
JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 1

Decal-Lenses: Interactive Lenses on Surfaces
for Multivariate Visualization

Allan Rocha, Julio Daniel Silva, Usman R. Alim, Sheelagh Carpendale, and Mario Costa Sousa

Abstract—We present decal-lenses, a new interaction technique that extends the concept of magic lenses to augment and manage
multivariate visualizations on arbitrary surfaces. Our object-space lenses follow the surface geometry and allow the user to change the
point of view during data exploration while maintaining a spatial reference to positions where one or more lenses were placed. Each lens
delimits specific regions of the surface where one or more attributes can be selected or combined. Similar to 2D lenses, the user interacts
with our lenses in real-time, switching between different attributes within the lens context. The user can also visualize the surface data
representations from the point of view of each lens by using local cameras. To place lenses on surfaces of intricate geometry, such as
the human brain, we introduce the concept of support surfaces for designing interaction techniques. Support surfaces provide a way to
place and interact with the lenses while avoiding holes and occluded regions during data exploration. We further extend decal-lenses to
arbitrary regions using brushing and lassoing operations. We discuss the applicability of our technique and present several examples
where our lenses can be useful to create a customized exploration of multivariate data on surfaces.

Index Terms—Focus+Context, Lenses, Interaction, Design, Multivariate, Visualization, Surfaces, Decal

F

1 INTRODUCTION

IN several domains, experts commonly deal with the
exploration of multivariate scientific data to understand

a phenomenon of interest [1], [2]. However, interpreting
and correlating multiple attributes are difficult and time-
consuming tasks to accomplish. Multivariate visualization
has supported data exploration by providing techniques
allowing the user to visually abstract and interact with these
datasets and their respective representations [1], [3].

Visualizing multivariate 3D data across a surface (or
isosurface) is a challenging process. Unlike 2D multivari-
ate data, exploring these datasets involves dealing with
curvature and occlusion. Such factors hinder encoding and
interacting with data using 2D visual representations. Com-
mon approaches to dealing with the visualization of more
than one attribute on surfaces include the use of colormaps,
glyphs and texture-based techniques [4] such as Line In-
tegral Convolution (LIC) [5]. Inspired by concepts from
Information Visualization, there have been some efforts to
facilitate the visualization of multiple attributes on sur-
faces, for example using 2D-glyphs combined with detail-
on-demand approaches [6], [7]. Rocha et al. drew upon
concepts from painting [8] and extended the concept of
layering to surfaces thus introducing decals and decal-maps
for multivariate visualization design [9]. Their technique
allows creating a layered visualization of multiple attributes
on arbitrary surfaces by combining decals, decal-maps and
colormaps [9], [10], [11]. These efforts signify the possible
direction in which the visualization of multiple attributes
on surfaces can evolve.

As in the 2D multivariate visualizations of spatial or
non-spatial data, the visualization of multiple attributes
layered on surfaces can inevitably lead to clutter even if
proper design choices are made. Visualizing all available

• The authors are with the Department of Computer Science, Uni-
versity of Calgary. E-mails: {acarocha, jd.silva, ualim, sheelagh, sm-
costa}@ucalgary.ca

data is not a solution as it can mislead and confuse the
user during data interpretation [3], [12], [13]. Instead, in a
realistic context and depending on the task, the user starts
with an overview of the data and subsequently moves to
locations of interest. This method is an established concept
in visualization introduced by Shneiderman as the visual
information seeking mantra: “Overview first, zoom and filter,
then details-on-demand” [14]. Interaction techniques play
an important role in the realization of this ’mantra’ and
facilitate on-demand data exploration.

Lenses are frequently employed for on-demand data
exploration and have also been applied to surfaces [12].
They belong to the focus+context family of techniques and
were introduced by Bier et al. [15] as an interaction method
or modality that modifies the visualization locally within
the lens’ interior. Lenses can be classified regarding their
dimensionality as 2D, 2.5D or 3D [12], [16]. In the context of
3D data visualization, 2D lenses are defined in image/screen
space (typically as circle-shaped lenses), 2.5D lenses as 2D
objects that are placed in object space (e.g., circle-shaped
lenses immersed in 3D), and 3D lenses as volumetric shapes
that are placed in object space (e.g., sphere-shaped lenses).
As noted by Gasteiger et al. [12], 2D lenses lack spatial
correlation between the 2D screen space position of the lens
and the 3D dataset. This aspect can obfuscate the process
of multivariate data exploration since several locations of
the data need to be analyzed and correlated. An attempt
to improve the spatial correlation with the 3D dataset is
to create 2.5D and 3D lenses, where the movement and
rotation are extended to 3D. However, these lenses require
an increased interaction effort for proper placement and
alignment within the 3D dataset. Moreover, useful oper-
ations such as compositing (multiple overlapping lenses)
cannot be adequately implemented [16].

In this work, we propose a new category of lenses that
adapt to the surface geometry to facilitate on-demand multi-
variate data exploration on surfaces. We propose decal-lenses,

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 2

interactive lenses that follow the surface curvature. Decal-
lenses extend the concept of magic lenses [15] to arbitrary
surfaces and are inspired by the idea of applying decals
to surfaces [9], [17]. Each lens delimits a specific region of
the surface where one or more attributes can be filtered or
combined using one or more lenses. Our object-space lenses
allow the user to change the point of view during data
exploration while maintaining spatial reference. Similar to
2D lenses, the user interacts with our lenses in real-time,
freely moving them on the surface and switching between
different attributes within the context of the lenses. Using
local cameras, surface data representations can be visualized
from the point of view of each lens. It allows for data
accessibility even when the selected area is occluded.

By combining multiple decal-lenses, users can create
lens-regions of arbitrary shapes. This is achieved due to
the simplicity of our technique that is highly amenable to
composition, e.g., by using blending operations. These regions
inherit the characteristics of decal-lenses such as attribute
selection and are interactively created using brushing and
lassoing operations.

Complex surfaces having cavities, holes, loops or folds
(e.g., brain model), complicate the use of object-space lenses
(e.g., during placement, dragging and orientation). For in-
stance, a lens may fall into surface cavities during interac-
tion or be difficult to orient (e.g., 2.5D lenses) due to areas
of high curvature. To allow a broader applicability of lenses
in visualization, we introduce the concept of a support sur-
face for designing interaction techniques. A support surface
consists of an envelope surface that serves as a base for lens
placement, navigation, and interaction. This simple concept
can allow a lens to move over holes and cavities while
keeping the spatial reference related to the surface area of
exploration.

Our lens technique is simple, flexible and designed for
real-time multivariate data visualization on surfaces. The
main contributions of this paper are:
• Decal-lenses, object-space lenses that adapt to the geometry

of a surface and allow the user to change the point of
view during data exploration while maintaining spatial
reference to where one or more lenses are placed.

• Five design goals based on a broad literature review
that can be used as guidance for designing interaction
techniques for multivariate visualization of spatial data.

• A GPU implementation that facilitates the placement,
composition and user-interaction of multiple decal-lenses
on arbitrary surfaces.

• The concept of local cameras to allow for data exploration
from different points of view even when selected contex-
tual areas are occluded.

• Lens-regions of arbitrary shapes that can be created on-the-
fly by combining multiple decal-lenses using brushing and
lassoing operations.

• The concept of support surfaces to extend the use of lenses
for data exploration on surfaces with complex geometry.

It is important to mention that in the recent survey on
interactive lenses for visualization [16], the authors em-
phasize the need to develop techniques allowing simple
lens placement, interaction, and parametrization, as well as
offering the flexibly of combining lenses to create new lens
functionalities on-the-fly, and also facilitating reuse of the

lenses [16]. In this paper, we address these issues by intro-
ducing a flexible lens technique and a set of concepts that
can be applied in a variety of demonstration examples in
the context of both information and scientific visualization.

2 RELATED WORK

In this section, we review related work that proposes lenses
for 3D data. For a more extensive review of lenses, we
refer the reader to the survey by Tominski et al. [16]. We
categorize lenses according to their dimensionality (2D, 2.5D
and 3D), and also review related ‘lens-like’ techniques used
for illustrative visualization purposes.

2.1 Lenses for 3D Data Visualization

The concept of magic lenses was introduced by Bier et al.
as a new paradigm for data interaction and exploration
[15]. Since then, lenses have been used extensively within
the field of data visualization [16]. Most of the techniques
apply the lens concept in screen space (2D lenses) to 2D
multivariate datasets, for instance, in geo-visualization [18].
For 3D datasets, the use of 2D screen-space lenses has also
been useful for data exploration [15], [19], [20]. However,
most 2D lenses are designed for magnification [16], [21]
and applied to geo-spatial data [20] or volume rendering
[19]. In our work, we do not focus on designing lenses for
data magnification. Instead, we are interested in lenses that
allow a focused exploration of multivariate data on surfaces.
Magnification is only one of the concepts discussed by Bier
et al. [15]; here we are interested in other concepts such as
filtering, selection, and composition (magic lens filters [15]).

In scientific visualization, 2D lenses that apply the con-
cept of magic lens filters have also been proposed [16]. For
example, motivated by the need to visualize and correlate
several hemodynamic blood-flow attributes for decision
making, Gasteiger et al. proposed the FlowLens, a lens de-
signed to explore cerebral aneurysm data [12]. The lenses
are placed and manipulated by an expert on the screen
for a focused data exploration. However, Gasteiger et al.
suggested that even though 2D lenses are simple to position
and implement, and intuitive to use, they suffer from a lack
of spatial correlation between the 2D position of the lens and
the 3D dataset. In contrast, while maintaining simplicity, our
technique alleviates the spatial correlation problem since the
lenses are placed directly in object space.

2.5D lenses can be used to deal with the lack of spatial
correlation. As in the work of Gasteiger et al. [12], these
2D lenses are placed in 3D by aligning and orienting them
according to the area of interest. Fuhrmann and Gröller
also proposed an efficient implementation of 2.5D magic
lenses applied to 3D flow data [22]. Their lenses are de-
signed to augment the information density of 3D flow in a
focus+context fashion. Even though these lenses address the
problem of spatial correlation, they introduce new problems
such as placement and orientation [12]. Moreover, the flat
nature of the 2D lens makes it difficult to visualize from
different points of view even with slight view changes;
this can also be problematic during data exploration in
collaborative environments. Last but not least, these lenses
do not support extensions such as brushing and lassoing.
In contrast, our orientation independent decal-lenses wrap to
the surface and avoid such problems altogether. Our lenses

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 3

are placed using a one-click approach and can easily be
dragged over the surface. Moreover, our lenses allow the
user to brush and lasso over the surface, compositing and
creating lens-regions of arbitrary shapes.

Another lens-based approach to explore 3D data is to
use 3D magic lenses [23], [24], and it was first introduced by
Cignoni et al. as MagicSpheres [23]. This metaphor consists of
placing a sphere in 3D and changing the data visualization
within the spherical volume. This volumetric lens was fur-
ther classified by Ropinski and Hinrichs as either a camera
lens which is fixed relative to the camera or a scene lens which
can be positioned anywhere in 3D [25]. Another extension
of magic lenses to 3D was proposed by Viega et al. [24]. They
used a clipping-plane based approach to define 3D volumes
such as boxes as lenses. Wang et al. also proposed volumetric
lenses for magnifying and filtering volumetric data [26].
These 3D lens techniques are usually applied to 3D volume
data and exploit the graphics hardware (fragment opera-
tions) using a multi-pass approach with multiple volume
in/out comparisons [22], [24], [27]. When applied to surface
data, 3D lenses may discard parts of the model that are
independent of the point of view. Moreover, composition of
3D lenses is challenging and difficult to address. Differently
from 2D lenses, the order of overlapping of multiple 3D
lenses cannot be easily guaranteed [24], [28], [29]. Therefore,
to the best of our knowledge, such lens techniques (like 2.5D
lenses) also do not allow for more general operations such
as brushing and lassoing.

2.2 Illustrative Techniques

Even though not formally defined as lenses, several ‘lens-
like’ illustrative techniques have been introduced with a
similar purpose [16]. These techniques support high-level
abstraction – i.e., focusing on what to render instead of how
to render [30], – with a set of interactive tools allowing
the user to isolate regions of interest, highlighting important
features of the data while preserving the overall context [31].
Examples include cutaways [32], [33] and ghost-views [31],
[34]. These visual abstraction techniques are part of the smart
visibility family of techniques that have mainly been applied
to scientific data following the concept of importance driven
visualization [31] and inspired by traditional scientific illus-
tration techniques [35]. These techniques enable the visu-
alization of multiple superimposed layers of information,
focusing on highlighting salient visual information in the
resulting image while preserving the context [31], [36]. The
most relevant information is emphasized by local modifica-
tions of visual representations or changes in spatial arrangement
(e.g., exploded views [37]).

Smart visibility techniques bear a resemblance to our
work as decal-lenses can be used to provide cutaways and
ghost-views. ClearView, for example, is an illustrative tech-
nique that creates ghost-views for focus+context and data-
driven visualization of surface and volumetric data [38].
However, we do not focus on accentuating occluded infor-
mation which makes decal-lenses fundamentally different.
The purpose of decal-lenses is to augment the visualization
of multivariate data thereby reducing or managing visual
clutter. Moreover, smart visibility techniques are commonly
view-dependent [39] whereas we are interested in view-
independent local-and-controlled modifications of visual

representations on arbitrary surfaces – each representation
refers to a data attribute which is modulated by the lens
context. These local-and-controlled modifications can allow
for data comparison and correlation during exploration of
multiple attributes (e.g., by superimposing multiple lenses).

Our work is inspired by previous illustrative visualiza-
tion techniques. We do not, however, propose another 2D or
3D magic lens. Instead, we introduce a novel lens concept
whereby lenses adapt to the surface geometry. These de-
formed lenses — their borders in particular — provide impor-
tant depth cues about the surface geometry which are miss-
ing in 3D lenses. Moreover, the border is important when
visualizing geometrically nested datasets (e.g., flow within
a vessel) since it embeds curvature information [40]. Our
lenses are designed specially for multivariate layered visu-
alizations such as Decal-Maps [9] and the FlowLens [12],
and take advantage of the GPU pipeline for a simple and
efficient implementation.

3 DESIGN GOALS

In our literature review, we have highlighted the limitations
of using various lens techniques to visualize multivariate
data on surfaces. We also covered some illustrative tech-
niques as well as concepts such as smart visibility that
we are inspired by. Based on our review, we present the
following design goals (DGs) to serve as guidelines for our
proposed decal-lenses.

DG1: Consider spatial correlation. We argue that for mul-
tivariate visualization of surface data using lenses, spatial
correlation is necessary. 2D lenses lack spatial correlation
between the image-space position and the 3D dataset [12],
[41]. Using a 2D lens to compare attributes leads to cognitive
overload; the user is often required to re-position and adjust
lenses when comparing different regions of a surface.

DG2: Facilitate placement. Supporting positioning of
lenses in a way that minimizes user effort is desirable [12],
[41]. 2.5D lenses address spatial correlation but are difficult
to position and orient in object-space according to the cur-
vature of the surface.

DG3: Support scalability. Lenses should be designed so
as to combine the advantages of both image space and
object space to help overcome problems of scalability and
interaction. In the literature, most of the techniques are
either limited to one lens or do not support the interaction
between multiple lenses [29]. For example, the join oper-
ation [16] in 2.5D and 3D lenses is difficult to implement
due to orientation problems (2.5D) or the generation of non-
convex regions (3D) [24], [29]. In the case of 2D lenses, the
placement in screen space avoids such problems. However,
using multiple lenses on the screen may lead to confusion
while exploring multivariate data; this is further aggravated
by the lack of spatial correlation. Moreover, 2D lenses are
static on the screen during interactions such as zoom and
pan, and are not re-sized proportionally to the surface.

DG4: Provide fluid interaction by (a) using smooth ani-
mated transitions between states; (b) providing immediate visual
feedback on interaction; and (c) minimizing indirection in the
interface. These guidelines were proposed by Elmqvist et
al. [42] along with the idea of fluid interaction which draws
from several sources such as the concept of flow and natural

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 4

Fig. 1. Conceptual illustration of our approach. The Lens interior filters
attributes represented as layers. The border displays each attribute
represented as a color. To design the border, we take advantage of the
local polar coordinate parametrization of the lens. A local camera can
also be associated with the lens.

interaction. Since our lenses are meant to be interactive, we
wish to incorporate these guidelines in the design process.

DG5: Consider depth disambiguation cues. Spatial depth
cues lead to a better spatial correlation between the lenses
and the surface. Elmqvist et al. [41] created a taxonomy
for 3D occlusion management techniques for visualization.
Lenses are one of these techniques. In their taxonomy, the
authors identified several dimensions related to the design
space of occlusion management techniques. Among these
dimensions, depth cues (DCs) are one of the most impor-
tant. For 3D Magic Lenses [24], DC is classified as low.
The authors also provided design patterns such as multiple
viewports and volumetric probes that can be used to address
the lack of depth cues. Our lens design is inspired by these
ideas in order to provide a high level options of DCs.

4 DECAL-LENSES CONCEPT

Our lenses are patches of 2D manifolds built to attach
smoothly to non-flat surfaces. To the best of our knowledge,
such lenses have not been previously defined, and they do
not fit in the previously discussed classification [16] of 2D
lenses, 2.5D lenses, and 3D lenses.

Metaphorically, our lenses resemble 2D decals drawn
over a surface; we, therefore, denote them as decal-lenses.
However, decals and decal-lenses are fundamentally dif-
ferent; decals are textures stamped onto surfaces (e.g., to
encode data attributes [9]), whereas decal-lenses are surface
regions (patches) designed to allow for a wider range of
uses (focus+context) and interactions. Some examples are
user-defined placement (decal-lenses must be amenable to
drag and drop operations at the user’s will), multi-lens
composition (when different lenses are superimposed, their
output must be either filtered or combined), and lens in-
teraction (the user may interact with the lenses to change
their properties). We formally define decal-lenses in Sec.4.1,
describe the principles of lens selection and composition in
Sec. 4.2, and explore lens properties in Sec.4.3.

4.1 Definition

We refer the reader to Fig. 1 to illustrate the concepts we
now describe. We denote the surface on which we will place
the lenses as M . The user first picks a point c on the surface,
which is used as the center of the lens about to be placed
(DG1, DG2). Given the selected point, a normal vector n̂ is
computed (by averaging neighboring normal vectors); this
normal vector is later used to position a local camera upon

a user’s request. We denote as Bc, a ball centered at c.
The intersection of the surface M and Bc defines a patch
Pc := Bc ∩M . In the context of decals, Rocha et al. denote
this intersection as sphere masking [9] and assume that this
patch is a disk since decals are small and require a local
parametrization for texture mapping. In our case, the patch
Pc may be understood as the region of M that will contain
the lens and may not be a disk. The size of the lens is defined
by the user-defined radius of the ball Bc.

To parametrize Pc, we can choose a radial coordinate
system. Any point p in the patch Pc has the coordinates
p = (ρc(p), θc(p)). The angular coordinate θc(p) is simply
computed by using a reference vector in the tangent space
of the surface, which is an arbitrary choice. The radial coor-
dinate ρc(p) is given by an approximation of the geodesic
distance of the surface patch. Here, we use the cosine
approximation [9] for sphere-like surfaces and the Euclidean
distance of the 3D space for more complex geometries.

The border of the lens is designed as the ring obtained
from a pre-defined range of the radial parametrization. By
dividing the angular coordinate, the lens’ border can be
divided into as many pieces as there are properties to select
(DG4(b)(c)). These pieces are ordered according to the refer-
ence vector in the tangent space. The active property has its
respective part of the lens’ border made wider by properly
scaling the radial coordinate of the local parametrization
(DG4(a)(b)). The radial coordinate is also used to blend the
contents of superimposed lenses (Sec. 4.2).

We remark that, unlike the case of decals [9], the problem
of parametrization distortion is less significant for decal-
lenses, since we do not use this local parametrization to
render what is inside the lens – the parametrization is
only used for the lens’ borders (DG5) and composition of
multiple lenses through blending operations. Moreover, by
superimposing and blending lenses, one can still cover large
surface areas with high curvatures without any distortion
penalty (DG3) by exploiting the ability to individually
choose the lens’ sizes (e.g., by brushing with small lenses).

Here the lens patch Pc may not be a disk but both sphere
masking and the radial coordinate approximation would
work in a more general case since their definitions are based
on properties of the ambient (Euclidean 3D) space instead
of the surface. The lens border subdivision may suffer
distortions, but the solution is simple: a color wheel can be
drawn near the lens center (where the distortion is less since
the patch Pc reduces to a disk) instead of at the lens border.
One may argue that it would occlude information, however
interference is minimal since the wheel only appears during
attribute selection (DG4).

4.2 Conceptual Model of Decal-Lenses

Now we connect the decal-lens definition to the conceptual
model of lenses introduced by Tominski et al. [16]. As envi-
sioned by the authors, our goal is to use their taxonomy to
provide a richer description of decal-lenses in visualization.

Fig. 2 illustrates the conceptual model of lenses intro-
duced by Tominski et al. [16]. The top part of this model
refers to the visualization pipeline [43], which describes the
flow of data before visualization. First, data is obtained from
a data source (DS) in a specific format (e.g., MRI data ac-
quisition). Secondly, this data is processed and transformed

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 5

Fig. 2. Conceptual model of lenses (adapted from [16]).

into data tables (DT) (e.g., a grid), which are built to make
searching and manipulating specific data instances easier.
Thirdly, the process of visual mapping transforms and en-
codes data tables into visual abstractions (VA) that combine
marks (e.g., glyphs, decals) and visual variables (e.g., color,
size). View transformations (e.g., scaling, projection) then
modify the visual abstractions, which are finally rendered
to a visualization view (V) (e.g., desktop screen, tabletop).

Lens techniques can interact with the visualization
pipeline in any stage of data representation. This interac-
tion depends on the lens technique and how the selection
(denoted as σ) stage is conducted. For decal-lenses, we can
use the enclosing sphere to apply the selection σ to any of
the data stages (i.e. by simply verifying if a representation
is inside the sphere) (DG3, DG4).

For example, a decal-lens positioned on the surface can
select data samples at any vertex of the surface mesh (DT);
select glyphs or decals (VA) drawn over the surface; or even
select pixels during the rasterization process (V). As shown
in Fig 2-bottom, the selection σ works as input for the lens
pipeline, which performs a set of operations defined by a
lens function λ. An image filter (e.g., contrast enhancement)
is an example of a lens function λ applied in V.

Still following Fig. 2-bottom, after the lens function λ is
performed, the result needs to be integrated back into the vi-
sualization pipeline (Fig. 2-right). This integration is known
as the join ./ stage [16]. In the last example, the outcome of
an image filter (lens function λ) applied to selected pixels
in the visualization view (V) can be combined with the
base visualization through blending operations. The join ./
can be performed in any stage of the visualization pipeline
[16], however in the case of decal-lenses, we have chosen to
perform the join ./ in the visualization view using blending
operations. Moreover, it is a common approach adopted by
2D lens techniques [16].

Blending is an essential component of combining the
lens effect with the base visualization. Lens techniques
commonly apply a fall-off blending function to visual-
ize multivariate data (e.g., FlowLens [12]). This improves
focus and context (avoiding sharp transitions) and also
conforms to the see-through metaphor. In our case, the
blending function g(p) is based on the geodesic approxi-
mation, and (in the notation of our definition) is given by:
g(p) = 1 − min(ρc(p)/R, 1)

α, where ρc(p) is the geodesic
approximation at a point p, R is the radius of the ball Bc
(ρc(p)/R ∈ [0, 1] for the Euclidean distance approximation),
and α is a parameter that controls the decay function, i.e.,
how fast the radial function g(p) decays with the distance.
An example of this blending is depicted in Fig 3. In our

Fig. 3. Join ./ stage applied in V. A decal-lens displays population
density on the Earth’s surface using a light-to-dark orange colormap.
The blending function g(p) provides a smooth transition between lens
content and the underlying visualization. The border color (purple) refers
to the attribute selected by the user and is also combined with the
underlying visualization for a better context and transition.

visualization scenarios, α takes values between 3 and 6
based on our observations during the visualization design.

It is important to highlight that our lenses must be
amenable to a simple implementation of multi-lens oper-
ations, i.e., when different lenses are superimposed, their
output must be either filtered or combined. This is intrinsic
to the definition of magic filter lenses as proposed by Bier
[15]. In this work, we focus on sum (composition) and
subtraction operations in the visualization view V. These
two operations are essential for multivariate visualization
and allow us to combine multiple lenses in a customized
way (Sec. 6), which is essential for scalability (DG3).

4.3 Additional Properties

Key geometric properties of lenses include shape, position,
size, and orientation [16]. These properties define the lens
appearance as well as the part of the data where selection
σ takes place. A decal-lens has a circular shape and is inde-
pendent of orientation (DG2). Position and size of the lens
are simply controlled by the center and radius of the ball
Bc (DG4). Moreover, the simplicity of this approach does
not limit the use of decal-lenses in more general cases; lens-
regions of arbitrary shapes can be created by composing
multiple lenses (DG3). Operations defined over a single
lens (e.g., attribute selection) are then extended to multiple
lenses. In Sec 5.2, we describe how to perform operations
over multiple decal-lenses.

However, unlike the case of a single lens, manipulating
lens-regions on surfaces requires more complex operations
since shape, size, position, and orientation (lens properties)
are now functions of multiple lenses. For example, moving
a lens-region requires the transport of multiple lenses over
the surface while preserving the shape and orientation of the
region. Investigating such issues seems to be interesting, but
we consider them to be out of the scope of this paper. More-
over, we argue that these types of lens-region operations
(e.g., dragging) may not always make sense: a user might
create a lens-region based on a specific task and surface data
and this choice would not work for general cases (e.g., other
parts of the surface). Moreover, in our approach, the user can
always edit or re-create a lens-region using quick operations
such as brushing.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 6

Fig. 4. 2D illustration of the support surface concept. (a) A case where
the intersection Pc is not a disk due to complex surface M and the
lens size. (b) Support surface is build to serve as a support for the lens
placement.

5 EXTENSIONS & RELATED CONCEPTS

5.1 Local Cameras

Fig. 1 illustrates our concept of local cameras. Each lens
has an attached camera which is automatically positioned
by using the average normal direction around the center.
Apart from its simplicity, we believe that this concept, when
combined with our lenses, can be used for data comparison
and correlation from different points of view (DG5) — even
when some of the areas of the surface are not visible — by
showing a close-up of the layered attributes on the surface.
The application of local cameras is possible due to the
advantage of having lenses in object space (DG1).

5.2 Operations Over Multiple Decal-Lenses

Decal-lenses can easily be abstracted to create arbitrary
shaped lenses (DG3). We describe two such abstractions
here: brushing, to create lenses by painting regions one
wishes to have as lenses, and lassoing, to create lenses
by encircling regions one wishes to have as lenses. Both
brushing and lassoing build on the fact that decal-lenses
are amenable to composition; the output lens is defined by
merging the decal-lenses that are created by each procedure.

When brushing, a user paints a region on the surface
that is meant to become a lens. During painting, a set of
points are sampled to serve as centers for decal-lenses that
are combined to constitute the brushed lens-region. When
lassoing, a user draws a closed curve around a region that
is meant to become a lens. Using a sampling strategy, the
closed curve is filled with samples that are used as centers
for the decal-lenses that constitute the new lassoed lens
region. In Sec. 6.5 we provide an implementation to create
brushed and lassoed lens-regions.

5.3 Support Surfaces

Consider now that the surface M consists of occluded
regions and regions of high curvature (e.g., brain folds).
These regions make the placement and navigation of lenses
difficult. In the case of decal-lenses, which follow the surface
geometry, such regions may cause undesired discontinuities
on the lens patch. Fig. 4(a) illustrates this scenario in 2D.
However, we also argue that such discontinuities provide
essential depth cues (e.g., the lens border) (DG5) and can be
of user interest as we discuss later in Sec 6.6.

Let us now define a surface M that approximates M
such that M is inside the region delimited by M . Let us
assume that M is smooth and devoid of the aforementioned

regions thus making it suitable for lens placement, naviga-
tion and interaction (Fig. 4(b)). This surface M is defined as
the support surface of M . The design of support surfaces for
lens interaction depends on the surface of interest as well as
the user’s intention. In a simple case, a support surface M
could be defined as the bounding box or bounding sphere
of M . However, a user may wish to use a surface M that
closely matches M . For example, if the surface M comes
from the human brain, its bounding sphere (or ellipsoid)
may provide a satisfactory approximation; whereas for an
aneurysm vessel, this choice may be inappropriate.

Even though the idea of support surfaces has not previ-
ously been explored in the context of designing interaction
techniques such as lenses, our work is inspired by other ap-
proaches that are based on similar concepts. Some examples
are outer envelopes [44], bounding proxies [45] and text scaffolds
[46]. Other techniques could be used to generate support
surfaces, and a thorough literature review of such methods
is out of the scope of this paper. Here, we highlight that our
goal is to introduce this concept in the context of interaction
techniques by providing an example of its use. In Sec. 6.6,
we provide a simple approach to compute a support surface
from a brain dataset and illustrate its use in combination
with our lens technique.

6 IMPLEMENTATION

In this section, we describe the GPU-based implementation
of our technique. Our work is inspired by the Decal-Maps
approach and implementation [9]. In this paper however, we
do not propose a technique that needs attribute layers with
a high number of decals. Here, our implementation places
one lens at a time. This allows us to modify the Decal-Maps
pipeline [9] to create each decal-lens in one single pass.

We explain our implementation via walkthrough scenar-
ios using different datasets. First, in Sec. 6.3 we demonstrate
the use of decal-lenses for geographic data visualization, a
common scenario in Information and Scientific Visualiza-
tion. Second, in Sec. 6.5 we describe the implementation of
brushing and lassoing operations by providing examples of
their use on an aneurysm surface containing vessel regions of
high curvature. Last but not least, in Sec. 6.6 we use a brain
surface, consisting of challenging surface regions generated
by the brain folds, to illustrate the concept of support surfaces.
We believe these examples illustrate the potential use of our
technique for focus+context multivariate visualization.

We implement our approach using OpenGL and GLSL.
Here, we present an overview of our generic pipeline to
implement decal-lenses on arbitrary surfaces. We refer the
reader to Fig. 5 to illustrate the discussion that follows.

6.1 Visual Encoding and Multi-pass Approach

First, all attributes (data and geometry) are read from a
surface model. Depending on the type of representation,
attributes are represented as colormaps, decals or decal-
maps. All these steps happen in a pre-processing stage
before the actual rendering process. We extensively employ
the process of multi-pass rendering both to render multi-
ple layered attributes on surfaces and to create our decal-
lenses. Thanks to the increasing computational capabilities
of GPUs, multiple continuous passes of rendering are a
common feature in real-time applications, e.g., games.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 7

Fig. 5. Implementation workflow: (a) The geometry buffer (G-Buffer) and Attribute Layers (A-Layers) are computed; (b) A sphere is placed centered
at the surface using one-click interaction. The G-Buffer and lens center are used to verify if a point of the surface is inside the lens sphere. This
test is performed only for the fragments limited by the bounding box of the projected sphere. The points inside the sphere define the decal-lens
region where shape and border are designed. A-Layers are mapped to the lens interior based on a chosen filtering operation. A-Layers can also
be mapped to the lens exterior (context). A categorical colormap refers to the different data attribute representations. By picking one color, the user
switches back-and-forth between different attributes representations, which are mapped to the lens interior.

6.2 Rendering and Layered Representation

After the visual encoding step, we start the process of
rendering (Fig. 5a). To place lenses on surfaces, we first
build two view-dependent buffers in an off-screen step: an
attribute layer buffer (AL-buffer) and the geometry buffer
(G-buffer). The AL-buffer consists of a layered framebuffer
object (LFBO), which in our case is a buffer composed of
an array of framebuffer objects (FBOs) represented as 2D
textures [47]. Each FBO has a color attachment and a depth
attachment associated with it. The number of 2D textures is
equal to the number of attribute layers. Applying a multi-
pass process (in the draw call), we render each attribute and
its respective visual representation to the AL-buffer. This is
accomplished in a single pass by using the built-in variable
gl_Layer in the geometry shader [47]. Each attribute layer
is assigned a unique id which directs the render call to the
corresponding 2D texture. Consequently, we obtain the AL-
buffer, which contains all rendered attributes.

After this off-screen rendering step, all the attributes are
available in image space as 2D textures. Each one of these
images can be organized and rendered in any order; we sim-
ply iterate over the layers in a prescribed order and render
each one separately. Since these layers are independent of
each other, they can be turned on or off at the user’s will.

6.3 Decal-Lenses

To explain our decal-lens implementation, we use a multi-
variate Earth dataset as an example. Such data is tradition-
ally visualized and interpreted as layers of 2D maps using
geographic information systems (GIS) (e.g., atmospheric
data, satellite images, and socioeconomic data). Here, we
visualize such layers on a Digital Earth model to avoid
distortions created by projecting the Earth surface into the
plane, which can lead to erroneous interpretation of length
and area measurements [48]. However, the spherical nature
of the Earth has inherent challenges related to modeling and
visualization. In the survey of digital Earth [48], the authors
emphasize the need for creative visualization of geospatial

data sets. Here, we demonstrate the use of decal-lenses for
multivariate data exploration on the Earth surface.

For our visualization, we consider the following at-
tributes: (raster data) vegetation density, temperature and popu-
lation density; and (point data) nuclear plants and earthquakes.
Vegetation density is represented from a satellite image;
whereas temperature and population density are repre-
sented using colormaps; cool-to-warm diverging and light-
to-dark orange respectively. Using decal-maps, we represent
nuclear plants and earthquakes similarly to Rocha et al. [9].

6.3.1 Lens Placement and Construction
We explain this process via the following walkthrough
scenario (Fig. 5 (a-right and b)). A user wishes to inspect
a surface with three data attributes. Two are represented
as colormaps and one is represented as a decal-map. First,
the attribute representations are rendered to the AL-buffer
in an off-screen step. The user then enables two of these
layers (a colormap and decal-map) over the surface. Since
the other attribute cannot be layered using a colormap (as
it would occlude the information), the user decides to use
lenses to augment the visualization. The user then inspects
the surface data seeking areas of interest. Once the region
is identified, the user places a lens over the surface by
performing a simple click operation (Fig. 5a (top-right)). The
clicked pixel (x, y) is used to obtain — in object-space — a
position c (the lens center) and its associated normal vector
n̂ (used to place a local camera) from the G-buffer. Using the
lens’ center c and its radius R, we determine the projected
lens’ bounding box in screen space (Fig 5b (top-left)). We
then perform a scissor test [47] to only perform fragment tests
and texture lookups within the projected lens’ bounding box
in screen space. For each pixel within the bounding box, we
access the corresponding surface position p in object-space
from the G-Buffer, and determine whether p lies inside the
sphere at c. Fig. 5b (bottom-left) illustrates this process. The
set of all valid p inside the sphere corresponds to the lens
region in screen-space, where the attribute is then mapped.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 8

Fig. 6. Multivariate geo-visualization. (a) Two layers displaying vegetation density and nuclear plants in the USA and two decal-lenses display
temperature variation in Canada. (b) A decal-lens is used as context to display vegetation density and another as focus illustrating population
density in the capital state area (Manaus) along the Amazon river; the color wheel represents five attributes. (c) Comparison between earthquakes
in the Oceania surroundings and earthquakes in Chile (where a decal-lens was placed) using a local camera.

Fig. 6(a) illustrates the aforementioned scenario. Two
layers, vegetation density and nuclear plants, are displayed
in the USA. Decal-lenses highlight the temperature variation
in different areas. The color border of the lenses (orange)
corresponds to the attribute category.
6.3.2 Interaction, Widgets, Visual Feedback and Blending
The attribute layers stored in the AL-buffer are fed as input
to each lens (Fig. 5b-right). To switch between attributes,
the user first selects a lens using a right-click operation.
A position on the G-buffer is obtained from the projected
pixel (corresponding to the user selection) on the surface.
We then determine the center of the lens that is closest to the
selected point. Since we have few lenses, this is efficiently
accomplished via a quadratic-time algorithm, yet even for
many lenses this approach would still work due to the
quick selection test. After the lens is selected, the user can
perform a variety of interaction operations such as enabling
the selection wheel, hovering over different attributes along
the wheel, resizing the lens, changing its order relative to
the other lenses, dragging over the surface. As dictated by
the user interaction, the lens can combine or filter particular
attributes within the lens interior.

To draw the lens border and widgets, and to pro-
vide visual feedback during interaction, we use the local
parametrization described in Sec. 1. We access the lens
center and for each surface position in the lens interior
(obtained from the G-Buffer), we compute a geodesic dis-
tance approximation. By delimiting a range of the radial
coordinate, we design the lens border and wheel.

For the wheel, we also use the angular coordinate to
divide the total lens arc into subsets depending on the
number of attributes. Using a categorical colormap, we
assign a color to each one of these sub-arcs, where each
color corresponds to an attribute. The user can then hover
over each one of these sub-arcs using the mouse. Based on
the chosen color, the selected attribute is used to filter and
display the corresponding layer within the lens interior. We
provide a visual cue for the current attribute by increasing
the thickness of the selected sub-arc. The border of the lens
is also changed to the color of the selected attribute. Finally,
the selected attribute is rendered over the surface where
conventional blending operations are performed.

Fig. 6(b) illustrates the design of the lens border and
wheel using the angular and radial coordinates, which can

be exactly obtained in the case of the sphere [9]. A decal-lens
is used as context to display the vegetation in the Amazon
area and another one as focus to display population density.
We can note the high population density in the city of
Manaus (capital city of Amazonas) along the Amazon river.

6.4 Local Cameras

To implement local cameras, we need to average the nor-
mals in a neighborhood of the lens’ center. We assume
that during lens placement the user aligns the surface to
be roughly parallel to the view plane. In our approach,
accessing neighbors in screen space is similar to accessing
neighbors in object space (i.e., on the surface). We, therefore,
sample screen space positions and consequently access the
neighboring normals around the lens center in object space
(from the G-buffer). Finally, we average nearby normal di-
rections and place the camera (drawn using a view-aligned
quad) along this direction at a distance defined by the user.

Local cameras provide a strategy for overview-detail
visualization as well as for data comparison. Fig. 6(c) il-
lustrates the use of local cameras to compare earthquakes’
location and magnitude in Oceania and Chile.

6.5 Operations Over Multiple lenses

We now describe the implementation of brushing and las-
soing operations, which require multiple decal-lenses. To
demonstrate our technique, we use a publicly available
aneurysm dataset [50]. Inspired by previous work [12], [49],
[51], we visualize the following attributes: velocity, pressure
and mean curvature of the aneurysm vessel. For velocity
inside the vessel, we trace streamlines and visualize them
using line rendering. We represent the velocity magnitude
using a cool-to-warm diverging colormap. To preserve the
flow context, we render the vessel of the aneurysm with
Fresnel reflection shading similarly to Gasteiger et al. [49].
In this approach, the opacity o assigned to the vessel wall
is given by o = 1 − |v · n|r , where n is the surface
normal, v is the view vector, and r ≥ 0 is the edge fall-
off parameter [49], [52]. We obtained good results using
values of r between 1 and 1.5. Following Gasteiger et al., we
also visualize the contours of the surface to enhance surface
shape and provide depth cues. Our contours are computed
in the fragment shader using an image space Sobel-operator
over the depth buffer. Fig. 7(a) illustrates our aneurysm
visualization following this approach.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 9

Fig. 7. Multivariate visualization of hemodynamic attributes. (a) Vessel and flow visualization inspired by Gasteiger et al. [49]. Velocity is represented
using a cool-to-warm diverging colormap. Two decal-lenses display pressure, yellow-to-red colormap, and mean-curvature using a green-to-purple
diverging colormap. (b) Brushing operation combining multiple decal-lenses displaying pressure. (c) Lassoing operation combining multiple decal-
lenses displaying mean-curvature. A decal-lens is selected within the lassoed lens-region to be used for attribute selection.

6.5.1 Arbitrary Lens-Regions
Let us suppose a domain expert user intends to analyze
pressure and mean curvature on the aneurysm vessel for as-
sessing the risk of rupture [12], [51]. The user can place and
interact with decal-lenses over the surface for this purpose.
Fig. 7(a) illustrates two decal-lenses over the aneurysm sur-
face displaying pressure and mean curvature using purple-
to-green and cool-to-warm colormaps respectively. We can
notice how decal-lenses adapt to the surface geometry even
in areas of high curvature. The user later decides to extend
the lens effect to create lens-regions on customized surface ar-
eas of interest. To design such regions, we employ brushing
and lassoing operations which are implemented as follows.
(1) Brushing. To define a brushed lens-region, the user
enables the brushing mode (e.g., by keyboard interaction)
and moves the mouse over the region of interest, which in
this case covers part of the sac, the neck, and the parent
vasculature of the aneurysm [49]. During the mouse motion,
sampled surface points are obtained from the G-buffer. For
each surface point, we place a decal-lens and compute the
fall-off function introduced in Sec. 4.2. We place decal-lenses
incrementally to provide a quick visual feedback to the user
while brushing (following a painting metaphor, Fig. 7(b)-
bottom). To avoid oversampling during interaction, we only
sample consecutive points that satisfy a minimal distance
from each other in object space. In our case, this minimal
distance is a function of the lens radius, which is user
defined. Moreover, this variable controls how continuous
the border of the brush is, whereas the fall-off function
controls how smooth it is. Fig. 7(b) illustrates the brushed
region displaying pressure over the aneurysm surface.
(2) Lassoing. To define lassoed lenses, the user enables the
lassoing mode and draws a curve in a counterclockwise
orientation over the region of interest. A closed curve in
screen space is then generated by linking the last and the
first point. Now, we need to consider a sampling strategy
within the lassoed region. For this purpose, we implement a
propagation algorithm. First we interpolate the curve points
using a cubic natural spline and compute normals from
the interpolant, which is given by the counterclockwise
orientation and the reference vector (0, 0, -1). We then

duplicate the vertices and move the copies inwards by
normal displacement (Fig. 7(b)-bottom). This displacement
is controlled by a radius defined in screen space. For each
iteration, we check for collisions between samples within
this control radius. In the case of a collision, we remove
the sample. The propagation stops when the current curve
is empty. We observe that the number of internal curves is
a function of the ratio between the bounding box diagonal
and the control radius, which yields a stable stop condition.
Having a sampling distribution defined in screen space, we
use the G-buffer to push it back to object space. Fig. 7(c)
illustrates a lassoed region displaying mean curvature over
the aneurysm surface.
Discussion. Both the brushing and lassoing operations de-
pend on sampling strategies and whether the sampling is
performed in screen space or object space. In the case of
brushing, our implementation does not re-sample the curve
points during mouse motion (in object space) and does
not prevent the user from brushing over the same region
several times. These problems are inherent to sketch-based
techniques and their remedy is out of the scope of this paper.
In the case of lassoing, for simplicity we adopted a strategy
that works well but has some limitations that are inherent
to screen space approaches. For example, our sampling
depends on the distance from the surface to the screen. We
adopt a smaller screen radius when the surface is far from
the screen, where we have less precision and resolution,
and a large radius otherwise. Moreover, depending on the
distance from the surface during lassoing, the generated
lassoed region on the surface can be bigger or smaller then
the lassoed area in screen space. We intend to study better
approaches to generate such lassoed regions in the future.

6.5.2 Interaction, Widgets, Visual Feedback
Now we describe how to draw the border, widgets or other
visual representations of lens-regions. Notice that, since
these regions are defined over multiple lenses and we don’t
have a global parametrization of the whole region, it is not
intuitive how to render such representations. Nevertheless,
this can be accomplished in a simple way, as we now
explain.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 10

Fig. 8. Support surface implementation overview. (a) isosurface of a brain’s left hemisphere; (b) surface inflation; (c) smooth outer surface; (d) outer
surface with Fresnel shading; (e) brain support surface.

Multiple overlapped decal-lenses generate an opacity
field that decreases from the medial axis of the region to the
border, according to the exponent α that controls the fall-off
function. In other words, overlapped lenses lead to opacity
1 whereas the transparency increases towards the border –
where overlapping does not exist. Considering this opacity
field, we first render the region to a FBO and store the
opacity variation in pixel space. In a second pass, we draw
a screen quad and access the blended values in the FBO
as well as the AL-buffer. Now we have all the information
required to draw the region border (i.e., by selecting opacity
ranges close to 0 similar to isolines) and to map attributes
similarly to the decal-lens approach (Fig. 7(b)(c)).

To draw the wheel, we do not use the border of the
lens-region, since the regions can vary in shape. Moreover,
spliting the wheel in regions of arbitrary shape is not a
straightforward task. To address this issue, we adopt a sim-
ple approach which is to activate the wheel of the decal-lens
situated within the lens-region that is closest to the point
given by the user click during the lens-region selection.
This is achieved by a simple lens search within the region.
This avoids indirection and confusion during interaction
(e.g., search for the color around the border) and allows
for a quick visual feedback. However, the selected decal-
lens may be occluded by other lenses due to the brushing
or lassoing process. Therefore, to allow the visibility of the
current decal-lens and wheel, we move the selected lens to
the top of the other ones by simply moving it to the end of
the decal-lens list that composes the region. Finally, we draw
the wheel to allow attribute selection in the region (Fig.7(c)).

6.6 Support Surfaces

We use a brain data [53], [54] to demonstrate the concept
of support surfaces that we here implement. This data is an
isosurface of a brain’s left hemisphere containing (Fig. 8(a)),
containing several occluded and high curvature regions,
which are generated by the brain folds. On the surface,
we visualize the geometric attributes of mean and Gaussian
curvature (commonly analyzed in brain studies [55]) using
diverging cool-to-warm colormaps. The curvatures were
estimated using Rusinkiewicz’s method [56]. Our goal here
is to provide a concrete example of how the concept of
support surfaces can be used for designing interactions.

For our example, we consider the following scenario. A
user chooses to visualize the mean curvature for the overall
brain surface, and the Gaussian curvature using a large
decal-lens with the goal of analyzing both attributes in an
integrated way. The user wants to obtain an overview of the
data by moving the lens over the surface. To allow a smooth
interaction (following Sec. 5.3), we need to compute a brain
support surface. We divide our approach into two main

steps: (1) identify occluded regions of the brain surface; (2)
close these regions (mathematical morphology). To accom-
plish this goal, we combine ideas from both Cohen et al.’s
(envelope surfaces) and Cipriano et al. [46] (text scaffold)
techniques as follows.

To address (1), we compute an object-space ambient
occlusion factor (o) for each vertex (v) of the surface using
the method proposed by Sarlete and Klein [57]. In our imple-
mentation we use 512 light sources and a transform feedback
implementation [47] for performance. To address (2), we
offset each vertex of the mesh in its normal direction (n̂)
similar to Cohen et al.’s method [44]. Inspired by Cipriano
et al.’s method [46], we calculate the offset for each vertex
based on the occlusion factor obtained from (1). Finally, the
displaced vertices v are given by v = v+ kn̂(1− oβ), where
β is an exponent that controls the influence of the occlusion
in the displacement and k is a normalization scale factor
that depends on the order of magnitude of the vertices (in
our case β=2 and k=0.05 since our surface is normalized
between 0 and 1). Following this equation, vertices in non-
occluded regions yield occlusion values close to 1 and
occlusion values close to 0 otherwise. This idea forces highly
occluded regions to close due to the inflation in the normal
direction. Fig. 8(b) illustrates the inflated brain surface after
our approach. For simplicity our implementation does not
treat surface collisions.

Now, we consider the subsequent steps: (3) surface
smoothing to avoid small discontinuities on the generated
surface; (4) a visual feedback of the support surface (that
the user can turn on and off) to guide the user during
navigation and interaction. To accomplish (3) we first render
the support surface to a FBO, creating its respective G-
buffer. We then deploy an image smoothing Gaussian filter
(5x5) to the G-buffer (depth buffer) in a second pass in order
to smooth the surface geometry in screen-space similarly
to [58]. We then compute positions and normals from the
smoothed buffer by accessing neighbor fragments (Fig. 8(c)).
To address (4), transparency is a good candidate to provide
the user a visual cue of the support surface with minimal
interference (which depend on the design). Since we are
only interested in the outermost part of the support surface
and we want to incorporate surface shading, we address
(4) by calculating Fresnel reflection shading, similarly to
the aneurysm vessel (in this case r=0.5), directly from the
G-Buffer (where only the visible geometry is stored) right
after applying the Gaussian filter (same pass). We color
the support surface with a light tone of orange to min-
imize the contrast interference between the brain surface
and the diverging colormaps (Fig. 8(d)). We compose the
final visualization by using conventional OpenGL blending
operations (Fig. 8(e)).

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 11

Fig. 9. (a) A decal-lens displaying Gaussian curvature over the brain
surface; the lens patch provides depth cues of the brain surface such
as depth and curvature. (b) See-through window metaphor through a
decal-lens placed on the support surface; the orange Fresnel shading
provides cues about the support domain with minimal visual interfer-
ence.

Fig.9(a) and (b) illustrate a comparison between a decal-
lens placed directly on the brain surface and the support
surface. The good approximation of the support surface
allows to keep the spatial reference of interest during data
exploration, whereas the direct placement insert discontinu-
ities in the lens patch, Fig.9(a). The Fresnel shading provides
a depth cue of the support surface location as displayed in
Fig. 9(b). The user can obtain an overview of the Gaussian
curvature of the surface through the lens interior following
a see-through window metaphor.

However, it is important to notice that in Fig.9(b) the
depth cue of curvature and how deep is the surface is
decreased, once all the information projected in the lens
patch is visualized. On the other hand, Fig. 9(a) the lens
border highlights well the shape of the surface, and the lack
of continuity in the lens patch also provides important depth
cues related to the surface cavities. The use of each one of
these approaches will depend on the application and the
goal of the visualization. Investigating such aspects seem a
promising future research direction.

7 EVALUATION

In this section, we provide two evaluations of our technique.
Firstly, we consider a qualitative comparison between our
decal-lenses and 2.5D lenses, such as FlowLens [12]. Sec-
ondly, we provide a performance evaluation to investigate
how our technique scales with a large number of lenses.

7.1 Qualitative Comparison

We implement a 2.5D lens using a surface aligned quad.
Similar to our local cameras approach, each 2.5D lens is
aligned based on the average normal of the point clicked by
the user. Fig. 10(a) illustrates 2.5D lenses displaying pressure

Fig. 10. Qualitative evaluation of lenses displaying pressure on an
aneurysm surface: (a) 2.5D lenses; (b) our approach.

on the vessel surface of an aneurysm. Depending on the
surface curvature, the user may need to adjust each 2.5D
lens’ orientation and position locally for data exploration
(not satisfying DG2). Moreover, dragging over the surface
can lead to flickering and lack of smooth transitions during
interaction due to re-orientation of the lens (not satisfying
DG4). Depending on size, the lens may be clipped by the
surface if depth test is enabled. This can be solved by
ignoring the depth test (e.g., by rendering first to a FBO).
However, it can lead to perceptual issues such as the lens
flying over the surface or the lens showing when it should
be occluded (not satisfying DG5). Last but not least, oper-
ating over multiple 2.5D lenses is challenging and remains
an open issue (not satisfying DG3). One may argue that
2.5D lenses do not need to be placed on the vessel surface
(thus avoiding clipping problems). However, embedding a
2.5D lens in 3D would further exacerbate the problem of
orientation and positioning, as well as violate DG1.

In contrast, Fig. 10(b) illustrates decal-lenses placed at
the same locations. Decal-lenses wrap around the surface
during interaction (DG1, DG2, DG4) thereby isolating the
region of interest, providing local depth information and
allowing for proper lens shading (DG5), which is later
blended with the color border (attribute) for context. More-
over, multiple lenses can be blended and combined (DG3)
as discussed in Sec. 6.5.1.

7.2 Performance

In practical cases, only few lenses are simultaneously used
during data exploration [16]. However, for generating lens-
regions, a large number of lenses may be required. Since our
current implementation is applied to the visualization view
(V), we do not consider the size of the dataset or the number
of attribute layers being rendered.

For our experiment, we generated a set of lens centers
uniformly distributed over the surface of the unit sphere
using a Monte Carlo sampling strategy [59]. Since a sphere is
isotropic, the rendering time is not affected by the depth test.
The number of lenses was chosen to cover the whole surface
(5000 lenses with a radius of 0.05). During rendering, we
rotate the camera around the model and compute the aver-
age framerate. Our implementation (no fine optimizations)
obtains interactive framerates (10fps) using a resolution of
1280x1024 on an Intel R©i7 laptop with a GeForce GTX 960M
2G GPU. This emphasizes that our technique is scalable and
allows for interaction on commodity hardware even with a
high number of lenses.

It is important to mention that our implementation can
be further improved. Firstly, we render each lens indi-

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 12

vidually in a serial fashion. Therefore, GPU parallelism is
mostly used for pixel operations (decal-lens region). This
expedites lens operations (e.g., brushing, lassoing) as well
as interactions (e.g., edit, erase, dragging) but introduces an
extra overhead due to the number of draw calls. One future
direction is to cluster lenses by attribute and render all of
them at once. Better sampling strategies can also be used
to reduce the number of lenses used during brushing and
lassoing operations.

8 A DETAILED EXAMPLE

We now present a detailed scenario where decal-lenses
can be applied to augment multivariate visualization, e.g.,
by managing clutter through on-demand data exploration.
The scenario consists of an oil recovery simulation, whose
properties are defined on the surface of a 3D geological
model (Fig 11). Our design and visualization were con-
ducted in collaboration with a domain expert in fluid dy-
namics and a reservoir engineer.

8.1 Fluid Flow and Petro-Properties in Oil Recovery

We focus on visualizing the result of a two-phase black-
oil simulation [60] that models oil recovery through water
injection. The geometric model is a hexahedral grid, and
each grid block holds one value for each attribute. We have
flow attributes (encoding the fluid dynamics), and petro-
physical attributes (encoding geological properties of the
porous medium). A significant difficulty is how to address
the interrelation of these two types of attributes.

In this simulation the water/oil rates (q[oil,water])
are given by Darcy’s law: µ[oil,water]q[oil,water] =
−krockk[oil,water]∇P , q = qoil + qwater where krock is the
rock permeability tensor, ∇P is the gradient of pressure,
µ[oil,water] are oil/water viscosities, q is the total fluid veloc-
ity, and k[oil,water] are the oil/water relative permeabilities
that model how the presence of each phase adversely inter-
feres with the flow. Thus, permeability, pressure gradient,
and the fluids’ viscosities can all have significant impact on
fluid flow, as, e.g. either a slow varying pressure filed, or
a low permeability rock, or a high viscosity fluid would all
lead to the perception of reduced flow in the simulation.
Identifying which factor is the most important at places of
interest (such as producer wells) is highly desirable. Such
interrelation between fluid and rock attributes motivates our
current multivariate visualization.

Previously, Rocha et al. [9] proposed a multivariate
visualization of this simulation by applying the concept
of layering on surfaces and following a perceptual-based
design inspired by traditional illustration (for more details
we refer the reader to [9]). Their multivariate visualization
considers the following attributes: porosity (scalar), oil rate
(vector), water rate (vector), and rock type (categorical data),
which are sufficient to describe the basic aspects of the fluid
flow. Here we extend this design to include two new at-
tributes: the reservoir pressure (scalar, flow attribute), and an
average permeability indicator, which highlights the influence
of the rock permeability (tensor, petrophysical attribute) in
the oil/water rates (vectors, flow attributes). Moreover, we
remark that oil/water rates are not independent quantities,
they are related by the total fluid velocity (water cannot
move where oil exists without pushing it first, and vice

versa). Thus, unlike the visualization by Rocha et al. [9], we
use the total fluid velocity to normalize water/oil rates.

Pressure is a continuous quantity that is commonly visu-
alized using colormaps. To create a visual representation to
express the change of pressure across the whole reservoir
surface, without interfering with the visual representation
of the other layers, we use a light-to-dark, orange colormap.
Since porosity is strongly correlated with rock type, by
painting porosity grains with the rock type pastel tones we
can overlay porosity with pressure and still convey the rock
type information. Fig. 11 (b) illustrates this scenario.

Rock Permeability is a tensor that indicates the ability
of a medium to support fluid flow. For simplicity, geol-
ogists and reservoir engineers represent permeability as
a diagonal 3 × 3 matrix [11]. We average permeability as
kind = (k2xx + k2yy + k2zz)

1/2, which we represent on the
reservoir surface by clustering decals with an importance
sampling strategy [59], where clustering means a higher
kind value. Each decal is depicted by a small arrow with the
normalized Darcy velocity direction. This kind layer conveys
the local relevance of permeability to the flow, as well as,
reinforcing flow direction everywhere.

Fig. 11(a) displays all the attributes encoded in layers
on the surface of the reservoir model. As we can notice,
this visualization suffers from clutter due to the overlay. By
removing the kind layer (Fig. 11(b)), we can better visualize
the flow pattern as well as the pressure variation from the
injector to the producer well. Fig. 11 also illustrates how
the oil/water rate normalization represents the flow more
faithfully, e.g. the lens in the middle of the model (Fig. 11(c)),
which is also depicted in the local camera detail, shows a
region in which flow is significantly stronger than what is
observed on its surroundings. The reason is conservation of
mass: this lens is placed exactly above the narrower portion
of the channel, which forces the fluid to move faster in the
same way as air moves faster through doors and windows
when flowing in a large room. The use of a decal-lens
combined with a local camera in this context allows us to
focus on a region of interest, accessing details of the visual
representations, without losing the overall context.

Now, we focus on analyzing which factor is locally driv-
ing the fluid flow by comparing clustered areas in the kind
layer with the flow arrow decals. However, to avoid clutter,
this comparison is made by using decal-lenses, which allow
us to select and quickly switch between layers. The user can
drag the lens over the reservoir surface and select the kind
attribute using the lens wheel. We return our attention to
Fig. 11(b), and notice that there is a clear pattern of fluid
flowing through a channel. Inspecting the porosity’s grain
color, we observe that the channel is composed of two rock
types (green and blue) that possibly extend to the top right
part of the reservoir. Based on this analysis, a decal-lens
is placed on the top-left of the model to depict how the
permeability interacts with the flow near an injector well
(Fig. 11(c)). To the right of this lens there is no flow, even
though the permeability is high, which is a consequence
of the pressure being almost constant, as highlighted by
the lens-region brushed on the right of the decal-lens to
emphasize the pressure variation by removing unnecessary
information. Downstream this channel, near the producer
well, the flow seems to reduce significantly. We then place

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 13

Fig. 11. Black oil simulation for oil recovery. (a) Pressure is represented
by a heat-map, combined with porosity (clustered grain decals), rock
type (grains painted with pastel colors), water (blue) and oil (red) flow
rates (arrows), and a permeability indicator (green arrows). (b) Without
the permeability indicator, it becomes clear that the flow is confined to
a channel, however, the flow rates’ variation throughout the channel
cannot be easily interpreted. (c) Lenses with the kind layer providing
details to better interpret the simulation’s results. Local camera detail:
notice how the flow velocity increases in the narrower section of the
channel.

another decal-lens close to the producer well. By looking at
the kind, we can verify that the permeability in this region
is still high, which implies that the reduction in the flow is
due to the interaction between the two phases, and the fact
that the oil viscosity (much higher than the water viscosity)
is greatly impacting the flow (because fluid in this region is
predominantly oil, depicted as red arrows).

9 CONCLUSIONS AND FUTURE WORK

We proposed a new lens technique for multivariate visualiza-
tion and layered visualization in general. Motivated by five
design goals, we formalized decal-lenses – object-space lenses
that follow the surface curvature and allow for multiple
uses and interactions. We connected decal-lenses to the
conceptual model of lenses [16], describing their properties,
how they can interact with the visualization pipeline during
the selection σ and join ./ stages as well as operate over data

through lens functions λ. Our GPU implementation allows
users to place and interact with lenses on the surface to create
focus+context customized visualizations while avoiding the
interaction effort of re-positioning or re-orienting the lens
during data exploration. We also combined decal-lenses
with local cameras for data comparison and correlation.

Due to its simplicity and flexibility, our approach allows
for designing lens-regions of arbitrary shapes by combining
multiple decal-lenses. This addresses one of the main issues
in lens techniques which is the need to combine lenses to
create new lens functions on-the-fly [16]. In our approach,
lens-regions can be easily created using brushing and lassoing
operations. Moreover, we introduced the concept of support
surface for designing interaction techniques. Exploring this
concept, a see-through window metaphor can be used for
data exploration. For each of these concepts, we provided
detailed examples in a variety of contexts. We hope that
these examples provide insights of how decal-lenses can be
used to facilitate data exploration in the future.

For future work we cite some noteworthy avenues. Our
decal-lenses implementation operates on the view stage of
the visualization pipeline, but the ideas introduced with
decal-lenses are not limited to the view stage themselves.
For example, one could use decal-lenses for analytics, by se-
lecting the data in the data tables stage. Moreover, this idea
could also be explored in the context of data manipulation
as pointed out by Tominski et. al survey [16]. Up until now,
decal-lenses only modify what is inside the lens, however,
one could have used decal-lenses to modify the context, if
required by a specific design. We also would like to explore
further sampling strategies to generate lens-regions. The
concept of support surfaces also warranties more research,
in particular we envision their use for data representation in
objects that are not surfaces, such as streamlines. Last, but
not least, decal-lenses can be used to correlate multivariate
data defined on distinct level-sets of a single scalar function
evolving in time, such as a moving fluid front.

There has been growing effort on bringing concepts
from information visualization to scientific visualization. On
surfaces for example, we cite the use of 2D glyphs and
the details-on-demand paradigm for medical visualization
[6], [7], and the extension and application of the concept of
layering using decal-maps [9], [10], [11]. Our work builds on
these concepts by introducing to scientific visualization an
interaction technique inspired by the magic lenses concept
that is well established in information visualization. How-
ever, many more techniques that implement concepts for
overview-detail, data comparison and correlation, spatial to
abstract data integration and interaction techniques for data
manipulation are still either incipient or not available in the
scientific visualization community. We argue that exploring
these ideas born in the information visualization community
in the eyes of scientific visualization can provide a fruitful
avenue of research in the years to come.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive comments and feedback. This research was
supported in part by the NSERC/AITF/FCMG Industrial
Research Chair Program in Scalable Reservoir Visualization
and by Discovery Grants from NSERC.

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 14

REFERENCES

[1] R. Fuchs and H. Hauser, “Visualization of multi-variate scientific
data,” in CGF, vol. 28, pp. 1670–1690, 2009.

[2] J. Kehrer and H. Hauser, “Visualization and visual analysis of
multifaceted scientific data: A survey,” IEEE TVCG, vol. 19, no. 3,
pp. 495–513, 2013.

[3] T. Munzner, Visualization Analysis and Design. CRC Press, 2014.
[4] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and

D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” in CGF, vol. 23, pp. 203–221, 2004.

[5] B. Cabral and L. C. Leedom, “Imaging vector fields using line
integral convolution,” in SIGGRAPH ’93, pp. 263–270, ACM, 1993.

[6] R. van Pelt, R. Gasteiger, K. Lawonn, M. Meuschke, and B. Preim,
“Comparative blood flow visualization for cerebral aneurysm
treatment assessment,” in CGF, vol. 33, pp. 131–140, 2014.

[7] M. Meuschke, S. Voß, O. Beuing, B. Preim, and K. Lawonn,
“Glyph-based comparative stress tensor visualization in cerebral
aneurysms,” in CGF, vol. 36, pp. 99–108, 2017.

[8] R. M. Kirby, H. Marmanis, and D. H. Laidlaw, “Visualizing mul-
tivalued data from 2D incompressible flows using concepts from
painting,” IEEE VIS ’99, pp. 333–340, 1999.

[9] A. Rocha, U. Alim, J. D. Silva, and M. C. Sousa, “Decal-maps: Real-
time layering of decals on surfaces for multivariate visualization,”
IEEE TVCG, vol. 1, 2017.

[10] A. Rocha, J. D. Silva, U. Alim, and M. C. Sousa, “Multivariate
Visualization of Oceanography Data Using Decals,” in EnvirVis,
pp. 31–35, The Eurographics Association, 2017.

[11] A. Rocha, R. C. R. Mota, H. Hamdi, U. R. Alim, and M. C. Sousa,
“Illustrative multivariate visualization for geological modelling,”
CGF, vol. 37, no. 3, 2018.

[12] R. Gasteiger, M. Neugebauer, O. Beuing, and B. Preim, “The
flowlens: A focus-and-context visualization approach for explo-
ration of blood flow in cerebral aneurysms,” IEEE TVCG, vol. 17,
no. 12, pp. 2183–2192, 2011.

[13] C. Ware, Information visualization: perception for design. Elsevier,
2012.

[14] B. Shneiderman, “The eyes have it: A task by data type taxon-
omy for information visualizations,” in IEEE Symposium on Visual
Languages, pp. 336–343, 1996.

[15] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Tool-
glass and magic lenses: the see-through interface,” in SIGGRAPH
’93, pp. 73–80, ACM, 1993.

[16] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann,
“Interactive lenses for visualization: An extended survey,” in CGF,
2016.

[17] E. Groot, B. Wyvill, L. Barthe, A. Nasri, and P. Lalonde, “Implicit
decals: Interactive editing of repetitive patterns on surfaces,” in
CGF, vol. 33, pp. 141–151, 2014.

[18] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss, “Stretching
the rubber sheet: a metaphor for viewing large layouts on small
screens,” in UIST ’93, pp. 81–91, ACM, 1993.

[19] E. LaMar, B. Hamann, and K. I. Joy, “A magnification lens for
interactive volume visualization,” in CG&A, pp. 223–232, 2001.

[20] C. Pindat, E. Pietriga, O. Chapuis, and C. Puech, “Jellylens:
content-aware adaptive lenses,” in UIST, pp. 261–270, ACM, 2012.

[21] M. Carpendale and C. Montagnese, “A framework for unifying
presentation space,” in UIST, pp. 61–70, 2001.

[22] A. Fuhrmann and E. Gröller, “Real-time techniques for 3D flow
visualization,” in IEEE VIS’98, pp. 305–312, 1998.

[23] P. Cignoni, C. Montani, and R. Scopigno, “Magicsphere: an insight
tool for 3D data visualization,” in CGF, vol. 13, pp. 317–328, 1994.

[24] J. Viega, M. J. Conway, G. Williams, and R. Pausch, “3D magic
lenses,” UIST ’96, pp. 51–58, ACM, 1996.

[25] T. Ropinski and K. Hinrichs, “Real-time rendering of 3D magic
lenses having arbitrary convex shapes,” Journal of WSCG, vol. 12,
no. 1-3, pp. 379–389, 2004.

[26] L. Wang, Y. Zhao, K. Mueller, and A. Kaufman, “The magic
volume lens: An interactive focus+ context technique for volume
rendering,” in IEEE VIS’05, pp. 367–374, 2005.

[27] C. Kirmizibayrak, M. Wakid, Y. Yim, D. Hristov, and J. K. Hahn,
“Interactive focus+ context medical data exploration and editing,”
Computer Animation and Virtual Worlds, vol. 25, pp. 129–141, 2014.

[28] J. Plate, T. Holtkaemper, and B. Froehlich, “A flexible multi-
volume shader framework for arbitrarily intersecting multi-
resolution datasets,” IEEE TVCG, vol. 13, pp. 1584–1591, Nov 2007.

[29] C. W. Borst, J.-P. Tiesel, and C. M. Best, “Real-time rendering
method and performance evaluation of composable 3D lenses for
interactive vr,” IEEE TVCG, vol. 16, no. 3, pp. 394–410, 2010.

[30] P. Rautek, S. Bruckner, E. Gröller, and I. Viola, “Illustrative vi-
sualization: New technology or useless tautology?,” SIGGRAPH
Comput. Graph., vol. 42, pp. 4:1–4:8, Aug. 2008.

[31] I. Viola, Importance-driven expressive visualization. PhD thesis, 2005.
[32] J. Diepstraten, D. Weiskopf, and T. Ertl, “Interactive cutaway

illustrations,” in CGF, vol. 22, pp. 523–532, 2003.
[33] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin, “Inter-

active cutaway illustrations of complex 3D models,” ACM TOG,
vol. 26, no. 3, p. 31, 2007.

[34] S. Bruckner, M. E. Gröller, K. Mueller, B. Preim, and D. Silver,
“Illustrative focus+ context approaches in interactive volume vi-
sualization,” Dagstuhl Follow-Ups, vol. 1, 2010.

[35] E. Hodges and G. of Natural Science Illustrators (U.S.), The Guild
Handbook of Scientific Illustration. Wiley, 2003.

[36] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and
M. E. Gröller, “Hybrid visibility compositing and masking for
illustrative rendering,” C&G, vol. 34, no. 4, pp. 361–369, 2010.

[37] S. Bruckner and M. E. Groller, “Exploded views for volume data,”
IEEE TVCG, vol. 12, no. 5, 2006.

[38] J. Kruger, J. Schneider, and R. Westermann, “Clearview: An inter-
active context preserving hotspot visualization technique,” IEEE
TVCG, vol. 12, pp. 941–948, Sept. 2006.

[39] I. Viola and E. Gröller, “Smart visibility in visualization,” in CAe,
pp. 209–216, 2005.

[40] V. Interrante, H. Fuchs, and S. M. Pizer, “Conveying the 3D shape
of smoothly curving transparent surfaces via texture,” IEEE TVCG,
vol. 3, pp. 98–117, Apr. 1997.

[41] N. Elmqvist and P. Tsigas, “A taxonomy of 3D occlusion manage-
ment for visualization,” IEEE TVCG, vol. 14, pp. 1095–1109, 2008.

[42] N. Elmqvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and
T. Jankun-Kelly, “Fluid interaction for information visualization,”
Information Visualization, vol. 10, no. 4, pp. 327–340, 2011.

[43] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
information visualization: using vision to think. Morgan Kaufmann,
1999.

[44] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agar-
wal, F. Brooks, and W. Wright, “Simplification envelopes,” in
SIGGRAPH’96, pp. 119–128, ACM, 1996.

[45] S. Calderon and T. Boubekeur, “Bounding proxies for shape ap-
proximation,” ACM TOG, vol. 36, no. 5, 2017.

[46] G. Cipriano and M. Gleicher, “Text scaffolds for effective surface
labeling,” IEEE TVCG, vol. 14, no. 6, pp. 1675–1682, 2008.

[47] G. Sellers, R. S. Wright, and N. Haemel, OpenGL SuperBible: Com-
prehensive Tutorial and Reference. Addison-Wesley, 2013.

[48] A. Mahdavi-Amiri, T. Alderson, and F. Samavati, “A survey of
digital earth,” C&G, vol. 53, pp. 95–117, 2015.

[49] R. Gasteiger, M. Neugebauer, C. Kubisch, and B. Preim, “Adapted
Surface Visualization of Cerebral Aneurysms with Embedded
Blood Flow Information,” in VCBM, The Eurograph. Assoc., 2010.

[50] VisItUsers, “Aneurysm data.” https://tinyurl.com/jcdmdlv, 2016.
[Online; accessed 11-Dec-2016].

[51] S. R. de Galarreta, A. Cazón, R. Antón, and E. A. Finol,
“The relationship between surface curvature and abdominal aor-
tic aneurysm wall stress,” Journal of Biomechanical Engineering,
vol. 139, no. 8, p. 081006, 2017.

[52] S. Glaßer, K. Lawonn, T. Hoffmann, M. Skalej, and B. Preim,
“Combined visualization of wall thickness and wall shear stress
for the evaluation of aneurysms,” IEEE TVCG, vol. 20, no. 12,
pp. 2506–2515, 2014.

[53] T. Sherif, N. Kassis, M.-É. Rousseau, R. Adalat, and A. C. Evans,
“Brainbrowser: distributed, web-based neurological data visual-
ization,” Frontiers in neuroinformatics, vol. 8, p. 89, 2015.

[54] B. Fischl, M. I. Sereno, and A. M. Dale, “Cortical surface-based
analysis: Ii: inflation, flattening, and a surface-based coordinate
system,” Neuroimage, no. 2, pp. 195–207, 1999.

[55] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Lefèvre, and
L. Mahadevan, “On the growth and form of cortical convolutions,”
Nature Physics, vol. 12, no. 6, pp. 588–593, 2016.

[56] S. Rusinkiewicz, “Estimating curvatures and their derivatives on
triangle meshes,” in International Symposium on 3D Data Processing,
Visualization and Transmission, pp. 486–493, IEEE, 2004.

[57] M. Sarletu and G. Klein, “Hardware-accelerated ambient occlusion
computation,” in Vision, modeling, and visualization 2004: proceed-
ings, November 16-18, 2004, Standford, USA, pp. 331–338, 2004.

https://tinyurl.com/jcdmdlv

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXXX 15

[58] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid ren-
dering with curvature flow,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games, pp. 91–98, ACM, 2009.

[59] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible
sampling with blue noise properties of triangular meshes,” IEEE
TVCG, vol. 18, no. 6, pp. 914–924, 2012.

[60] J. A. Trangenstein and J. B. Bell, “Mathematical structure of the
black-oil model for petroleum reservoir simulation,” SIAM J. Appl.
Math., vol. 49, no. 3, pp. 749–783, 1989.

Allan Rocha is a Ph.D. candidate in Computer
Science, pursuing his research at the Illustrares
and VISAGG Group at the University of Cal-
gary. His research combines aspects from scien-
tific visualization, information visualization, non-
photorealistic rendering, visual design, interac-
tion design and real-time rendering, to tackle
the problem of visualizing and interacting with
multivariate spatial data. Previously, he received
his M.Sc. degree in computer science from PUC-
Rio, working in illustrative visualization. During

this period, he had also worked as a researcher and software engineer
developing visualization solutions for the oil and gas industry.

Julio Daniel Silva is a senior research asso-
ciate at the University of Calgary, Canada. His
research interests include pure and applied as-
pects of partial differential equations and nu-
merical analysis in the context of fluid dynamics
and geometric modelling, heterogeneous par-
allel computing, and the visualization of all of
this. Julio holds both M.Sc and Ph.D. degrees
in Mathematics from the Instituto Nacional de
Matemática Pura e Aplicada (IMPA), Brazil.

Usman R. Alim received the Ph.D. degree in
Computer Science from Simon Fraser University
in 2012. Since 2012, he has been with the De-
partment of Computer Science at the University
of Calgary where he is currently an Associate
Professor. He is the director of the Visualization
and Graphics Group (VISAGG) which focuses
on addressing a diverse range of fundamental
and applied problems in Data Visualization and
Computer Graphics. His current interests include
multivariate data visualization, large scale data

visualization, visualization in immersive environments, and statistical
and numerical methods for visualization.

Sheelagh Carpendale is a Full Professor at the
University of Calgary where she holds a Tier 1
Canada Research Chair in Information Visual-
ization and an NSERC/AITF/SMART Industrial
Research Chair in Interactive Technologies. She
has many received awards including the E.W.R.
NSERC STEACIE, a BAFTA; and is a mem-
ber of the ACM CHI Academy. Dr. Carpendale
directs the Innovations in Visualization (Inno-
Vis) research group and initiated the interdisci-
plinary graduate program, Computational Media

Design. Her research focuses on information visualization, interaction
design, and qualitative empirical research. By studying how people
interact with information both in work and social settings, she works
towards designing more natural, accessible and understandable inter-
active visual representations of data.

Mario Costa Sousa is an associate professor
of computer science at the University of Cal-
gary, Canada. He leads the Illustrares group, a
multidisciplinary team working on fundamental
and applied research of interactive visual com-
puting in science and engineering. Professor
Costa Sousa received his Ph.D. from the Uni-
versity of Alberta, Canada in 1999 and M.Sc.
from PUC-Rio, Brazil in 1994. His research
interests include non-photorealistic rendering,
sketch-based interfaces and modeling, illustra-

tive visualization, visual analytics, and human-data and computer inter-
action. Professor Costa Sousa was a recipient of an eight-year Industrial
Research Chair in Scalable Reservoir Visualization sponsored by the
Canadian government and the industry sector.

http://ires.cpsc.ucalgary.ca/
http://vis.cpsc.ucalgary.ca/
http://www.cpsc.ucalgary.ca/~ualim
http://vis.cpsc.ucalgary.ca/
http://vis.cpsc.ucalgary.ca/
http://innovis.cpsc.ucalgary.ca/
http://innovis.cpsc.ucalgary.ca/
http://www.cpsc.ucalgary.ca/~mario
http://ires.cpsc.ucalgary.ca/

	Introduction
	Related Work
	Lenses for 3D Data Visualization
	Illustrative Techniques

	Design Goals
	Decal-Lenses Concept
	Definition
	Conceptual Model of Decal-Lenses
	Additional Properties

	Extensions & Related Concepts
	Local Cameras
	Operations Over Multiple Decal-Lenses
	Support Surfaces

	Implementation
	Visual Encoding and Multi-pass Approach
	Rendering and Layered Representation
	Decal-Lenses
	Lens Placement and Construction
	Interaction, Widgets, Visual Feedback and Blending

	Local Cameras
	Operations Over Multiple lenses
	Arbitrary Lens-Regions
	Interaction, Widgets, Visual Feedback

	Support Surfaces

	Evaluation
	Qualitative Comparison
	Performance

	A Detailed Example
	Fluid Flow and Petro-Properties in Oil Recovery

	Conclusions and Future Work
	References
	Biographies
	Allan Rocha
	Julio Daniel Silva
	Usman R. Alim
	Sheelagh Carpendale
	Mario Costa Sousa

