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Constructing Visual Representations:
Investigating the Use of Tangible Tokens

Samuel Huron, Yvonne Jansen, Sheelagh Carpendale

Fig. 1. Constructing a visualization with tokens: right hand positions tokens, left hand points to the corresponding data.

Abstract —The accessibility of infovis authoring tools to a wide audience has been identi�ed as a major research challenge. A key
task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested
in �nding effective visual mappings, comparatively little attention has been placed on how people construct visual mappings. In
this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We
asked people to create, update and explain their own information visualizations using only tangible building blocks. We learned that
all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own
visualizations. Based on our observations, we discuss participants' actions during the development of their visual representations and
during their analytic activities. We conclude by suggesting implications for tool design to enable broader support for infovis authoring.

Index Terms —Constructive visualization; Physical visualization; Dynamic visualization; Empirical study; Token; Visualization author-
ing; Information visualization; Visual mapping; Novices; Visualization construction; Visual analytics

1 INTRODUCTION

The use of information visualization (infovis) is becoming increas-
ingly widespread, with the result that infovis can now be encountered
in everyday life: online, in newspapers, or on TV shows. In response,
the research community started to consider infovis for purposes other
than strictly analytical ones [43] and to explore questions such as the
democratization of visualization [53]. However, this democratization
requires that the general public, not just experts, be able to design,
publish, and discuss their own visualizations with their own data.

The need to create new, more accessible information visualization
tools is noted as a major research challenge [29, 36]. As Victor [52]
illustrates, the available software tools either offer only a limited set of
prede�ned visualization templates or require effort and skills, such as
coding, to create more adapted or customized results. By comparing
different approaches to creating visualizations, e.g. spreadsheet soft-
ware, programming languages, and computer assisted drawing, he de-
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rives three relevant properties that may help the community reach the
goal of creating accessible yet powerful visualization tools: simplic-
ity, expressivity, and dynamicity. We can �nd some of these properties
in existing tools that people spontaneously use to help them think vi-
sually. Examples include creating visualizations with manual encod-
ing [5], on napkins [14], on whiteboards [54], with paper and scis-
sors [19], or building tangible visualizations [34].

In previous work, we de�ned constructive visualization [31] as a
theoretical basis for a new visualization authoring paradigm based on
Froebels ideas [21]. Constructive Visualization is motivated by ben-
e�ts that may arise from constructing a visualization out of tokens.
Since tokens can be added and removed as needed, such constructions
offer possibilities for both expressive freedom and dynamic adjust-
ment. We present in this article a study to examine and re�ne this
paradigm. Our goal is to investigate:if people can construct their own
visualizations using tokens,how they construct their visualizations,
andwhat type of visualizations they create. Finally we are interested
what limitations people encounter with this approach. In particular,
we focus on the visual mapping process – the process by which peo-
ple use tokens to create a visual arrangement that represents their data.
Our deconstruction of this process reveals eleven logical tasks that can
be grouped according to their main purpose of construction, computa-
tion and explanation. Our primary contributions are:

• showinghowinfovis novices create, update, and discuss a tangible
token based visualization;

• unpacking the `black box' of the process by which people map data



onto a visual and spatial representation with tangible tokens;
• presenting a visual mappingmodelthat allows researchers to better

understand the activity of this speci�c population;
• presenting implications for research and design, highlighting op-

portunities for future research; and
• offering suggestions for new approaches to designing infovis digital

and tangible authoringtools.

2 MOTIVATION & B ACKGROUND

Here we motivate our research question from open research challenges
and provide a rationale for the design of our approach. To keep the
discussion coherent, we de�ne our commonly used terms in Table 1.

token A token is a basic unit to which information or data has been
mapped.

construct A construct is the result of the assembly of two or more
tokens and can contain any number of tokens, or tokens and
one or more constructs.

assembly model An assembly model is the process by which a construct is
created. This process can involve different types of activi-
ties such as construction and deconstruction.

representation A representation is a formal system for making explicit cer-
tain entities or types of information [41].

presentation A presentation is the act of displaying a representation, em-
phasizing and organizing areas of interest [13].

Table 1. Summary of terminology used throughout this article.

2.1 Infovis Democratization

The bene�ts of visual thinking are currently well established [8, 12].
Beyond the consumption of prepared visual representations, studies
show that the creation and manipulation of visual representations can
improve the learning and understanding of students [22, 24, 48]. Sim-
ilarly, even for abstract problems such as Bayesian reasoning [42], the
active construction of a visual representation seems promising [17].
These studies focus on simple diagrams or only require participants
to draw on pre-existing visual representations. There is still a lack of
studies investigating self-de�ned visual representations.

Indeed, the creation of information visualizations by a wide audi-
ence has been identi�ed as a major challenge by several researchers.
TheNIH/NSF visualization research challenges reportstates: “A big
challenge is to create [...] a system that, while clearly not compre-
hensive and all-powerful, does help to enable non-experts to perform
tasks [...] in any reasonable time frame. [...] The goal is to make vi-
sualization a ubiquitous tool that enables ordinary folks to think vi-
sually in everyday activities” [36]. Similarly, Heer and Shneiderman
point out the need to create new interfaces for visualization speci�ca-
tions: “Novel interfaces for visualization speci�cation are still needed.
[...] New tools requiring little to no programming might place custom
visualization design in the hands of a broader audience” [29].

Tools such as ManyEyes [53] and Tableau Public [3] attempt to
make the creation of visualizations accessible to a wider audience.
These web-based tools allow one tocreate, publishanddiscussvisual-
izations. These tools support the creation of visualizations by provid-
ing sets of pre-de�ned templates which can be populated with one's
own data. Despite the bene�ts of this work, potential users are lim-
ited to the templates provided by the respective websites and have no
means of developing their own visual mappings.

2.2 The Challenge of Visual Mapping

The development of a visual mapping from data dimensions to visual
features is a key task of the visualization authoring process. The com-
mon reference model for this process is shown in Figure 2. The core
of this model, thevisual mappingtransformation, de�nes the map-
ping from a dataset to a visual representation, or more speci�cally the
mapping of data dimensions to the variables of the visual marks that
compose thevisual representation[9].

While much work has been done on �nding perceptually ef�cient
visual representations [15, 56], we know comparatively little about
how humans perform the step of visual mapping themselves [26].
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Fig. 2. The extended visualization reference model [34], adapted to our
terminology.

Consequently, to improve the accessibility of visualization authoring
tools, we �rst need a better understanding ofhow a visualization au-
thor performs a representational mapping transformation.

2.3 Choosing a Methodology

Several different approaches exist that can inform the design of new
visualizations tools. One is to study currently existing tools to deter-
mine possible improvements for these and future tools. For example,
Grammel et al. [26] conducted a study to understand how non-experts
design visualizations. In order to avoid confounds possibly introduced
by the use of a speci�c software tool, participants were asked to spec-
ify visualizations verbally while an operator created and displayed the
resulting visualization to the participant. This study identi�ed three
barriers related to the visual mapping process:i) selecting which di-
mensions to map to visual variables,ii) selecting which visual marks
to use, andiii) decoding and interpreting the visual result. While this
study provides valuable insights, it is based on the participants choos-
ing among pre-de�ned templates and thus leaves many unanswered
questions about the details of the visual mapping process.

A different approach is to design a new technique, to develop a
prototype, and to compare it empirically to currently existing tools.
While this may provide insight into the tools studied, this approach
does not unpack the visual mapping process. Yet another approach
is to study human behavior independently from the design of speci�c
software tools. Our work falls into this category. Observing how peo-
ple construct their own visual mappings may help us to develop a bet-
ter understanding of basic processes of visualization authoring. This
understanding may then be valuable for informing future tool design.
Observing people developing visualizations without a software author-
ing tool reduces possible tool bias and allows us to observe directly the
behavior that is commonly encompassed within a software tool.

2.4 Design Paradigms of Infovis Authoring Tools

The underlying design paradigm of an infovis authoring tool is rel-
evant to consider in the context of a tool's accessibility for a wide
audience. Existing tools can be classi�ed by considering their design
paradigm. Victor [52] distinguishes between three fundamentally dif-
ferent paradigms:
Using pre-existing visualization software, such as Excel, Tableau [4],

Spot�re [2], ManyEyes [53], Google Chart Editor [1].
Drawing visualizations either free-hand such as studied by Walny et

al. for whiteboards [54, 55] or by using computer aided drawing
tools such as Adobe Illustrator.

Coding custom visualizations, usually on the basis of existing toolkits
or environments such as Processing [44], the Infovis toolkit [20],
Prefuse [28], or D3.js [10].

For the purpose of unpacking a visualization author's processes, all of
these approaches are problematic.Codingrequires speci�c program-
ming skills whileusingrequires the mastering of a speci�c application
and restricts an author to the provided templates.Drawing is less re-
strictive and requires no speci�c skills but offers no dynamic response
and is also problematic as it easily leads to premature commitments
[27] due to an increased dif�culty of changing a drawn design.

A recent survey of infovis authoring tools inspects articles pub-
lished in the main human computer interaction venues over the past
twelve years [25] and identi�es six different design paradigms: vi-
sualization spreadsheets, template editors, shelf con�guration, textual
programming, visual data�ow, and visual builders. Using Victor's



classi�cation we can consider visualization spreadsheets, template ed-
itors and shelf con�guration as variations with his template ofusing.
Textual programming maps to Victor'scoding. Of the remaining two
paradigms visual data�ow can be seen as combiningcodingwith us-
ing. Visual builder refers to systems which support construction of vi-
sualizations out of basic graphical elements. While this last approach
has potential for supporting the free development of visual mappings
without requiring speci�c programming skills, currently tools in this
category still require one to master a design environment.

We recently described an alternative paradigm calledconstructive
visualization[31]. The basic idea of this new paradigm is to construct
visualizations out oftokens(see Table 1). This paradigm is derived
from pedagogical theory and the analysis of existing practices such
as the construction of visualizations out of Lego bricks and other ma-
terials. Such token-based constructions offer the advantage that they
can be implemented entirely physically and hence avoid biases due to
learning effects with speci�c software applications or limitations of
the hardware employed. Moreover, a token-based approach can ben-
e�t from the way people use space to support their cognitive abilities
as analyzed by Kirsh [38]. These speci�c spatial abilities have al-
ready been studied in different information workspaces such as Visual
Knowledge Builder [49] and multi-screen analysis applications [7]. In
particular Andrews et al. [7] discuss how space was used by their par-
ticipants as both an external memory aid and a semantic layer.

.

2.5 Token-based Visualizations

The concept of tokens has been used in the past by different commu-
nities with a variety of connotations. We distinguish two classes of
tokens by considering whether meaning is assigned in a static or dy-
namic fashion. For example, in computer science, a token can have
a static identity referring to a transferable data object with a speci�c
identity, e.g., a security token or an invitation token. Alternatively, it
can be dynamic. For example in parsing, a token represents the small-
est meaningful unit of information within a longer series of data, if
its binding changes programmatically, it is dynamic. In the context of
constructive visualization, a token has a dynamic identity which the
visualization author de�nes during the construction of the visualiza-
tion.

Physical tokens have also been used by pre-historic societies for hu-
man information processing purposes [47]. In this context, tokens had
a static identity as each speci�c shape always referred to the same in-
formation. Existing currency systems still function on the same prin-
ciple, e.g., a 50g coin has a static identity and can be readily recog-
nized based on its shape, size, and markings. Tokens have also been
extensively used as tools to teach mathematics in kindergarten [40].
More recently, token-based information visualizations have emerged
as a trend in the infovis community [33, 35, 46, 57]. However, few
studies exist on how people manipulate tokens as part of avisual map-
ping process. Here we summarize existing token-based visualization
techniques.

Ullmer et al. [51] discuss the concept of physical tokens in the
context of tangible interfaces. In their model, digital information is
mapped to physical tokens and logical constraints are mapped to phys-
ical constraints. They identify three styles of physical mapping to digi-
tal interpretation: “interactive surface”, “token+constraint”, and “con-
structive assembly”. In this work we study and extend the notion of
“constructive assembly” to information visualization. Yi et al. [57]
use a magnet metaphor to map multivariate data. Data dimensions are
mapped to “magnets” and by moving these, data points are attracted
depending on their value for the respective data dimension. Each data
point can be seen as a token, though tokens are not interactive objects
here and can only be indirectly manipulated through the “magnets”.
In our study, we investigate the direct manipulation of tokens rather
than mediated manipulation. Jetter et al. [35] use physical tokens to
represent queries in a faceted search on a tabletop. Each token is a
physical object representing a search facet. By manipulating the to-
kens, one can create a query through a hybrid interface. Similarly,
Klum et al. [39] used stackable tangibles to process faceted search. In

these two examples, tangibles are used to �lter a virtual visualization.
In contrast, we focus on the use of tangible tokens to construct the
visualization itself.

Huron et al. [32] used a sedimentation metaphor to visualize dy-
namic data streams over time. Data chunks are mapped to visual to-
kens, which fall down into a deposit area, and then aggregate over
time into a pre-de�ned area chart. Tokens are not directly manipu-
latable and a visual sedimentation requirescoding. Rzeszotarski et
al. [46] visualize multivariate data as tokens and combine these with
physical affordances. In their multitouch system, data are mapped to
points, which are equivalent to tokens. The system provides a set of
virtual tools which support the building of representations by changing
points' positions, appearances, and interactivity.

In these last two approaches, discrete visual marks are used to rep-
resent and manipulate data, one for data streams, and the other for
multivariate data. Both simulate physical affordances of tokens in an
environment to create visualizations. Also both claim that; (1) the
resulting visualizations are usable with minimal training, and (2) the
visible evolution of tokens over time supports understanding of visual
assembly and update. These claims are part of the motivation for our
study to learn how people assemble tokens for visualization purposes.

3 STUDY DESIGN

In this study we focus on:i) learning more about the visual mapping
process,ii) gaining some understanding about what makes the visual
mapping process sometimes rather dif�cult [26] and sometimes quite
easy [14], andiii) exploring the suitability ofconstructive authoring
of infovis as an approach to the creation of visualizations.

3.1 Participants

We announced our study by mail, social network, mailing list, and ran-
domly approached people on the street (the study took place in a down-
town center close to transportation facilities). We recruited 12 partici-
pants from a variety of disciplinary and educational backgrounds, with
an effort not to disproportionately select those from visualization, hu-
man computer interaction, and computer science in general. Partici-
pants were between 22 to 43 years old with a median age of 28. They
predominantly had a high school diploma, with 2 to 8 years (median
5 years) of further study in a variety of �elds such as art, humanities,
and science. More demographic background information is summa-
rized in Table 3. All participants were rewarded with a 10 Euros gift
coupon from a well-known online webstore. All but one participant
agreed to be videotaped during the study.

3.2 Setup

Each element of the setup was described by the facilitator in the fol-
lowing order:
#1The printed dataset. We use an aggregated version of a bank ac-
count statement as our dataset. The participant sees three months
of expenses on an A4 paper �xed to the table. All expenses are
grouped into categories: “amusement”, “bar and restaurants”, “gro-
ceries”, “transportation”, and “travel”. To simplify the participants'
data processing all values are rounded to 25. The dataset is ordered
�rst chronologically (Aug., Sept., Oct.) and then by expense category.
The order of categories varied across months.
#2The token box. The tokens were contained in two boxes with four
compartments taped together and to the table. Six of the eight com-
partments contain tokens. Each compartment contains 36 colored to-
kens (red, orange, yellow, green, blue, violet). Participants are not
explicitly informed of the total number of tokens. The tokens are 25
millimeters wooden tiles taken from a learning toys kit designed by
Froebel [40] for Kindergarten education.
#3The token mapping. Since we rounded all data values to the near-
est 25, we suggested to participants a mapping of 1 token� 25 and
indicated it on an A5 paper sheet with a 3D printed version of a token.
#4An A2 paper canvas. The working area was a �xed A2 paper can-
vas, which was placed in the center of the table.



  135 

22

44

Camera 
front

Camera top

39

31

5

10.5

21

130

90

#1
#3

#2

#4
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3.3 Procedure

After �lling out a consent form and a demographic questionnaire, par-
ticipants were introduced to a speci�c scenario that provided them
with a goal for their task: to help a friend improve his budget. The fa-
cilitator then explained the study setup and the tools available to help
them reach their goal. We structured the study such that participants
were �rst asked tocreatea visualization based on the available data.
When �nished, in a semi-structured interview, the facilitator asked par-
ticipants to explain their visualizations. Then, participants were given
new data and asked toupdatetheir visualization. Afterwards, a second
interview was conducted. Next, the participants are asked to annotate
their visualization such that their friend, whose budget they visualized,
would be able to later understand what they had done. Finally, partic-
ipants �lled a post-session questionnaire and received a gift card in
compensation. The study lasted on average 70 minutes (minimum of
40 minutes; maximum of 103 minutes).

3.4 Tasks

The three tasks that we asked participants to perform were:
A: Create a visualization. To increase the ecological validity of our
study, we provided participants with a scenario they could encounter
in their real life. We told them that a friend has asked for their help
with his �nancial situation. The friend admits to having trouble man-
aging his expenses and to being unsure how to resolve the situation.
Then, the facilitator points to the dataset and comments that currently
changes over time are hard to see, and a visual representation might
be helpful. The available tools for creating such a representation are
the tokens placed on the table, and since all values in the dataset are
divisible by 25, a mapping of 1 token� 25 seems reasonable. Partic-
ipants are then invited to take all the time they need and to inform the
facilitator once they are �nished.
B: Update a visualization. The facilitator tells the participants that
the friend provides them with one more month of data. The facilitator
slides up the data printout (Figure 3 #1) to reveal a month previously
hidden by a paper mask. Participants are asked to update the visual-
ization to include the new data, using all the time they need.
C: Annotate a visualization. The facilitator informed the partici-
pants that their friend was not currently able to receive their advice.
The facilitator provided participants with 4 pens of different colors
and a variety of post-its and asked them to annotate their visualization
explaining what they did and what they discovered. Participants were
explicitly asked to provide suf�cient information such that their friend
could (1) read the visualization, (2) understand it, and (3) be able to
re-create it if needed. Additionally, participants were asked to indicate
possible budget improvements. Again, participants had all the time
that they wanted and were asked to declare when they had �nished.

3.5 Data Collection

To analyze the study tasks, we gathered four types of data.

Video. We recorded the entire process for the participants who gave
their agreement. We used two cameras with different viewing angles:
a bird's-eye view, and a view from the front as noted in Figure 3.
Questionnaires. Through questionnaires we gathered demographic
information, the participants' opinions on the techniques they used,
and the task they had performed.
Interviews. Between task A and task B we conducted a semi-
structured interview. During this interview, we asked participants to
explain the visualization they created, how they made it, what they
manipulated, if they found the task dif�cult and their thoughts about
the activity in general. The goal of these interviews was to obtain more
information about their process and the problems they encountered.
Photographs. After each task, we took pictures of the state of the
visualization on the canvas. Sometimes, during the task, we also took
pictures of unexpected behavior.

3.6 Data analysis method

We collected approximately 1540 minutes of videos (2 cameras�
11 participants� 70 min per session, on average). We analysed
the video using a qualitative data analysis approach as described by
Creswell [18]. The coding of the video was performed in several
passes, using in an iterative process. There was primarily one coder,
with frequent group discussions between iterations to ensure agree-
ment. During the �rst pass, we described and analyzed the mapping of
the �nal result and noting what was directly apparent during the pro-
cess e.g. “[the participant] counted and placed the tokens in a heap”.
During the second pass, we identi�ed the regularities between partici-
pants during the process. For the third pass, we re-de�ned our coding
to expressly consider actions of participants in terms of transforma-
tions within the infovis pipeline. We then applied this selective coding
in two passes. Our approach is limited to what we could code and
observe. Because participants sometimes created their own mappings
in an iterative fashion, we could not always identify if a token was
mapped to a data point, and if so, to which point. Some types of oper-
ations and decisions (such as data transformations or color mappings)
can only be observed by their result. Hence, where possible, we used
information gathered from the interviews to resolve uncertainties in
our observations.

4 RESULTS

All participants were able to complete the three tasks in a relatively
short period of time (on average they spent: 11 minutes tocreate, 6
to update, and 7.5 toannotate). However, the time varied consider-
ably across participants and tasks (Table 3). To present our results,
we deconstruct the study tasks into theirwhy, what, andhowcompo-
nents [34] (summary in Table 2). We identi�ed 11 different subtasks,
named after theirwhat component, i.e., the logical task, and grouped
by their why component, i.e., their underlying goals, intoconstruc-
tion, computation, andstorytelling. Each of these 11 tasks can require
several actions in different combinations and in different orders of exe-
cution. While we cannot directly observe mental operations, we noted

Why What (logical task) How (mental and physical actions)

C
on

st
ru

ct
io

n 1. Load data READ, COMPUTE, SELECT COLOR, GRASP, CREATE

2. Build constructs ORGANIZE, MOVE

3. Combine constructs ARRANGE, ALIGN

4. Extend READ, COMPUTE, SELECT COLOR, GRASP,
CREATE, ORGANIZE, MOVE, ARRANGE, ALIGN

5. Correct INCREASE, DECREASE, REMOVE

C
om

pu
ta

tio
n

6. Categorize SELECT COLOR, ARRANGE, MERGE, SPLIT

7. Aggregate MOVE, MERGE

8. Compute New Value SPLIT, COMPUTE+ LOAD

9. Unitize ORGANIZE, ARRANGE, SPLIT, MERGE

S
to

ry
te

lli
ng

10. Highlighting SPLIT (temporarily)
11. Marking CREATE, SELECT COLOR

Table 2. Summary of identi�ed goals, tasks, and actions.
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Fig. 5. A �ow diagram showing the most common paths. In purple: the
mental tasks, in blue: the physical tasks. The gray background rectan-
gles illustrate the logical tasks. The gray oblongs linking two spheres
represent possibly concurrent actions.

three such actions from observable physical actions. These areREAD-
ING (where the participant is looking at the data and sometimes tracing
with a �nger), SELECTING (where the participant makes a selection
physically), andCOMPUTING (where the participant calculates addi-
tional values, such as averages, in an observable or verbally declared
manner). Figure 5 illustrates the relationship between these actions
while arrows highlight the most common successions of actions. We
present our �ndings for each of thelogical tasks. Since actions can
be part of different tasks with different purposes, we presentACTIONS
here in the context oflogical tasks.

4.1 Construction

We de�ne a visualization as a nested construct of tokens forming a
representation of data. As a representation, each of the visualizations
follows a formal system – the mapping between data dimensions and
available physical variables. We call this formal system anassembly
model. Assembly models vary across participants and either develop
or become apparent to an observer during the construction process.
Figure 4 shows the resulting visualizations.
1. Load data: Loadinga datacase involved several actions. First, the
participant needed toREAD the data. As Figure 6 illustrates, they per-
formed this action in different ways: (a) by just looking at the data, (b)
by assisting the reading through pointing, (c) by multiplexing reading
with some other action such asGRASPINGtokens at the same time.

Participants then needed toCOMPUTE the required number of to-
kens for the data value, e.g., 125� 5 tokens. This step was the only
action that required computations and occasionally led to mistakes.
Computation actions were commonly not physical, though some peo-
ple used physical assistance such as accumulating tokens in their hand,
counting them up until they reached the data value.

Similar to COMPUTE, the SELECT COLORaction is also a process
which only became apparent once a participantGRASPED tokens of

Fig. 6. View from the front camera on three participants (1) reading, (2)
reading and pointing, (3) reading and grasping tokens.

a speci�c color. All participants used color to structure and empha-
size single or groups of categories. By choosing a color, a participant
expands her assembly model or makes it explicit.

Tokens wereGRASPEDindividually or in groups (Figure 7–1/2) de-
pending on whether participants (a) counted tokens while grasping
them, (b) grasped several tokens and counted them into their other
hand, (c) replaced tokens already in their hand, or (d) put tokens back.

Once participants placed tokens on the canvas (Figure 7–3/4/5) to
form a group, theybuilt a construct. At this point it was not yet appar-
ent whether participants were already following an assembly model in
their mind or whether that model only emerged during the course of
the task. However, we observed that all constructs built by participants
were visually dense, and often already highly structured.
2. Build constructs: Initial constructs were not necessarily organized
following a formal system but sometimes just consisted of unorga-
nized heaps of tokens (e.g., Figure 10–1). In the next step, participants
ORGANIZED such amorphous constructs into meaningful and identi�-
able shapes such as lines or rectangles (Figure 8). By doing so they
de�ned rules and visual parameters formalizing (a) the spatial relation-
ship between tokenswithin the construct they were creating, and (b)
the spatial relation of the newly created construct to the canvas.
3. Combine constructs:When participants created a second construct
for a second data case, they had to consider how toARRANGE con-
structs relative to each other (Figure 9). We observed that spatial re-
lationships between constructs were often used to encode hierarchical
information such as groupings by expense categories then by month
or the other way around. Such speci�cations could be made explicit,
for instance, by de�ning an axis (observed for 11 out of 12 partici-
pants, written (11/12) from here on) or other custom con�gurations
(Figure 4–4jA/8jA). Since the study dataset contained two dimensions
for each value (month, expense category), participants had to decide
at least twice how to encode these dimensions in their arrangement.
Some participants recombined their constructs repeatedly before de-
ciding on a �nal encoding.

Some participants tried several different structural combinations be-
fore settling on one, sometimes eventually going back to one tried ear-
lier. For example, in Figure 9 we can see a participant change from
a vertical barchart aligned along the x-axis (1) to a horizontal stacked
barchart aligned to the y-axis of her canvas (2). Changing the arrange-
ment of constructs can also impact their internal spatial organization.
For example, in Figure 9 (3) the participant switched her representa-
tion from one where a single color encoded the data to one where the
data value is read from the area of the construct.
4. Extend: This refers to the task of applying rules of an assembly

Fig. 4. All constructed visualizations. Columns represent participants, rows represent tasks: (A) create a visualization, (B) update, (C) annotate.



Fig. 7. A participant GRASPS tokens (1,2,3) and BUILDS a construct (4,5,6). She is: (1) grasping some tokens from the box, (2) manipulating and
transporting the tokens from the box to the canvas area (3) positioning the tokens, (4,5) starting to create a new green construct by placing tokens
one by one on the canvas, (5) augmenting the construct in an organized way following her previous assembly (6) done. The pink annotation: #2
points to the token box. #4 points to the canvas.

Fig. 8. Examples of constructs: (1) a line, (2) square and rectangles, (3)
a layered construct resembling a horizon graph [45] to optimize canvas
real estate, (4) a 3D bar chart column with two nested constructs in
green and orange.

model developed during the initialbuilding and combiningof con-
structs to the rest of the data. For example, afterARRANGING all data
cases for the �rst month, andcombining the constructsfor the month
dimension, participants could just repeat their previous actions to add
the data for the other months. Often this replication was a linear (Fig-
ure 11) application of the assembly model but sometimesextendled
to further changes of the representation, the spatial placement of con-
structs (without changing the assembly model) or the overall structure.
Extension can be applied to any sequence of actions. In Figure 10 we
can see that participant 4 has repeated a process of extension onload-
ing tokens without organizing them (1), then heORGANIZES a �rst
construct and startsARRANGING a second construct to form a hierar-
chy (2), and thenextendsagain to all constructs (3).
5. Correct: COMPUTING the required amount of tokens occasionally
led to mistakes. Participants commonly recovered later from such mis-
takes once the visual representation of the data facilitated the compar-
ison of values. At this point the task of checking the data had become
a visual task instead of a mental one thereby reducing the cognitive
effort [30]. If participants noticed such mistakes, theyINCREASEDor
DECREASEDthe number of tokens in a construct accordingly. A few
times we also observed participantsREMOVING an entire construct
due to a previous error or a color re-attribution.

4.2 Computation

The overarching goal we set participants – helping a friend to im-
prove his budget – inspired some participants to compute additional
values such as total amount of expenses, aggregation of categories into
mandatory and discretionary expenses, or explicit deltas between high-
expense and low-expense months. Hence, among all the participants'
visualizations, we observed several constructs which are not directly
mapped to data, but are a result of a computation by the participant.
We observed such behavior during all three tasks (A, B, C). In this
section we describe four different tasks we observed:categorize, ag-
gregate, compute new value, andunitize.

Fig. 9. Participant 2 tested four different combinations with the same
visual constructs. During each rearrangement she adapted the organi-
zation of the constructs as necessary.

Fig. 10. Participant 4, (1) after LOADING all the tokens, (2) ORGANIZING

the red construct, (3) EXTENDING to other constructs.

Fig. 11. Participant 12, (1) de�nes a assembly of construct for the �rst
month (2) then replicates it for the next month (3), shows the result (4).

6. Categorize: A common data transformation task was the cre-
ation of meta-categories (5/12) by developing groupings that partic-
ipants considered meaningful, e.g., grouping expense categories into
essential and non-essential. Meta-categories were encoded in differ-
ent ways, such as byspatial arrangement(4/12), bycolor semantics
(e.g., warm vs. cold colors) (1/12),color attribution(2/12), andspatial
merges(3/12). For example, participant 11 (Figure 12–C1/C2) used
spatial arrangements to indicate two categories: “reducible expenses”
(red, blue and yellow) and “irreducible expenses” (orange and green).
These categories persisted throughout the study: �rst as stacked 2D
lines (Figure 12–C1) then as stacked 3D bars (C2). Participant 8 (Fig-
ure 12–F) used color semantics to express a similar grouping. She
decided toSELECT warm COLORS for “leisure expenses”, and cool
colors for “necessary expenses”. This encoding allowed her to keep
the original categories identi�able and comparable.
7. Aggregate:Aggregation was the most commonly performed com-
putation (7/12). When participants aggregated data, they usually did
so within one dimension, i.e., aggregating all expenses per month or all
expenses per category. Aggregation could be done in the data domain,
by mentally adding the data, or in the visual domain, byMERGING
constructs, or byINCREASING constructs during initialloading.

We also observed aggregation byMERGING without explicit aware-
ness. For instance, participant 1 (Figure 12–A)categorizedby SE-
LECTING the same color for a subset of categories during task A. Then
during task B, she wanted to free space on the canvas andMERGED
constructs representing different data categories (Figure 12–A2/A3).
With this action she effectivelyaggregatedthe values for same-colored
categories. When asked during the interview what she did, she stated:
“I just added the new month. I didn't change anything else.”.

Participant 2 performed an aggregation that preserved the underly-
ing data. As shown in Figure 12–B, sheMERGEDall categories within
a month similar to participant 1. However, she had assigned different
colors to categories so that the separate categories were still visible.
Additionally, her arrangement into one bar per month represented the
aggregated value for total expense per month.
8. Compute new value: Some participants (3/12) computed new
values to provide additional goal related information (to help their
friend with his budget). In Figure 4–Aj2 and Figure 12–D, we can
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