube based on an illustration by
Hägerstrand [H70] in 1970, showing social interactions across
space and time.

While names are essential for indexing, retrieval and communi-
cation purposes, they are a poor thinking tool. Because there is no
convention for naming techniques, names rarely reflect the essential
concepts behind a technique. For example, names such as Value
Flow Maps [AA04] and Planning Polygons [SRdJ05] say little
about the possible conceptual similarities between the two tech-
niques (see Figure 2). Names can also be ambiguous. For example,

Figure 5: Khronos projector [CI05] lets users dig into video cubes:
here, ascene transitioning from day to night.

the term small multiples is commonly used to refer to a specific
type of temporal data visualization [Tuf86]. But Figure 3 shows
that two visualizations can be based on small multiples despite
being different with respect to which aspect of the data they show.

Recent effort at proposing taxonomies, conceptual models and de-
sign spaces for temporal visualizations mainly categorize visualiza-
tions based on analytical tasks or data types (e.g. object movement
data [AAH11, AAB*11, AA12], video data [BCD*12] or datasets
with different temporal and spatial structures [AMM*07]). While
descriptions of visualization techniques by tasks and data types can
help choosing a visualization technique for a specific problem, we
aim to describe visualizations in their own visualization space, inde-
pendent from data and task. We contend that it is limitative to reason
in a task- and data-agnostic manner, and that this is uncommon in
visualization (which emphasizes point designs, point studies and
cookbook-type recommendations), but because it is rare enough, it
is worth trying.

Our goal is to understand (1) how those visualizations relate
conceptually, (2) to provide a clear terminology and (3) a way of
organizing these visualizations that can serve as a basis for pre-
scriptive and evaluative work. In other words, our framework is
mostly descriptive, but, as we show, it can help better understand the
strengths and weaknesses of different visualizations with respect to
tasks and data, and better formulate research questions in empirical
studies.

The benefit of a clear and detailed descriptive framework is that
it helps connect techniques that are similar and distinguish tech-
niques that are dissimilar. For example, the two techniques from
Figure 2 have different names but are the result of a similar (com-
pound) operation on a generalized space-time cube and which we
call repeated drilling. Figure 3 shows two techniques with the same
name (‘small multiples’) but resulting from very different space-
time cube operations; Figure 3(a) involves operations such as filter-
ing, time flattening and space shifting, while Figure 3(b) is the result
of a compound operation we call time juxtaposing. By discussing
such relations, we hope to improve our understanding of which

c© 2016 The Authors
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visualizations are complementary and which ones are possible, but
have not yet been realized in visualization. Eventually, we discuss
how multiple operations can be combined into an interactive and
consistent interface. Our paper is targeted towards designers and
researchers, in particular students in both domains.

The term space-time cube originates from social geography,
where it refers to a three-dimensional (3D) Euclidean space, con-
sisting of a 2D geographical space plus time. Under the term ‘time
geography’, Torsten Hägerstrand in 1970 described a ‘space-time
model which could help us to develop a kind of socio economic
web model’ [H70], p. 10]. His intention was to analyse people’s
behaviour and interactions across space and time (Figure 4); a mov-
ing person on a 2D map becomes a static 3D trajectory visualized
in a space-time cube. Since then, the space-time cube has been
used as a visualization metaphor in a number of interactive vi-
sualization systems in geo-visualization [CCT*99, Kra03], video
visualization [FLM00], networks [BPF14b], and art [CI05]. How-
ever, it has never been used as a conceptual model for reflecting on
visualizing temporal data in general.

With respect to the traditional understanding of a space-time
cube—a 3D representation of geographic space plus time—here,
we define a generalized space-time cube, inspired by Furnas notion
of generalized fisheye views [Fur86]. The generalized space-time
cube has the following two main properties:

(1) A generalized space-time cube is a conceptual representation
that helps to think about temporal data visualization techniques in
general. It does not imply an explicit 3D visualization or a perspec-
tive projection thereof. The cube does not need to be implemented
in the system, used to generate this visualization. For example, the
visualizations in Figures 2 and 3 do not show any space-time cube;
they are purely 2D visualizations. For most of the examples in this
paper, we do not know the exact format of the underlying data (1D,
3D, tables, multivariate, network). However, we imagine a possible
conceptual cube which the visualization can be derived from. This
does not imply how the visualization is implemented or whether
the designer was aware of any conceptual cube and generalized
space-time cube operations. In Section 6, we discuss systems that
explicitly implement the space-time cube and its operations.

(2) A generalized space-time cube does not need to involve geo-
spatial data. Many visualizations (e.g. scatterplots or node-link di-
agrams) convey abstract, non-spatial data. Those (non-temporal)
visualizations all embed data into an abstract and 2D visualiza-
tion space. When data change over time, such as in GapMinder’s
animated 2D scatterplots [Ros06], each animation frame can be con-
ceptually thought of as a slice of a space-time cube. In the model
of the generalized space-time cube, ‘space’ therefore refers to an
abstract 2D substrate that is used to visualize (non-temporal) data
at a specific time. We call this space base plane. Thus, generalized
space-time cubes include traditional geo-spatial space-time cubes,
video cubes, matrix cubes, as well as a subset of Online Analytical
Processing (OLAP) cubes as we discuss later.

It is important to stress that this paper is not about space-time
cube visualizations, and that 3D space-time cube representations,
like the one in Figure 4, represent only a very small subset of the

visualizations we aim to cover. In the remainder of this paper, the
term space-time cube refers to our model, if not indicated otherwise.

Finally, our framework does not consider how space-time cubes
are built for a given dataset. A general heuristic is to decide on a 2D
visual representation of the data for a given time slice, and then ex-
trude it over time. For example, networks can be shown as node-link
diagrams or matrices, multivariate data as scatterplots or barcharts.
Such decisions are independent from the cube. We admittedly do
not offer a detailed framework that clarifies the different ways con-
crete datasets can be turned into concrete space time cubes. Instead,
we assume that a conceptual 3D space-time cube is already given
and focus on how this cube can be transformed to accommodate 2D
media like computer displays and paper while remaining legible.
We show how such operations are enough to capture most known
techniques for visualizing temporal datasets. We mainly consider
datasets that involve two dimensions plus time, although we later
discuss how our model can be extended to higher dimensionalities.
Datasets with a single data dimension plus time may not require a
space-time cube and can be visualized with timelines and visualiza-
tions for time series.

In this paper, we first review common temporal data visualization
techniques, and explain how they can be all seen as operations on
a generalized space-time cube. We then describe our framework in
more detail by providing definitions of key concepts, as well as a
taxonomy of elementary space-time cube operations and how they
can be combined into compound operations. Then, we explain how
choosing effective space-time cube operations can be motivated by
the characteristics of the dataset, mostly because different datasets
yield different ‘shapes’ or inner structures for space-time cubes.
We provide a way to characterize such inner structures, based on
characteristics of data. We then informally discuss the relative ben-
efits and drawbacks of different space-time cube operations and
briefly review empirical evidence from user studies. We finally dis-
cuss interactive visual exploration systems that support a range of
space-time cube operations, discuss limitations of our framework
and suggest avenues for future work. A catalogue of temporal vi-
sualizations classified according to our framework can be found at
www.spacetimecubevis.com.

2. Static Visualizations as Space-Time Cube Operations

In this section, we illustrate examples of generalized space-time
cube operations and how they can be used to describe a range of
common static visualization techniques for temporal data, all meant
for screen or paper media. We focus on a small but representative
selection and describe operations informally, often using analogies
from photography and art.

While a generalized space-time cube may not be the only way
to describe these visualizations, and the designer may not have
thought of it in this way, we construct conceptual space-time cubes
for our examples, then apply the respective operation(s) that describe
the actual visualization. Note that, while in Hägerstrand’s original
illustration the time axis is vertical, in our illustrations time passes
from left to right.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Bach et al. / Generalized Space-Time Cube 39

Time

1 2

Figure 6: The time cutting operation.

Time

1 2

Figure 7: The time flattening operation.

Figure 8: A famous example of time flattening: Napoleon’s march
to Moscow by Joseph Minard [Tuf86].

2.1. Time cutting

A time cutting operation consists in extracting a particular temporal
snapshot from the cube to be presented to the viewer. Figure 6
illustrates this operation: the left part (1) shows the initial space-
time cube and the temporal snapshot that is being extracted, while
the right part (2) shows the resulting image that is presented to the
viewer.

For example, consider a photographer who captures a particular
instant of a moving scene. If the scene being viewed is represented
as a space-time cube (i.e. all possible pictures are piled up to form
a cube), then taking a photograph is equivalent to applying a time
cutting operation on this cube.

In infovis, an image produced by time cutting is typically called
a time slice. But a temporal visualization rarely consists in a single
time slice. As we will see in Section 3, time cutting is typically
either performed multiple times and used in combination with
other operations, or it is used in combination with animation and
interaction.

2.2. Time flattening

Time flattening collapses the space-time cube along its time axis, by
merging all time slices into a single 2D image (Figure 7). An analogy
is long exposure photography, which collapses several seconds,
minutes or even hours of a natural scene into a single image.

Figure 9: Other examples of time flattening: (a) Detail of the map
of the cholera outbreak in London 1854, by Dr. John Snow. Piled
bars mark the number of death per house. (b) Connected scatterplot
showing the relationship between inflation rate and unemployment
in Spain from 1990 to 2000.

One of the earliest uses of time flattening is Minard’s illustration
of Napoleon’s march towards Moscow (Figure 8). The illustration
shows on a single image the state of Napoleon’s army (position, size,
key events) at different points in time during the Russian campaign
in 1812 [Tuf86]. Another early example is Dr. John Snow’s map
showing where deaths from cholera occurred in London in 1854
(Figure 9(a)). The map shows events from several days aggregated
over time.

Many maps that show temporal data can be seen as time-flattened
geo-spatial space-time cubes. But the time flattening technique is not
limited to geographical data and has been employed in a large variety
of infovis systems as well as in static data graphics. Figure 9(b) for
example, shows the evolution of inflation and unemployment rate in
Spain from 1990 to 2000. This diagram can be seen as time-flattened
version of a space-time cube created from a scatterplot that contains
a single data point evolving over time (Spain).

2.3. Discrete time flattening

Discrete time flattening is similar to time flattening, but instead of
merging all time slices, a selection of meaningful time slices is made
before combining them (Figure 10).

An analogy for discrete time flatting is multiple exposure photog-
raphy, where several photos are taken at different times and blended

Time

21 3

Figure 10: The discrete time flattening operation.

c© 2016 The Authors
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Figure 11: An example of discrete time flattening. For a better
infographic by Megan Jaegerman, see [Tuf].

into a single image. Etienne-Jules Marey pioneered this technique in
1882 with an instrument (the chronophotographic gun) that records
12 photos per second on the same film. He used it to visualize human
and animal motion [Mar78]. Modern art has also employed a simi-
lar technique to convey movement, for example, Marcel Duchamp’s
‘Nude Descending a Staircase, No. 2’.

Tufte [Tuf86] comments on several examples of infographics that
employ discrete time flattening. He calls them sequences. One of
his famous examples is the life cycle of the Japanese beetle [Tuf86].
Figure 11 is a sequence showing a dancer’s move. Discrete time
flattening has also been used for summarizing videos [BDH04].

2.4. Coloured time flattening

The coloured time flattening operation is similar to the time flat-
tening operation, but time slices are assigned a colour before being
combined (Figure 12). Although this operation does not map to

Time Time

21 3

Figure 12: The coloured time flattening operation.

Figure 13: Two visualizations using coloured time flattening. (a)
Illustration of a dynamic graph visualization as used in Gevol
[CKN03]. (b) Stroke order in Chinese characters [Wik13]; the
colour legends have been added.

Time

Time21 3

Figure 14: The time juxtaposing operation.

any photography technique we know of, similar results could in
principle be obtained by rapidly switching colour filters during a
long-exposure photography.

Two examples of visualizations obtained by coloured time flat-
tening are shown in Figure 13: (a) a dynamic graph where old links
(in red) are distinguished from new links (in blue) [CKN*03]; (b)
Chinese characters where first strokes (in black) are distinguished
from later strokes (in red) [Wik13]. Minard’s map (Figure 8) also
makes use of a simplified form of coloured time flattening, since
the army’s forward march and return are distinguished using two
different colours.

2.5. Time juxtaposing

Time juxtaposing consists in extracting multiple time slices and
placing them side-by-side or on a grid (Figure 14).

An analogy is Eadweard Muybridge’s multiple camera
chronophotography [Muy87]. In contrast with Marey, Muybridge
used multiple cameras that recorded snapshots on different loca-
tions on the film. He used it for the scientific study of, for example,
horse gaits, and his pictures famously settled the question as to
whether horses have all four feet off the ground while trotting.
Time juxtaposing is also the base for many forms of sequential art,
from ancient Egyptian murals and Greek vase paintings to today’s
comics [McC94, BKH*16].

Time juxtaposing is often used in infovis to show temporal
data such as time-evolving maps, trajectories in space [TBC13]
and dynamic graphs [LNS11, BBL12, RM13, BPF14a, BHRD*15,
BKH*16]. Figure 15 shows forest harvest data over 11 years. In
infovis, time juxtaposing is usually referred to as small multiples
[CKN*03], although small multiples are not necessarily built from
time slices (see Figure 3(a)). Time juxtaposing has been also widely
used for video summarization [TV07].

Figure 15: Time juxtaposing showing approved forest harvest ap-
plications across 10 years [Gre11].

c© 2016 The Authors
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1 2

Time

Figure 16: The space cutting operation.

2.6. Space cutting

Space cutting consists in extracting a planar cut in a direction per-
pendicular to the data plane (Figure 16). An analogy is slit-scan
photography, a process where a plate into which a slit has been cut
is inserted in front of a camera and then moved while the film is be-
ing exposed [TGF08]. Slit-scan photography has been used to create
special effects in movies, artwork and photo finishes in sports.

Space cutting has also been employed for visualizing temporal
data. In the 19th century, Marey created a visualization of train con-
nections between major French cities (Figure 17). This visualization
can be described as space cutting on a geographical space-time cube,
along the tracks connecting cities while diagonal lines indicate po-
sitions of trains at any time [Tuf86, Mar78].

More recently, space cutting was shown to be useful for analysing
video logs [TGF08]: Figure 18 shows a space cut (called ‘tear’ in
the original work) extracted from a video space-time cube, and
revealing traffic activity (car count, speed and direction) on a road.
The time slice at t1 is shown to the left, together with the position
of the segment extracted. The system is also able to show multiple
longitudinal slices on top of each other (i.e. space juxtaposing).

Figure 17: Example of space cutting (right): horizontal lines in-
dicate train stops, vertical lines indicate times, and diagonal lines
indicate moving trains [Mar78].

Figure 18: Space cutting used to show road traffic [TGF08].

21

Time

Figure 19: The space flattening operation.

Figure 20: Examples for space-flattening. (a) Edit history of a
Wikipedia article [VWD04].; (b) article citations over time [SA06,
AS].

2.7. Space flattening

Space flattening is similar to space cutting, but involves flattening
the cube along a particular direction on the data plane instead of
extracting a cut (see Figure 19).

An example of use of space flattening in infovis is the History
Flow technique for visualizing document histories [VWD04], il-
lustrated in Figure 20(a). A space-time cube would consist of the
different document version piled over time. The visualization shows
the history of the paper, built by collapsing each article revision into
a one-pixel column, and then displaying all columns side-by-side.
These operations are equivalent to flattening the article’s space-time
cube along the x data axis. Colours correspond to contributors.

Space flattening has also been used for visualizing dynamic net-
works, based on node-link representations on the base plane [FBS06,
SA06, BVB*11]. For example, Figure 20(b) shows a screenshot
from Semantic Substrates [SA06] where the y-axis is a 1D graph
layout, and the x-axis shows when connections are established.

2.8. Repeated drilling

Repeated drilling is a more complex operation that consists in ex-
tracting drilling cores from a space time cube at several locations
on the visualization plane, then rotating those cores in-place so they
face the viewer (Figure 21).

Two examples of drilling are mentioned in this paper’s introduc-
tion (Figure 2). The top one shows the evolution of crime statistics
in every US state [AA04] obtained from a geographical space-
time cube containing a series of values for each state. The bottom
one shows the evolution of high school population in several dis-
tricts across 3 years [SRdJ05]. Although additional operations are

c© 2016 The Authors
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Time

21 3

Figure 21: The repeated drilling operation.

involved (e.g. using silhouette graphs to encode values), both exam-
ples are conceptually based on repeated drilling. Repeated drilling
has also been used in dynamic network visualization, for conveying
changes in edge weight [BN11] and in attribute values [HSCW13].

2.9. 3D rendering

3D rendering consists in showing a space-time cube the way 3D
objects are typically displayed on 2D media, that is, by projecting
it onto a 2D plane (Figure 22).

3D rendering is essentially a flattening operation but in contrast
with time flattening and space flattening, it is (i) typically done on a
plane not orthogonal to the cube’s principal axes; (ii) can involve a
non-orthographic projection (e.g. perspective projection); (iii) can
involve 3D shading, that is, the addition of light reflections and
shadows.

In geography, 3D rendering has been used to visualize events
such as earthquakes (Figure 23(a)), attributes over time [TSWS05,
TR09] or the movement of objects [Kra03, GAA04]. 3D rendering
has also been used to visualize dynamic networks based on
node-link diagrams; nodes become columns and links become
bridges between columns [DG04, BC03] (Figure 23(b)). When the
layout of the dynamic network also changes, nodes become worms
[DE02, GHW09]. Worms also result from 2D scatterplots extruded
into time [MR97].

Time

Figure 22: The 3D rendering operation.

Figure 23: Two examples of 3D rendering. (a) Occurrence of earth-
quakes (authors’. illustration after [GAA04]), and (b) a dynamic
Network [DG04]

3. The Design Space of Space-Time Cube Operations

The previous section reviewed several common operations that turn
a conceptual time-space cube into a final 2D visualization. Exam-
ples were selected for illustration, and the list is not meant to be
exhaustive. Some of the operations were rather simple (e.g. time
cutting), while others were more complex (e.g. repeated drilling)
and could be described as a composition of several lower level op-
erations. Therefore, we provide in this section a more systematic
description of the design space of space-time cube operations.

3.1. Basic terminology

A space-time cube operation takes a space-time object and produces
another space-time object. A space-time object is a geometrical
object within a space-time coordinate system (i.e. two dimensions
for the visualization space and one for time). Possible space-time
objects include (i) space-time volumes (of which a complete space-
time cube is an example), (ii) space-time surfaces (planar and non-
planar), (iii) space-time curves, (iv) points as well as (v) sets of
disconnected volumes, surfaces, curves and points.

The ultimate goal of space-time cube operations is to transform a
space-time cube into a space-time object whose shape is compatible
with the shape of the media employed to convey the information.
By media we mean the visualization’s physical presentation, which
is the physical object or apparatus that makes a visualization ob-
servable to the viewer [JD13]. In the vast majority of cases (i.e.
computer displays and paper) the media has a planar shape.

For a given media, a space-time cube operation is complete if it
takes space-time volumes as input and produces space-time objects
whose shape match the media’s shape. Otherwise, the operation is
incomplete: it cannot be used to produce a valid visualization from
a space-time cube. Several elementary space-time cube operations
can be chained, in which case they form compound operations. A
compound operation is complete if the first operation takes space-
time volumes as input, and the last operation produces space-time
objects whose shape is compatible with the media.

3.2. A taxonomy of elementary space-time cube operations

A taxonomy of elementary space-time cube operations is shown in
Figure 33 on the next page. The taxonomy breaks down space-time
cube operations into four main classes:

� Extraction consists in selecting a subset of a space-time object
(e.g. extracting a line or cut from a volume),

� Flattening consists in aggregating a space-time object into a
lower dimensional space-time object (e.g. projecting a volume
onto a surface),

� Geometry transformation consists in transforming a space-time
object spatially without change of content,

� Content transformation consists in changing the content of a
space-time object without affecting its geometry.

The table in Figure 24 shows how general operations break down
into more specific operations. On each of the two columns, general
operations are on the left while more specific operations are on

c© 2016 The Authors
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Figure 24: Taxonomy of elementary space-time cube operations with schematic illustrations. Graey shading indicates non-leaves. The Time
column regroups operations that are applied according to the time axis, while the Space column regroups operations that are applied according
to the base plane.

c© 2016 The Authors
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the right. Operations that are the most specialized (i.e. leaves on
the taxonomy tree) are shown on a white background. Operations
written in bold are those which produce planar surfaces, that is, can
be used as final operations on screen-based and paper-based media.

We quickly review the most specialized operations (white back-
ground), going from top to bottom on the left column, then on the
right column. We also describe the parameters necessary to spec-
ify each space-time cube operation. Most of the operations have
already been used in infovis, others have been added to fill gaps in
the taxonomy.

� Extraction:

– Point extraction consists in selecting a specific point inside
a space-time volume. This operation is defined by a 2D
position on the data plane and a time value.

– Time drilling consists in extracting a line parallel with the
time axis. It is uniquely specified by a 2D position on the
data plane. For example, repeated drilling (Section 2.8)
uses several drilling operations.

– Space drilling extracts a line perpendicular with the time
axis. It is specified by a 2D line and a time value.

– Oblique drilling consists in extracting an arbitrarily ori-
ented straight line from within a space-time volume.

– Planar curvilinear drilling consists in extracting a planar
3D curve from a space-time volume. This operation, as well
as all operations above, is complete for 2D media.

– Non-planar curvilinear drilling consists in extracting an
arbitrary 3D curve from a space-time volume. It is incom-
plete, and hence needs to be combined with other operations
like flattening or unfolding. This operation can be used to
extract object trajectories [KW04, RFF*08].

– Time cutting consists in extracting a planar cut from a
space-time volume in a direction orthogonal to the time
axis (see Section 2.1). It takes as parameter a time value
that defines the cut position on the time axis. It is a complete
operation for 2D media.

– Linear space cutting consists in extracting a planar cut
from a space-time volume in a direction orthogonal to the
data plane (see Section 2.6). It is also complete, and takes
as parameter a line or a segment parallel to the data plane
that once extruded over time defines the cutting surface.

– Oblique cutting consists in extracting a planar cut from
a space-time volume that is neither orthogonal to the time
axis, nor orthogonal to the data plane (e.g. [FLM00]). It
takes as parameter a 3D cutting plane.

– Curvilinear space cutting is similar to linear space cutting
except the cutting surface is produced by extruding a curve
parallel to the data plane that is neither a line nor a segment.
This operation produces non-planar space-time surfaces
that further need to be flattened (e.g. using 3D rendering
[TS12]) or unfolded (as in Figure 17).

– Time chopping is similar to time cutting but slices have a
thickness instead of being infinitely thin. Since it produces
volumes it is not complete for 2D media, and thus needs
to be complemented with additional operations. It takes as
parameter a time segment that defines the two cutting slabs
(a slab is the infinite region between two planes).

– Linear space chopping, oblique chopping and curvi-
linear space chopping are similar to the previous cut-
ting operations, with the difference that they produce vol-
umes with a certain thickness instead of infinitely thin
surfaces.

� Flattening:

– Time flattening aggregates a space-time volume into a
plane orthogonal to the time axis (see Section 2.2). This
operation takes as parameters a time value, a projection
function and an aggregation function. The projection func-
tion maps 3D points to points on the plane. Examples in-
clude orthographic projection and perspective projection.
The aggregation function describes how point values are
combined. If values are defined in an RGBA colour space,
the function maps vectors of RGBA colours to a single
RGBA colour. Examples of such functions include alpha-
blending (e.g. averaging all colours) and overplotting (i.e.
only keeping the last colour).

– Space flattening, oblique flattening and non-planar flat-
tening are similar operations, but the surface on which the
volume is projected is different (see previous cutting oper-
ations as well as Sections 2.7 and 2.9 for more details).

� Geometry transformation:

– Space shifting, time shifting, yaw, roll and pitch con-
sist in moving or rotating space-time objects. They can be
used, for example, for placing multiple cuts side-by-side
or for rotating an entire space time cube rendered in three
dimensions (e.g. [KW04, CCT*99, BPF14b]).

– Time scaling and space scaling rescale space-time objects
along their principal axes. They take as parameters one
and two scalar values, respectively, that define the scaling
factor.

– Bending deforms space-time objects. For example, a
space-time volume can be bent such that the time axis
follows an arc instead of a line [DC03]. This operation
takes as parameter a deformation function that maps 3D
locations to 3D locations.

– Unfolding transforms a non-planar space-time surface into
a planar space-time surface. An analogy is a map projection
function that transforms a sphere or portion of sphere into a
plane. An example of space-time unfolding is Maray’s train
schedule (Figure 19), which can be seen as an unfolded
curvilinear space cut performed on a time-evolving 2D
map.

� Content transformation:

– Time colouring consists in altering the colours of each
time slice according to time. Examples include colouring
each time slice uniformly according to a linear colour scale
(Figure 13), changing the hue of each time slice, or dividing
the time axis in different regions and applying a discrete
colour scale (Figure 8).

– Space colouring alters the colour of points in a space-time
volume depending on their 2D position on the data plane.

– Difference colouring consists in altering the colours of
each time slice according to the difference between time
slices. One example is highlighting appearing nodes and
disappearing nodes in a dynamic graph [RM13, BPF14a].
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– Time labelling consists in adding time labels to each
time slice or to objects inside a space-time volume
(Figure 9(b)).

– Stabilizing consists in repositioning objects on each data
plane so that their trajectories are as parallel as possible to
the time axis. Examples include computing stable layouts
for dynamic networks [AP12a], dynamic maps [HKV12]
and stabilizing videos [BGPS07].

– Bundling consists in repositioning objects on each data
plane in order to bring their trajectories closer to each other.
One example is bundling air plane routes [HEF*13].

– Shading consists in altering the colour of a space-time vol-
ume’s content by simulating light propagation mechanisms
(e.g. diffusion, specular reflection, drop shadows).

– Filtering consists in removing parts of a space-time vol-
ume’s content. One example is removing all points of a
certain colour or value [CCT*99, DC03, BPF14b].

– Aggregation replaces multiple space-time objects by a sin-
gle, larger space-time object. Different methods exist. For
example, 3D kernel density estimation transforms a set of
space-time points or space-time curves into 3D volumes or
2D (iso) surfaces [DV10].

3.3. Adaptive and semantic operations

So far, we mostly described operations that are agnostic to the data
and the content of the cube. Adaptive operations take into account
the shape or content of the particular space-time objects they
operate on. For example, an adaptive time cutting operation can be
used to cut cubes according to regions with large changes instead of
cutting them into regularly spaced slices. This technique is used, for
example, in adaptive video fast-forward [PJH05] and to highlight
states and repetition in dynamic networks, using a technique called
‘Small MultiPiles’ [BHRD*15] (time chopping + space shifting).
Similarly, an unfolding operation that works on any surface (as
opposed to, e.g. only spheres), would be an adaptive unfolding
operation.

Semantic operations take into account the data semantics of the
space-time objects they operate on. One example would be a se-
mantic volume interpolation operation that connects discrete sets
of moving objects with lines or tubes (see Figures 9(b) and 23(b),
as well as [Ros06, BPF14a]). This type of operation is semantic
because it needs to know the identity of the objects to be able to
match them on successive time slices. Time labelling operations
such as the one used in Figure 9(b) are also semantic, because they
need to know the location of datapoints of interest to place the
labels appropriately. Filtering, aggregation and bundling can also
be seen as semantic operations as well as all difference colouring
and space colouring[VWD04, RFF*08, BPF14b]. Finally, semantic
operations can also be used to cut or chop cubes according in regu-
lar distances (e.g. hours, days, weeks). Flattening such time chops
changes the temporal granularity of the cube.

3.4. Compound operations

We previously defined compound operations as several operations
applied in sequence. According to our taxonomy from Figure 24,

Table 1: Example compound operations decomposed.

Compound Operation Elementary Operations

Discrete time flattening time cutting* + time flattening
Colored time flattening time coloring + time flattening
Time juxtaposing (time cutting + space scaling + space

shifting)* + time flattening
Marey’s schedule curvilinear space cutting + yaw + un-

folding
Slit tears (linear/curvilinear space cutting +

yaw + [unfolding] + space shifting)*
Repeated drilling (time drilling + time scaling + yaw)*
3D rendering [shading] + oblique flattening

some of the operations we introduced in Section 2 are elementary,
namely time cutting, time flattening, space flattening. Others are
compound and can be broken down as indicated in Table 1. In our
notation, the symbol + refers to a composition, the symbol ∗ refers
to operations applied multiple times and the symbols [ ] refer to
optional operations.

A compound operation inherits the parameters of its subopera-
tions. For example, a discrete time flattening operation is specified
by a sequence of time values, as well as a projection function and
an aggregation function. But in practice, most compound opera-
tions enforce constraints between their parameters. For example, all
space scalings from a time juxtaposing operation are typically the
same. Possibly those parameters could even result from a function.
For example distance between individual time cuts in a discrete
time-flattening could follow a logarithmic distribution, to give more
importance to recent time steps.

Many elaborate temporal data visualization techniques can be de-
scribed as compound operations. For example, the ‘Visits’ technique
(Figure 25(a)) shows the history of a person’s travels using seman-
tic (time chopping + space chopping + time flattening + space
shifting)*. The conceptual space-time cube captures the location of
the person in the entire world over a period of time. Each circle in
Figure 25(a) is a time-flattened segment from this space-time cube.
Each segment has also been space-chopped to show only a portion
of the entire world. Time-flattened segments are then shifted on the
data plane to distinguish them visually and to reflect the temporal
order in which the regions have been visited.

A further example of a compound operation is shown in
Figure 25(b). The technique is similar to that of Figure 3(a) and
shows one connected scatterplot per country, visualizing infant
mortality versus life expectance over time. While the original arti-
cle [RFF*08] calls this technique ‘Small multiples’, our framework
would describe it as the following compound operation: (filtering +
interpolation + time flattening + space shifting)*. That means, the
initial space-time cube consists of a 2D scatterplot containing all
countries, and time as third dimension. For each country, the tech-
nique extracts all the corresponding points, interpolates between
them, flattens them across time and finally juxtaposes the resulting
space-time surfaces.
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Figure 25: Examples for compound operations: (a) in Visits
[TBC13] (b) in a study by Robertonson et al.et al. [RFF08]

3.5. Dynamic operations

So far we only considered operations (both elementary and com-
pound) that transform a space-time cube into a static visual repre-
sentation. On computer displays, operations can also be applied in a
dynamic manner. Dynamic operations can involve either animation
or interaction.

3.5.1. Animation

We refer to animation as the process of applying different operations
on a space-time cube over time, or similarly, varying the parameters
of an operation over time.

The most common form of animation consists in changing the
position of a cutting operation over time, that is, animated time
cutting. This results in the space-time cube content being ‘played
back’. For example, if the space-time cube represents a visual scene
like video surveillance data, synchronizing the motion of the slice
with a clock will result in a real-time playback of the original scene.
When significant data are skipped during playback, the animation
is closer to a discrete time juxtaposing operation, except slices are
shown in sequence instead of being laid out side-by-side.

An animated time cutting operation can be preceded by a fill-
ing operation in order to produce smooth animated transitions.
Many examples exist in the literature, for example when ani-
mating dynamic networks [ATMS*11, RM13, BPF14a] or scat-
terplots [Ros06, RFF*08]. Most of these examples can be de-
scribed as semantic volume interpolation + animated time cut-
ting operations. Animated time cutting can also be combined with
other space-time cube operations such as time flattening. For ex-
ample, Gapminder can combine scatterplot animations with static
trails for points of interest (a filtering + time flattening operation)
[Ros06].

While many animation techniques can be described as animated
time cutting on static space-time cubes, more elaborate techniques
require operations to be applied in real time. For example, Hurter
et al.’s system [HEF*13] uses animated time chopping to animate a
network over time while preserving temporal context information.
At every animation frame, a time flattening is applied that produces
coloured trails and a dynamic bundling operation is applied that

guarantees a continuous animation without jumping bundles
[HET12].

Although animated time cutting and its many variants are the
most common forms of animation, other animated operations ex-
ist. For example, animated 3D rendering can explain a transition
between two space-time cube operations to a user by smoothly ro-
tating a space-time cube representation [BPF14b]. This technique
will be discussed in Section 6, where we review space-time cube
visualization systems.

3.5.2. Interaction

Interaction is similar to animation, except the changes in the space-
time cube operations are under the user’s control.

Consider animated time cutting: if the position of the cutting plane
is controlled by the user (e.g. by dragging a slider) instead of being
automatically moved, then the operation becomes interactive time
cutting. A common implementation of interactive time cutting is
the seeker bar on a video player. As with animations, any operation
can be made interactive. Examples of interactive operations abound,
and we will review some of them in the next section.

Another example of interaction is interactive curvilinear space-
cutting + oblique flattening. Tominski and Schulz [TS12] allow user
to draw a curve onto a map, then show the curvilinear space cut in
a perspective projection.

4. The Inner Structure of Space-Time Cubes

So far, we mostly considered the generalized space-time cube as
monolithic entity and operations were defined on the entire cube.
However, two space-time cubes can look quite different (see Figures
23, 29, 30, 32, 33), depending on the characteristics of the data
being visualized; migration of animals, earthquakes, changes in
vegetation, dynamic networks, surveillance videos or scatterplots
evolving over time. Such differences define how the space-time
cube ‘looks’, and which we refer to as its inner structure.

On the other hand, different datasets can result in similar inner
structures. For example networks in the form of node-link diagrams,
and multivariate data visualized as scatterplots over time, both yield
structures similar to the first row in Figure 26. The inner structure
of a space-time cube is an important factor when choosing between
space-time cube operations and is independent of the specific type of
data. This allows for a general discussion about the advantages and
disadvantages of an operation, as well as to transfer visualization
techniques between domains.

4.1. Decomposing space-time cubes

We assume that any space-time cube can be subdivided into lower
level space-time objects (see Section 3.1). A common example
is a set of 3D curves or tubes generated by moving objects such
as cars, persons, nodes in a network or points in a scatterplot (see
Figure 26 1©). These curves can yield different patterns depending
on the data 2© 3© 4©. Another typical structure is obtained from
dense matrix data such as videos or dynamic heatmap visualizations.
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Figure 26: Different inner structures for a space-time cube.

For these datasets, the object of interest (e.g. a pixel) is fixed in
space but its colour changes over time. The space-time objects are
therefore multi-coloured lines parallel with the time axis and with
no intervening space 5©. Again, different patterns of variation are
possible 6©.

A space-time cube can be subdivided in different ways. For exam-
ple, pixels with an alpha channel can yield higher level space-time
objects with intervening spaces: 7© could be obtained by filtering a
pixel-based landscape visualization according to the type of vegeta-
tion while 8© could be obtained by isolating bush fires [CCT*99].
Alternatively, optical flow can be extracted from a video, which
would yield a structure more similar to 1©. Conversely, any animated
visualization could be turned into a video and yield a structure simi-
lar to 5©. These are all different ways of looking at a space-time cube.
Ideally, however, the focus should not be on the specific decomposi-
tion used, but rather on the overall properties of the inner structure.

4.2. Dimensions of inner structures

Figure 26 only shows eight possible examples of inner structures, but
many more structures are possible. For example, moving objects can
also change colour or shape over time, or disappear and reappear,
and this would yield different structures than the ones shown in
the figure. Four dimensions are however enough to capture the most
important properties of inner structures, namely: density, variability
in positions, variability in visual attributes and object lifespan.

Density: The density of a space-time cube refers to how much
non-empty space it contains. The inner structure of a space-time
cube can be dense (Figure 26 1© 2© 5© 6©) or sparse (Figure 26
3© 4© 7© 8©). Datasets like videos (Figure 26 5© 6©) produce inner

structures that are maximally dense, and which will be referred to as
complete. Furthermore, a space-time cube can be spatially dense but
temporally sparse (e.g. a few photo snapshots), or vice versa (e.g.
a GPS log over several days). Density is a key property of inner
structures, and it is the only dimension that is independent from the
decomposition used.

Variability in positions: This dimension describes the amount
of motion that 2D objects undergo in the space-time cube, which
in turn affects the shape of the 3D space-time objects that make up
its inner structure. For example, case 3© in Figure 26 (which could
be moving people) involves rather straight curves, while case 4©
(which could be animal movements) involves spaghetti-like curves.
Matrix data (cases 5© to 8©) yield zero variability in positions,
since pixels are fixed and space-time objects are lines parallel with

the time axis. Using an optical flow decomposition, case 6© would
exhibit more variability in positions than case 5©.

Variability in visual attributes: This dimension refers to the
amount of changes (colour and shape) that 2D objects undergo in
the space-time cube. For example the pixels in 5© and 6© undergo
changes in colour, with a higher variability in 6©. In contrast, the
moving objects in 1© to 4© have a fixed shape and colour, and
therefore the cube’s inner structure exhibits no variability in visual
attributes. In a multivariate network [KPW13] setting, this variation
could exist, for example, the objects were moving taxis and their
colour or size (e.g. radius) encoded the number of customers they
carry. Case 8©, which involves blobs moving over time (e.g. a
spreading bush fire), yields high variability while case 7© does not.

Object lifespan: Object lifespan refers to how long 2D space-
time objects persist on average, which has an influence on the portion
of the time axis covered by the 3D space-time objects. The lifes-
pan is maximum when all objects span the entire time axis (Figure
26 1© to 4©). Regular matrix data also yield a maximum lifespan
(Figure 26 5© and 6©). In contrast, objects can reflect events that
have a start and an end: 8© involves short object lifespans whereas
7© involves relatively long object lifespans. Events without duration

produce the shortest possible lifespans, and yield inner structures
consisting of points. Since objects do not persist, there is no vari-
ability in positions or visual attributes.

The inner structure of any space-time cube can be described along
the four previous dimensions. For example, the earthquake cube in
Figure 23(a) is relatively sparse and has minimal object lifespan.
The dynamic network cube in Figure 23(b) is also relatively sparse,
but has various lifespans (long for nodes and minimal for links).
Also, nodes are columns that exhibit no variability in position but a
high variability in visual attributes (colour).

Thereby, it does not matter whether the initial data are discrete or
continuous in time or space. Discrete and continuous are two com-
plementary aspects, both encompassed by the generalized space-
time cube. For example, repeated (time chopping + time flattening)
can transform a continuous time dimension into a discrete time
dimension. On the other hand, time interpolation can yield a con-
tinuous impression of otherwise discrete data.

In the next section, we will see why a dataset’s characteristics
matter, and how the inner structure of a space-time cube can be
altered with space-time operations.

5. Which Operations Work Best?

So far we essentially focused on the descriptive function of our
framework: the different types of operations, how they can be com-
bined or made dynamic and the inner structure of space-time cubes.
We now have all the elements to discuss practical strengths and
weaknesses of space-time cube operations. This aims to support the
choice of operations when designing visualizations, to researching
novel visualization techniques to leverage the strengths and over-
come the drawbacks of space-time cube operations.

Strengths and weaknesses of operations are directly related to user
tasks, since certain operations yield visualizations that may better
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suit a certain task. So far, only few user studies compare space-time
cube operations but will be used to ground our discussion. However,
only a small subset of all possible operations have been covered by
user studies; many of the existing findings are hard to generalize
beyond the domain, type of data, and operation parameters used in
the stimuli. Thanks to the ability of our framework to reduce com-
plex techniques into elementary operations, useful advice can often
be provided based on more general knowledge on visual perception
and on common sense. With respect to data type, the inner structure
of a space-time cube can in many cases inform the suitability of cer-
tain operations. For example, if a dataset produces maximally dense
space-time cubes, a 3D representation will always be problematic
unless other operations (filtering, cutting) are used.

5.1. 3D rendering

3D rendering ([shading] + oblique flattening) is the operation most
commonly associated with the space-time cube concept, so it seems
necessary to start with a cautionary note. 3D visualizations are
known to pose major difficulties to users and are overall not rec-
ommended [Shn03, Mun15]. Difficulties include (i) occlusion, (ii)
depth ambiguity, (iii) perspective distortion, (iv) colour distortion
and (v) navigation difficulties, further discussed below. 3D render-
ing can however be useful for providing a general overview of a
space-time cube’s inner structure (density, variability and object
lifespan). It is also the most effective approach when the goal is to
have observers explicitly think in terms of a space-time cube, as it
is the case for most diagrams in this paper.

Occlusion issues are due to the use of a flattening operation to-
gether with an overplotting aggregation function (i.e. near objects
are drawn on top of far objects). The amount of occlusion depends
on the density of the inner structure (see Figure 27). Therefore, 3D
rendering is mostly adapted to sparse structures, as in Figure 23.
Additional space-time cube operations can however be employed for
visualizing dense (and sometimes complete) structures. An effective
technique involves sparsifying the cube’s structure using interactive
filtering [CFC*96, BPF14b]. A related approach involves the use
of translucency filtering or more generally, translucent space-time
objects (Figure 26). However, translucency produces visual clutter
without fully addressing the problem of occlusion, and we found few
instances of this technique yielding legible results. Also, occlusion
is an important depth cue [WFG92] that is mostly lost when translu-

Figure 27: A time-evolving network rendered in 3D with translu-
cency [BC03].

cency is employed. For similar reasons, we recommend against
making the whole space-time cube translucent—or equivalently,
using an alpha blending aggregation function. Elaborate interac-
tive operations exist that can decompose a space-time cube using
extraction and rigid transformation operations, and allow users to
look inside [CCF96].

In cases where space-time objects are densely clustered around
certain areas with the space-time cube, aggregation can help reduc-
ing visual complexity and occlusion. In order to avoid rigid objects
inside the cube, clusters of space-time cube objects can be estimated
through transparency [DV10].

The flattening operation is further responsible for causing depth
ambiguity. In Figure 23(a) for example, it is impossible to extract
the spatio-temporal coordinates of the points. In the real world,
most depth ambiguities are resolved through stereoscopic vision
and structure from motion [Tod04, WFG92]. Structure from mo-
tion is as powerful as stereoscopic vision [Tod04], and this is why
3D rendering is the most effective when the space-time cube is
allowed to rotate through animated or interactive 3D rendering. In-
cidentally, being able to ‘look behind’ space-time objects also mit-
igates occlusion problems. When interaction cannot be used (e.g.
on paper media), static depth cues are crucial. One approach for
structures with no or very low variability in positions is to have
space-time objects “touch” the ground. This is already the case for
structures with maximum object lifespans such as in Figure 23(b).
For short object lifespans like in Figure 23(a), it is advised to either
add lines connecting objects to the ground [KW04] or add drop
shadows [WFG92, TKB07] by applying a shading operation with
perpendicular lighting.

Perspective distortion is due to the use of a perspective projection
function: far objects appear smaller than near objects, making it
difficult to accurately compare sizes and lengths. This issue can
be eliminated with the use of an ortographic projection function
instead. However, doing so will eliminate an important depth cue
and may produce depth reversals analogous to the necker cube
illusion [WFG92]. Again, this type of ambiguity can be alleviated
by the use of other depth cues such as occlusion, contact and shading.

Colour distortion is a side-effect of the shading operation, since
it alters the colour of the space-time objects. This is not a problem
when colour is not encoding information or when simple colour
scales are used as in Figure 23(b), but could be an issue when
numerical data are encoded through brightness.

Navigation difficulties with 3D visualizations are due to the
oblique flattening operation having too many degrees of freedom.
One way to facilitate navigation is to add constraints, that is, only
let users manipulate 3D renderings in ways that are essential to their
task [SSS*01, Shn03].

Generally speaking, space-time cubes are a convenient concep-
tual tool for thinking about temporal visualizations, but explicitly
showing them using 3D rendering poses a number of problems and
should be done only when necessary (e.g. for showing an overview
or for explanatory purposes). Computer screens and paper are 2D
media, and are optimized for 2D visualizations [Shn03]. As we have
already seen, many 2D solutions exist to show temporal data.
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5.2. Time flattening

Time flattening (Figure 7) can be seen as a 2D technique, or as a
specific form of 3D rendering where ambiguities are purposeful
and animation or interaction are not necessary to make sense of the
data. Time flattening essentially turns a space-time cube into a spatial
visualization: each point on the resulting image shows the history
of this point aggregated over time. As a result, spatial relationships
and trends are preserved and are clearly visible, such as the path
of Napoleon’s army in Figure 8 or the distribution of data values
in Figure 9(b). Any aggregation function can be used, for example,
alpha-blending for showing averages, or more elaborate techniques
for showing cumulative statistics (Figure 9(a)).

The major drawback of time flattening is that it reduces the
time axis to a point (Figure 7), so most temporal information is
lost, including the ordering of events, temporal intervals and abso-
lute timestamps. However, part of this information can sometimes
be cognitively reconstructed from object trajectories. For exam-
ple, when reading Napoleon’s march (Figure 8), one knows that
an army does not jump between random locations but progresses
smoothly, so not all orderings of events are plausible. Knowing that
an army generally shrinks in size is then enough to infer its direc-
tion of motion: eastward then westward. The assumption of motion
smoothness also helps to read the infographics of Figure 11: the ice
skater either progresses from left to right, or from right to left. Basic
knowledge about how a human body moves then suffices to entirely
reconstruct the direction of motion and the ordering of events.

For flattened trajectories to be legible and informative, the space-
time cube needs to be spatially sparse, with long object lifespans,
and exhibit a reasonable amount of variability in positions and in
visual attributes. A space-time cube can sometimes be processed
to meet these criteria. For example, time colouring (Figure 13) is a
way of adding variability in visual attributes. This operation has the
additional advantage of explicitly encoding time. However, colour
is a poor visual attribute since the human visual system cannot
discriminate between many colours [CAS05], and no colour scale
exists that naturally maps to time. For example, red in Figure 13(a)
represents old events, while it represents new events in Figure 13(b).
If time intervals (or object speeds) are more important than absolute
times, a more effective approach is to change the colour or shape of
objects at regular time intervals.

Additional operations can be applied to a space-time cube in order
to reintroduce missing time information. For example, the Phillips
curve in Figure 9(b) uses semantic volume interpolation to connect
points and show their ordering. Both Figure 9(b) and Figure 8 (for
the army’s return trip) employ time labelling to explicitly convey
event timestamps.

Discrete time flattening (time cutting* + time flattening) is a
variant that can also clearly expose time intervals and object speeds.
Since this technique can result in loss of information, it works
best for structures that are sparse in time. The way time cuts are
selected is important. Equidistant cuts generally expose relative
times, durations and rates of change. When not all cuts are equally
informative, non-equidistant cuts may be preferred, but at the cost
of losing most of this temporal information. If cuts are chosen so

that objects do not overlap, these objects become clearly visible.
This technique is used in Figure 11 to expose the skater’s posture,
an information that helps to read the visualization.

In summary, time flattening is an operation that produces easy-to-
interpret visualizations: space simply maps to space. It is useful for
showing data patterns aggregated over time and where space is more
important than time. But since it collapses the time axis into a point,
it is most powerful when it can leverage humans’ ability to recon-
struct time from trajectories. This often requires the use of additional
space-time cube operations and a very careful visual design.

5.3. Space flattening

Space flattening (Figure 19) is another form of orthogonal flattening
that avoids some of the drawbacks of regular 3D rendering. The or-
thogonal projection function creates a meaningful spatial encoding,
since one axis maps to time while the other axis maps to space. The
resulting visualization can be read as a regular timeline.

Space flattening is effective when both time and space are impor-
tant, but one dimension of space is more informative than the other.
This is the case for edit patterns in Wikipedia articles (Figure 20(a)).
This technique is also useful for focusing on one data dimension at
a time, when the two data axes have clearly different roles (e.g. in a
2D scatterplot). However, it produces visualizations that are gener-
ally less easy to interpret if the base plane does not have a natural
coordinates system (e.g. in a node-link diagram or on a map).

Other cases require a linear ordering of data elements along the
single remaining spatial dimension, in order to avoid occlusion. Such
a linear ordering can be obtained by unfolding as in Marey’s train
schedule (Figure 17). In networks, a linear ordering of nodes can
help reduce visual clutter caused by edge crossings. An ordering
can be defined based on different criteria and strongly influence
the overall readability of the visualization, as well as emphasize
particular patterns [vdEHBvW13].

5.4. Time cutting

So far we covered different types of flattening techniques. These
techniques essentially aggregate the data in a space-time cube and
are helpful for overview tasks, but fail at providing details. We now
turn to extraction techniques. Among these techniques, time cutting
is by far the most common. A single time cut provides a clean and
fully detailed snapshot of a particular time stamp. It can potentially
fill the entire screen and show many details, and is furthermore
free of using any additional visual variable for time (e.g. colour,
brightness). A simple time labelling of the time cut can be enough.

However, since the goal of a temporal visualization is to show
information across time, more than one time cut must be shown. We
already mentioned discrete time flattening as a possible approach,
although it still suffers from the drawbacks of aggregation. Two
aggregation-free alternatives are time juxtaposing and animated time
cutting. We review them separately, then discuss empirical research
comparing both.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



50 B. Bach et al. / Generalized Space-Time Cube

5.5. Time juxtaposing

Time juxtaposing ({time cutting + space scaling + space shifting}*
+ time flattening) allows to show different time slices simultane-
ously. Due to our exposure to sequential art, it produces familiar
visualizations, that are easy to interpret. Usually, space shifting
follows the occidental convention of laying out time slices either
linearly from left to right, or on 2D from left to right then top to
bottom [McC94].

The main advantage of time juxtaposing over flattening is the
legibility of individual time slices due to the absence of occlusion.
However, the space scaling operation also has the effect of shrinking
time slices: the more slices are shown, the less space—and therefore
resolution—every slice has. The time juxtaposing operation there-
fore requires finding the best trade-off between spatial and temporal
resolution.

A potentially serious drawback of time juxtaposing is that time
slices use inconsistent spatial coordinate systems, due to the space
shifting operation. This can make it difficult to relate moving objects
across time slices and reconstructing their trajectories. However,
if objects on a time slice can be visually distinguished and have
a consistent appearance across time (i.e. low variability in visual
attributes and in positions), relating time slices becomes easier. With
few objects and pre-attentive visual encodings [War12], relating
slices can be effortless. If there are many objects in each time slice
and/or high variability in positions and visual attributes, tasks may
still require visual search and split attention. However, this effort
can be alleviated through interaction by adding brushing and linking
support [BC87].

Time juxtaposing is analogous to discrete time flattening, except
time slices are laid out next to each other instead of being blended
into a single image. As a result, the technique yields similar benefits
compared to a regular time flattening. One is that it is able to ex-
pose the temporal information that is otherwise lost by aggregation,
including event ordering, time intervals, speeds and absolute time
stamps. But again, this assumes that objects can be easily related
across slices, which can be difficult when slices do not share the
same coordinates system.

Like with discrete time flattening, the proper choice of time slices
is crucial with time juxtaposing, with the difference that granularity
also affects spatial resolution. Again, equidistant cuts are better at
preserving temporal information. But when not all cuts are equally
informative, non-equidistant cuts (i.e. semantic time cutting) may be
preferred. For example, when showing changes in territory, histori-
cal atlases and newspapers often employ this technique to emphasize
different periods and historical events (Figure 28). Individual dates

Figure 28: Territory of later Yugoslavia (red line).

typically need to be added (i.e. time labelling) to reintroduce the
missing time information.

5.6. Animated time cutting

A popular way of exploiting time cutting is through animated time
cutting. This approach inherits the benefits of time cutting compared
to flattening in that there is no aggregation. Therefore, individual
time slices can be seen clearly, without occlusion. In addition, an-
imated time cutting is probably the most ‘natural’ and easiest to
interpret among all possible techniques, since space maps to space
and time maps to time. Animations can also be visually appealing
and users can find them engaging.

In contrast with time juxtaposing, animated time cutting does
not suffer from the reduced spatial resolution due to space scaling:
each time slice can span the entire screen. Also, many time slices
can be shown in a short period of time (e.g. 60 in only 1 s on a
60-Hz display). However, fast animations are not necessarily easy
to comprehend. If a space-time cube’s structure is temporally dense
(e.g. a long surveillance video), an animation can take time to be
perceived and understood [TMB02]. As with previous techniques,
semantic time cutting can be used to speed up the playback when
not all time cuts are equally informative [PJH05]. Nevertheless, like
time juxtaposing, the technique may not be suitable for conveying
information with extremely high temporal density, and aggregation
(e.g. in the form of time flattening) may be preferable.

One major drawback of animated time cutting is that time slices
must be presented in a pre-defined (typically chronological) order.
As a result, the user must rely on memory in order to fully understand
the data [Mun15]. Since time slices are not shown simultaneously,
they cannot be freely accessed [TMB02]. This makes it difficult to
carry out many types of exploratory tasks, such as comparing two
non-successive slices, or examining a slice in context with other
slices. Annotations are also impossible. These are serious issues
that can be partly alleviated by using interactive time slicing instead
of animated time slicing and allow to animate between non-adjacent
time cuts [BPF14a]. But these techniques do not preclude the use
of memorization. Also, both animated and interactive time slicing
usually requires dynamic displays (though on can think of physical
flipbooks), whereas all previous methods are compatible with actual
static media such as newspapers.

Nevertheless, animated time cutting can be very effective at re-
vealing changes between successive slices, as our visual system
is equipped for pre-attentively detecting in-place changes [Bar97].
It can reveal subtle visual changes that are hard or impossible to
detect otherwise [WB05, GMH*06], as well as large and drastic vi-
sual changes. Our perceptual ability to detect and interpret changes,
however, requires the absence of visual disturbances (e.g. flicker)
between time slices of interest [Ren02], and ideally, that successive
time slices are similar enough to be visually integrated and perceived
as a motion [FT06]. This means the variability in positions should
not be too high as to produce large discontinuities. If it is the case,
time interpolation or volume interpolation need to be used to pro-
duce smooth animated transitions. Changes can also be highlighted
(e.g. through a difference colouring operation [APP10, RM13,
BPF14a]) in order to facilitate their detection and interpretation.
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5.7. Stabilization

The stabilization operation can be used to complement several of the
previously seen approaches. While interpolation allows to produce
smooth transitions between pre-defined time slices, stabilization al-
lows to reduce variability in positions when positions do not encode
data. Although it may reduce the legibility of trajectories when using
time flattening, this technique may facilitate object tracking tasks in
animated time cutting and object mapping tasks in time juxtaposing.
It is mostly used in dynamic graph drawing. The goal of dynamic
graph drawing is to compute optimal layouts for time-evolving net-
works by either partially stabilizing nodes, or by computing a fixed
global layout (Figure 23(b)). The underlying motivation is to al-
low users to maintain a spatial ‘mental map’ of the data [ELMS91,
MELS95, AP13].

5.8. Empirical evidence

There has been a considerable amount of literature in infovis, car-
tography and educational psychology about the respective merits
and weaknesses of animated versus static representations [TMB02].
The scientific debate essentially opposes time juxtaposing with in-
teractive time cutting. Other studies, mostly from the domain of
geo-spatial visualization, compared time flattening with 3D render-
ing and sometimes with animated time cutting.

Overall, studies suggest that time juxtaposing can be effective
for many tasks as long as objects of interest can be easily related
across time slices or visually indicated through linked highlighting.
It has been shown to be faster and more accurate than interactive
time cutting for understanding temporal trends in dynamic scatter-
plots [RFF*08]. For dynamic network analysis, it has been consis-
tently shown to be faster for a number of tasks (e.g. reading change
in node degree or number), with no measurable difference in error
rates [APP11, FQ11]. Thus, for most tasks, time juxtaposing has
been shown to be faster than interactive animation with no impact
on the error rate [TMB02].

However, in specific circumstances, interactive time cutting has
been shown to bring advantages. For example, it yields less errors
when detecting the simultaneous appearance of nodes or edges in
a network visualization, although it is slower [APP11]. Animated
time cutting is very effective for highlighting subsets of data against
a similarly looking background. Ware and Bobrow [WB05] demon-
strate this quite convincingly for highlighting subgraphs in a large
graph, and Griffen et al. find that it helps identify moving clus-
ters against a background with identical colours [GMH*06]. In
both cases, animation was both more accurate and faster. There is
also some evidence that participants use both spatial and motion
information when memorizing animated network sequences, sug-
gesting that animation can help with the memorization of dynamic
data [AP12b]. Thus, interactive time cutting and animated time cut-
ting seem useful for highlighting data subsets (using motion) and
for representing a small number of dynamic changes. Short anima-
tions, consisting of just two to three time steps, may be useful for
clarifying drastic reorientations in the visual representation of the
data [TMB02]. There is some evidence to support this finding in the
context of dynamic graphs where the stability of the drawing is low
and important nodes in the task cannot be highlighted throughout
the time series [AP16].

Concerning the efficiency of 3D rendering, results are also mixed.
On a dataset of four people moving through space, Kristensson
et al. [KDA*09] found that time flattening with space colouring
(each person had an individual colour) performed better for simple
tasks than 3D rendering with shading. However, the latter was found
to better support more complex overview tasks. Investigating similar
techniques but on a much larger dataset (203 trajectories), Kveladze
et al. [KK12] conduced a participatory design session with experts
in geography. Experts reported that shading and mapping data at-
tributes to trajectory thickness cluttered the visualization. Instead,
they required space colouring in order to better distinguish people.
Time flattening was generally perceived too overloaded. However,
experts further reported that 3D rendering ‘helps in earlier stages
of the research to get some hints about the data’.

Willems et al. [WvdWvW11] compared non-interactive animated
time cutting with 3D rendering and an enhanced version of time flat-
tening [WvdWvW09]. Results show that overall, each technique was
best for one task. The study discusses many exceptions, depending
on data density and variability in position. Animated time cutting
was reported to be the least robust to a high variability in position.
For the number of objects, Willems et al. report that 3D render-
ing was least scalable, while animated time cutting performed best.
Comparing interactive animated time cutting, time juxtaposing and
aggregation (iso-surfaces) in a space-time cube, Brunsdon et al.
[BCH07] came to similar results.âs movement.

The stabilization operation has also been empirically studied.
Many studies found no positive effect [PS08, SP08, APP11, AP12b].
However, studies on directed graphs [PHG06] and recent studies
on general, undirected graphs [GEY12, AP12a] have demonstrated
benefits on mental map preservation. Overall, stabilization can help
for a number of tasks, but further study is needed.

Overall, previous empirical studies paint a complex picture, and
several controversies such as static versus animated and 2D ver-
sus 3D are far from being settled. Many studies emphasize task
as a main source of trade-off. But most likely, the respective ad-
vantages of different approaches also heavily depend on the inner
structure of space-time cubes and on the specific space-time cube
operations being used. For example, employing smooth transitions
(an interpolation operation) and giving subjects control over ani-
mations (interactive time cutting) can have a huge impact on the
effectiveness of animations. Also, different datasets may produce
widely different inner structures, and dramatically influence the ef-
ficacy of techniques. By clarifying these differences and providing a
terminology to describe them, we hope that our framework will help
design more informative user studies and eventually settle ongoing
debates.

5.9. Other operations

We discussed the benefits and drawbacks of space-time cube oper-
ations commonly used for visualizing temporal data. As suggested
by our framework (the elementary operation taxonomy in Figure 24
and the different ways to combine them), a possibly infinite variety
of operations exist and it is impossible to analyse them all. It is
likely that among all possible operations—especially the least con-
strained ones such as oblique and non-planar operations—the vast
majority will be harder to read and to interpret. Popular approaches
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are particular in that they mostly involve orthogonal operations, es-
pecially along the time axis (i.e. time flattening and time cutting).
One striking exception is 3D rendering, which combines several
complex operations to emulate how we perceive solid objects in
the real world (e.g. rotation, perspective projection, shading) and
produces familiar (but sometimes illegible) images.

It is however also likely that the immense design space of space-
time cube operations contains techniques that need to be learned, but
can yield unique benefits for specific temporal data analysis tasks
that usefully complement standard approaches. Some of these have
already been discovered (see, e.g. Figures 2, 5, 15, 17, 18, 20(a),
31). The exciting possibility that the design space contains a number
other ‘pearls’ to be discovered stresses the importance of research in
novel temporal visualization techniques. By discussing the multiple
trade-offs involved in known techniques and explaining how these
trade-offs originate from the intrinsic properties of elementary oper-
ations, we hope that our framework will be able to guide designers
and accelerate future discoveries. Another promising line of work
consists in supporting multiple space-time cube operations, and is
discussed next.

6. Space-Time Cube Systems

Choosing an appropriate space-time cube operation depends on
many factors and almost always involves trade-offs. In this sec-
tion, we review a representative sample of visualization systems
that address this issue by supporting multiple space-time cube op-
erations. Those systems almost invariably use 3D rendering as an
explicit representation of the space time cube, both for showing an
overview and for explaining how different operations relate. Opera-
tions are implemented on the visual model of the cube. We call these
systems space-time cube systems and the traditional understanding
of space-time cube in geo-visualization is in fact a geographical
space-time cube system. Because space-time cube systems work by
letting people switch between different operations and tune their
parameters, interaction and animation are central features.

6.1. GeoTime

GeoTime is a carefully designed commercial system for analysing
spatio-temporal data [geo, KW04]. Events are shown as spheres
on a 3D rendering view that can be freely rotated (Figure 29(a)).
This view also uses a reference plane, and a semantic volume in-
terpolation operation is applied to indicate event ordering. Users
can perform time chopping operations by dragging on a timeline
widget. GeoTime also supports time flattening and space flattening.
Figure 29(a) shows a space flattening view where time runs from
top to bottom, and a reference plane is provided that can be rotated.
Thin grey lines connect the two views. Finally, pan and zoom is
supported through space chopping + space scaling.

6.2. Tardis

Tardis [CCT*99, CFC*96] is a system for visualizing environmental
data using 3D rendering in combination with advanced space-time
cube operations. The voxels in the cube are colour-coded depending

Figure 29: Illustration after GeoTime [geo]

Figure 30: Tardis [CCT99] and visual access [CFC96]

on the type of vegetation, its age, soil characteristics or the presence
of bush fires (Figure 30).

Tardis implements interactive semantic filtering: users can, for
example, select a particular type of vegetation or a range of vege-
tation ages. In addition, Tardis supports interactive orthogonal cut-
ting, but in contrast with our previous examples, cutting is always
used in combination with 3D rendering. Users can define and ma-
nipulate multiple orthogonal cutting planes (Figure 30(a)). Further
operations include opening the cube like a book (interactive (volume
extraction + rotation)*) or applying a 3D fisheye effect (interactive
(volume extraction + translation)*), pushing away voxels from the
cursor (‘Visual Access Distortion’, Figure 30(b)).

6.3. VISUAL-TimePAcTS

VISUAL-TimePAcTS is a system for analysing activity di-
aries [VFC10]. It uses non-geographical space-time cubes. The
cube’s two data axes can be mapped to data dimensions such as
individuals, locations or activities. We focus on the case where one
axis maps to individuals while the other axis maps to activities.
Activities are also encoded using colour.

VISUAL-TimePAcTS supports linear space flattening on both
data axes. Figure 31(a) shows six individuals (horizontal axis) and
their activities (colours) across time (vertical axis). Figure 31(c)
shows the evolution of activities aggregated across all people over
time. VISUAL-TimePAcTS supports a seamless transition between
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Figure 31: VISUAL TimePAcTS [VFC10]. (a) Space Fflattening
on activities,(b) Ooblique flattening, and (c) Sspace flattening on
individuals.

the two operations through interactive 3D rendering (Figure 31(c)).
Since 3D rendering employs orthographic projection and no shad-
ing, it is essentially an oblique flattening operation.

VISUAL-TimePAcTS supports a more elaborate space-time cube
operation that prevents visual marks from overlapping due to flatten-
ing. In Figure 31(c), for example, individuals are horizontally offset
when several of them do the same activity at the same time. This
technique is called shearing by the authors, and is further explained
in Figures 31(d), 31(e). This technique is essentially a (linear space
cutting + space shifting)* + space flattening operation, and is a
hybrid between space juxtaposing and space flattening.

6.4. Cubix

Cubix is a system for analysing dynamic weighted networks through
adjacency matrix representations [BPF14b]. A 3D rendering pro-
vides an overview of the data (Figure 32(a)). Time goes from left
to right. Each cell of the cube represents a connection between two
nodes at a given time, with size depending on connection weight.
Cells can be colour-coded according to time, weight or direction.

Cubix supports a range of space-time cube operations, includ-
ing time juxtaposing (Figure 32(b)), space juxtaposing (detail in
Figure 32(d)), animated time cutting , animated space cutting, time
flattening and space flattening. For flattening operations, cells can
be made translucent to visually aggregate the history of connections.
Cubix also supports semantic filtering on connections based on their
weight.

Cubix provides a control widget in the form of a stylized cube, and
whose different parts can be clicked or dragged to switch between
operations. All operation switches are explained using animated
transitions through rotations of the 3D rendering representation, or
through staged animations of extraction and rigid transformation
operations.

Figure 32: Different operations applied to a time-evolving adja-
cency matrix in Cubix [BPF14b].

Figure 33: (a) Video Ccubism [FLM00]; (b) V 3 [DC03].

6.5. Video cube systems

Several space-time cube systems have been proposed to sup-
port video analysis [MB98, FLM00, DC03, CI05]. Video Cubism
[FLM00] uses a 3D rendering representation together with an inter-
active volume extraction operation that is defined by manipulating
a planar cutting plane (Figure 33(a)). Similary, Khronos projector
[CI05] supports manipulation of a non-planar cutting plane using
touch or mid-air gestures (Figure 5). V 3 [DC03] (Volume Visu-
alization for Videos) supports different operations, including time
juxtaposing and a 3D rendering view that can be combined with a
bending operation (Figure 33(b)). V 3 also supports filtering opera-
tions that allow removal of pixels of a certain colour, or pixels that
do not change across a given time period.

6.6. Wakame

Wakame [FW10] is a system for visualizing multivariate data by
extruding starplots along a time dimension. The base plane of the
space-time cube lays out starplots by their geographical location,
although any layout could be imagined (Figure 34(a)). Colours cor-
respond to dimension in the data.

Wakame supports three operations: oblique flattening
(Figure 34(a)), time flattening (Figure 31(b)) and time cut-
ting. In oblique flattening, extruded starplots can be rendered as
traditional timeline charts as shown in Figure 31(b). The system
provides an animated transition to the time-flattening where those
timeline charts are shown aligned and in 2D. For time-cutting, the
user selects a single time point on the complementary timeline and
the system moves the camera orthogonal to the base plane.

Besides the space-time cube systems reviewed in this section,
there is a wealth of general 3D visualization systems. Commercial
and research tools exist in domains such as geovisualization
(e.g. Voxler [Vox], ArcGIS [arc]), scientific visualization (e.g.
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Figure 34: Wakame [FW10].

VTK [SAH00], Matlab [mat] and R [r]) and medical visualiza-
tion [MTB03]. Although these tools do not treat time as a specific
dimension, they can be used to inspire the design of interactive
space-time cube systems.

7. General Discussion

We now discuss the limitations of our descriptive framework and
consider areas for future research, including unifying our framework
with the infovis pipeline model, extending it to other dimensional-
ities, discussing OLAP-cubes, considering non-planar media (e.g.
physical visualizations), as well as discussing user tasks.

7.1. Comparison with the infovis pipeline model

Since our framework builds on the notion of sequential composition
of operations, it shares similarities with another common model: the
infovis reference model, also called the infovis pipeline [CMS99,
Chi00, JD13]. The infovis pipeline sees visualization as a data-
flow process, that is, a sequence of stages and transformations that
turn raw data into a final image. These transformations commonly
include data transformation, visual mapping, presentation mapping
and rendering [JD13]. Interactivity is implemented by having data
analysts alter these transformations at different stages.

There is clearly an analogy between transformations on the info-
vis pipeline and operations on a space-time cube, since both describe
steps in creating a visualization. However, the infovis pipeline de-
scribes steps for the implementation of a visualization, that is, when
and in which order data are transformed and mapped onto visual
variables in a visualization. Space-time cube operations, on the other
hand, are purely conceptual and do not imply any direct implemen-
tation; a slice from a cube could be seen as a data object, a graphical
object, something in-between or something blending the two. Our
model rather turns a 3D conceptual space into a 2D visualization
space, regardless of how the visualization is eventually implemented
on the infovis pipeline.

In fact, some space-time operations can be performed at different
stages of the infovis pipeline, for example, time flattening can be
done at the data transformation stage, by aggregating raw data over
time. Alternatively, it could be emulated by explicitly rendering a 3D
space-time cube on the screen and using a proper camera placement
and projection transformation. In that case, it would be implemented
at the rendering level. Frame buffers objects are another example
as they can store data, while running on the GPU [ME09]. Both

models, the infovis pipeline and the generalized space-time cube,
are complementary.

Finally, the infovis pipeline is a general model for visualizations,
where the sequence of operations is fixed, but the operations them-
selves are rather abstract. For example, the infovis pipeline model
provides no specific details about what happens in the visual map-
ping transformation. In contrast, our model only captures a specific
family of visualizations (temporal visualizations), its sequence of
operations is not fixed and the operations are more concrete. The
infovis pipeline is more general but too high level to capture the sim-
ilarities and differences between the visualizations we presented. On
the other hand, our model is incomplete in that it does not define
how the space-time cube is built.

To fully support a variety of space-time cube operations on the
same dataset, the generalized space-time cube must be implemented
as a first-class object, as done in many space-time cube systems
(Section 6). Thus space-time cube operations are best seen as pre-
sentation mapping or rendering transformations, that is, transfor-
mations that turn the abstract visual form into a fully specified 2D
image or 3D model [JD13]. In other terms, our space-time cube
operations can be used to decompose and refine the presentation
mapping transformation of the infovis pipeline. We believe that im-
plementing our framework in this way, and potentially based on
abstract inner structures of space-time cubes, could dramatically
facilitate the exploration of a wide range of temporal datasets.

7.2. Other dimensionalities

This paper focused on temporal visualizations that involve two di-
mensions in the base plane plus time. These two dimensions can
be inherently spatial or can result from 2D spatial encodings of
non-spatial data. However, temporal visualizations with other di-
mensionalities exist or may be required for specific problems.

Most notably, a rich variety of temporal visualizations exist that
involve a single spatial dimension plus time, for example, timelines
and time-series visualizations [AMST11]. In principle, our frame-
work still applies if the 3D space-time cube is turned into a 2D space-
time plane. Operations analogous to our geometry transformation
operations would capture techniques such as spiral visualizations,
calendar visualizations or cycle plots [AMST11]. However, since a
2D space-time plane already naturally maps to a 2D planar display,
and since the richness of time-series visualizations and timelines
mostly stem from the visual encodings used, the usefulness of our
framework would be less clear in this case.

Other temporal visualization techniques, although less common,
show three spatial dimensions plus time. We believe most of them
can be captured with operations on 4D space-time hypercubes. For
example, Tufte explains how small multiples can be used to show the
evolution of a 3D storm [BB95]. This approach amounts to applying
a time juxtaposition operation on a space-time hypercube, where
each time cutting operation yields a 3D image. Similarly, From-
DaDy [HTC09] uses 3D trails to show the trajectories of airplanes
in space. This technique amounts to performing a time flattening on
a space-time hypercube. Extending our framework to higher data
dimensionalities is an exciting topic for future research. However,
it is less easy to imagine a hypercube than a cube, so the merits of
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such a conceptual model still remain to be seen. Another solution
to explore high-dimensional temporal data is to use dimensional
reduction [BSH*16, vdEHBvW16].

7.3. OLAP cubes

Related to both implementation and higher dimensionalities of the
generalized space-time cube are data cubes [GCB*97] in OLAP
cubes. OLAP cubes consist of three data dimensions, selected freely
from a potentially high dimensional dataset and do not have to
involve a single temporal dimension. In this sense, OLAP cubes
could be seen as superset to all space-time cubes. However, OLAP
cubes are unable to capture ‘moving’ objects such as animals or
nodes in a network (Figure 26, 1© to 4©), hence representing only
a subset of all space-time cubes.

OLAP cubes are meant for querying and aggregating multi-
dimensional data, rather than for visualization and exploration. They
are pure logical models, and we are not aware of any visualization
system that explicitly uses OLAP cubes. Some OLAP operations
indeed share striking analogies with STC operations, namely slice
(time and space cutting), dice (space and time chopping) and roll-up
(space and time flattening). Other operations on OLAP cubes, not
explicitly supported by space-time cubes, are drill-down (zooming
in and effectively being the reverse of flattening) and pivot (reas-
signing dimensions of the cube). In supporting these operations, the
spatial structure of the OLAP cube can vary and is not persistent, as
in space-time cubes.

Future work could extend our framework to OLAP cubes. This
would include (i) to differentiate between the two dimensions of the
base plane, and consequently to (ii) extend the number of existing
operations (e.g. enable cutting on each of the three cube dimensions).
Finally, operations currently supported by OLAP cubes should be
discussed for their general applicability to actual space-time cubes.

7.4. Non-planar media

Throughout this paper, we assumed the presentation medium to be
planar. Although these are by far the most common, other display
shapes are being explored in HCI, some of which are even de-
formable [RPPH12, HV08]. In these cases, the conditions for an
operation to be complete are not the same. This opens up a wide
range of possibilities for new visualization designs. For example,
one implementation of the Khronos projector (Figure 5) employs
back projection on a freely deformable cloth, allowing the use of
non-planar cutting operations that are complete. In addition, phys-
ical visualizations make it possible to faithfully display 3D space-
time cubes without any additional operations [JDF13, JD13]. Many
such visualizations have been already crafted by scientists, artists
and designers [DJ13].

Physical temporal visualizations can even be made modular to
support interactive space-time cube operations. Figure 35(a) shows
two physical representations of a dynamic network [BPF14b] made
of laser-cut and laser-engraved acrylic. The left version supports
interactive time cutting while the right version supports interactive
space cutting. Cuts can be taken apart and manipulated freely, al-
lowing for time juxtaposing and space juxtaposing as well as time

Figure 35: Examples of physical space-time cubes: (a) Mmatrix
Ccube for dynamic network [BPF14b] (made by Benjamin Bach),
(b) Ssubversion commits on different research projects over time
[SSJ14].

flattening and space flattening, if viewed from a proper orthogonal
angle and distance. Figure 35(b) shows SVN commits over time.
Time goes from left to right, and different layers represent different
projects. Slices can also be taken apart and reordered. For another
example see [STB13].

7.5. Towards a prescriptive model

Our framework is mostly descriptive. A prescriptive model in turn
can help us making implications about which operations to use for
which data and tasks. Unfortunately, we need more empirical stud-
ies to assess the relative effectiveness of different space-time cube
operations with respect to specific tasks as well as data types and
characteristics. Although many studies have already been conducted
(as discussed before), the current body of evidence paints a complex
and partly inconclusive picture. This may be due to the lack of a clear
and detailed descriptive framework. A clear descriptive framework
allows us to better tease apart the effects of different subtle design
features and to better control for confounds. We showed how many
temporal visualization techniques can be decomposed into elemen-
tary operations. These operations can be combined in many ways
or made dynamic at different levels, either through animation or in-
teraction. The characterization of the inner structure of space-time
cubes may already provide many elements to discuss the practical
strengths and weaknesses of space-time cube operations, mostly
based on well-established knowledge on perception and HCI, and
on common sense.

Running studies for answering specific research questions will
naturally remain important, and we hope our descriptive framework
will facilitate the design of such studies and the discussion of find-
ings in a more informative manner, leading to a more prescriptive
framework in the future.

7.6. User tasks

In our discussion on the advantages and drawbacks of certain space-
time cube operations, we have mostly focused on the inner structure
of the space-time cubes as a source of trade-offs. However, the
process of creating a successful visualization also has to take into
account the user’s tasks. There have been efforts at proposing task
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Figure 36: Energy consumption over time [vWvS99]: the horizontal
axis is mapped to days while the other one is mapped to hours.

taxonomies that should complement our framework (e.g. [Mac95,
AA05, Rot13, APS14, BPF14a]). However, we do not yet see a
straightforward mapping between operations and the tasks they sup-
port best. As already mentioned, more effort is needed to come up
with domain-agnostic task taxonomies.

7.7. Other limitations

Our framework is only meant to be a thinking tool. Like any model,
it is necessarily incomplete. First, our taxonomy of elementary oper-
ations in Figure 24 is not meant to cover all possible operations since
their number is potentially infinite and the taxonomy can easily be
extended. Second, our framework does not provide much guidance
for interaction design: the design space for interactive operations has
only been partially explored in research. Finally, not all techniques
for visualizing temporal data can be captured with space-time cubes.
For example, temporal data can be visualized using two time axes
instead of a single data axis (see Figure 36). Also, space-time cubes
may not account for branching times. However, our framework is
not meant to restrict creativity but rather to help visualization de-
signers find new solutions, extend or generalize existing ones and
think out of the box.

Our framework assumes that the space-time cube already exists. It
does not provide guidance for producing the space-time cube itself,
mainly because this process involves many decisions and should not
restrict the range of possible techniques. For non-spatial data, many
visual mappings can be used to produce individual slices, for exam-
ple, locations on a map can yield values for altitude, temperature,
rain, vegetation and soil type. How to visualize all these attributes
at any particular point in time is a general problem of infovis, but
the choice may also affect the efficiency of later space-time cube
operations. We hope that future work can clarify some of these
questions.

8. Conclusion

We reviewed various techniques to visualize temporal data, by de-
scribing them as sequences of parametric operations applied to a
conceptual space-time cube. Our operations are independent from

the underlying data and can be applied across a range of application
domains, be they cartography, dynamic network analysis, geopoli-
tics or video analytics. When choosing the appropriate operations,
a designer only needs to take into account the inner structure of the
space-time cubes generated by the data, and the users’ tasks.

Furthermore, by introducing domain-agnostic concepts and a
clear terminology, this paper aims at facilitating the comparison
of different approaches for visualizing temporal data. Existing vi-
sualizations from one data domain can be analysed in terms of
elementary operations and then be adapted to other domains and
problems. By giving a better vision of the richness of this design
space, we hope our model will also motivate the exploration of
new approaches. It stresses the importance of developing fully in-
tegrated interactive systems and toolkits that can support a range of
techniques in a consistent manner.

Our model further aims at facilitating the design of studies and
discussing their results in a more informative as well as formal man-
ner. We hope the presented terminology and low-level concepts will
help design better experiments that tease out important factors in
dynamic data visualization. Controlled studies are needed to under-
stand the trade-offs between different space-time cube operations
and how they perform depending on task, data and the people using
them.

This work mostly arose out of the need to teach temporal infovis
to undergrad students. We therefore hope that it will help other
people teach this field effectively, by providing a clear structure and
a clear terminology on which to base higher level discussions and
analyses.
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[DV10] DEMÅ¡AR U., VIRRANTAUS K.: Spaceâtime density of tra-
jectories: Exploring spatio-temporal patterns in movement data.
International Journal of Geographical Information Science 24,
10 (2010), 1527–1542.

[ELMS91] EADES P., LAI W., MISUE K., SUGIYAMA K.: Preserving the
mental map of a diagram. In Proceedings of Computer Graphics
(1991), Tokyo, Japan, Australian Computer Society, Inc. Dar-
linghurst, Australia, pp. 24–33.

[FBS06] FALKOWSKI T., BARTELHEIMER B., SPILIOPOULOU M.: Mining
and visualizing the evolution of subgroups in social networks. In
Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM International
Conference on (Hong Kong, Los Alamitos, CA, 2006), IEEE, pp.
52–58.

[FLM00] FELS S., LEE E., MASE K.: Techniques for interactive video
cubism (poster session). In Proceedings of International confer-
ence on Multimedia (New York, NY, USA, 2000), MULTIME-
DIA ’00, ACM, pp. 368–370.

[FQ11] FARRUGIA M., QUIGLEY A.: Effective temporal graph layout:
A comparative study of animations versus static display methods.
Information Visualization 10, 1 (2011), 47–64.

[FT06] FELDMAN J., TREMOULET P. D.: Individuation of visual objects
over time. Cognition 99, 2 (2006), 131–165.

[Fur86] FURNAS G. W.: Generalized fisheye views. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 1986), CHI ’86, ACM, pp. 16–23.

[FW10] FORLINES C., WITTENBURG K.: Wakame: Sense making of
multi-dimensional spatial-temporal data. In Proceedings of the
International Conference on Advanced Visual Interfaces (New
York, NY, USA, 2010), AVI ’10, ACM, pp. 33–40.

[GAA04] GATALSKY P., ANDRIENKO N., ANDRIENKO G.: Interactive
analysis of event data using space-time cube. In Proceedings of
the Information Visualisation, Eighth International Conference
(Washington, DC, USA, 2004), IV ’04, IEEE, pp. 145–152.

[GCB*97] GRAY J., CHAUDHURI S., BOSWORTH A., LAYMAN A., RE-
ICHART D., VENKATRAO M., PELLOW F., PIRAHESH H.: Data cube:
A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data Mining and Knowledge Discovery 1, 1
(January 1997), 29–53.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Bach et al. / Generalized Space-Time Cube 59

[geo] GeoTime. http://www.geotime.com. [Accessed 24 January
2014].

[GEY12] GHANI S., ELMQVIST N., YI J. S.: Perception of Animated
Node-Link Diagrams for Dynamic Graphs. The Eurographics
Association and Blackwell Publishing Ltd, Eurographics, Aire-
la-Ville, Switzerland, 2012.

[GHW09] GROH G., HANSTEIN H., WOERNDL W.: Interactively visu-
alizing dynamic social networks with DySoN. In Workshop on
Visual Interfaces to the Social and the Semantic Web (New York,
NY, USA, February 2009), ACM.

[GMH*06] GRIFFEN A. L., MACEACHREN A. M., HARDISTY F., STEINER

E., LI B.: A comparison of animated maps with static small-
multiple maps for visually identifying space-time clusters. Annals
of the Association of American Geographers 96, 4 (2006), 740–
753.

[Gre11] GRETCHEN P.: A Cartographer’s Toolkit - Small Mul-
tiples. http://www.gretchenpeterson.com/blog/small-multiples,
2011. (Accessed 24 January 2014).

[Har99] HARRIS R. L.: Information Graphics: A Comprehensive
Illustrated Reference. Oxford University Press, New York, NY,
1999.

[HEF*13] HURTER C., ERSOY O., FABRIKANT S., KLEIN T., TELEA A.:
Bundled visualization of dynamic graph and trail data. IEEE
TVCG, 99 (2013), 1141–1157.

[HET12] HURTER C., ERSOY O., TELEA A.: Graph bundling by kernel
density estimation. Computer Graphics Forum 31 (June 2012),
865–874.

[HKV12] HU Y., KOBOUROV S. G., VEERAMONI S.: Embedding, clus-
tering and coloring for dynamic maps. In Proceedings of Pacific
Visualization Symposium (Songdo, South Korea, 2012), Paci-
ficVis ’12, IEEE, pp. 33–40.

[HSCW13] HADLAK S., SCHUMANN H., CAP C. H., WOLLENBERG T.:
Supporting the visual analysis of dynamic networks by clustering
associated temporal attributes. IEEE TVCG 19, 12 (2013), 2267–
2276.

[HTC09] HURTER C., TISSOIRES B., CONVERSY S.: FromDaDy:
Spreading aircraft trajectories across views to support iterative
queries. IEEE TVCG 15, 6 (2009), 1017–1024.

[HV08] HOLMAN D., VERTEGAAL R.: Organic user interfaces: De-
signing computers in any way, shape, or form. Communications
of the ACM 51, 6 (2008), 48–55.
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[VWD04] VIÉGAS F. B., WATTENBERG M., DAVE K.: Studying coop-
eration and conflict between authors with history flow visual-

izations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2004), CHI
’04, ACM, pp. 575–582.

[vWvS99] VAN WIJK J. J., VAN SELOW E. R.: Cluster and calen-
dar based visualization of time series data. In Proceedings of
IEEE Symposium on Information Visualization (Washington, DC,
USA, 1999), INFOVIS ’99, IEEE, pp. 4–.

[War12] WARE C.: Information Visualization: Perception for Design
(Orlando, FL, 2012), Elsevier.

[WB05] WARE C., BOBROW R.: Supporting visual queries on medium
sized node-link diagrams. Journal of Information Visualization
4, 1 (2005), 49–58.

[WFG92] WANGER L. R., FERWERDA J., GREENBERG D. P.: Perceiving
spatial relationships in computer-generated images. IEEE Com-
puter Graphics and Applications 12, 3 (1992), 44–58.

[Wik13] Wikimedia: Stroke order project. http://www.tiny
URL.com/strokeOrderProject, 2013. (Accessed 24 January
2014).

[WvdWvW09] WILLEMS N., VAN DE WETERING H., VAN WIJK J. J.:
Visualization of vessel movements. In Proceedings of the Con-
ference on Visualization (2009), EuroVis’09, Eurographics As-
sociation, pp. 959–966.

[WvdWvW11] WILLEMS N., VAN DE WETERING H., VAN WIJK J. J.:
Evaluation of the visibility of vessel movement features in tra-
jectory visualizations. In Proceedings of the Conference on Vi-
sualization (2011), EuroVis’11, Eurographics Association, pp.
801–810.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


	framework_title.pdf
	framework_body.pdf

