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Abstract

We provide a fresh look at the use and prevalence of emphasis effects in Infovis. Through a survey of existing emphasis frame-
works, we extract a set-based approach that uses visual prominence to link visually and algorithmically diverse emphasis
effects. Visual prominence provides a basis for describing, comparing and generating emphasis effects when combined with a
set of general features of emphasis effects. Therefore, we use visual prominence and these general features to construct a new
mathematical Framework for Information Visualization Emphasis, FIVE. The concepts we introduce to describe FIVE unite the
emphasis literature and point to several new research directions for emphasis in information visualization.

1. Introduction & Motivation

Emphasis is an essential component of Infovis, and encompasses,
for example:

• Highlighting regions of interest, e.g., coloring data points when
brushing and linking to emphasize relationships;

• Animating data points using motion [BWC03, WB04] and flick-
ering [WLMB∗14], which are efficient for catching a viewer’s
attention; and

• Altering the size of data points to provide more detail or to
increase their legibility relative to other data points, e.g., the
many space-distortion techniques in the literature including
overview+detail and zooming (see [CKB09] for a review).

The commonality between these diverse techniques is that all
of them make some data points more prominent than others. For
example, when a visualization exploits highlighting to emphasize
some data points, differences in the prominence of the data points
arise from variations in color, or more specifically hue, a pow-
erful visual variable. While emphasis effects in visualization can
be created using any visual variable [CM84, Ber83, Mac86], Info-
vis researchers have often focused on distortion and magnification
techniques, e.g., [CM01, LA94, Kea98, PCS95, SA82]. These tech-
niques create emphasis effects by manipulating magnification (i.e.,
by simultaneously manipulating the visual variables size and po-
sition) where differences in the prominence of data points arise
from variations in magnification. Recently, researchers have ex-
plored new emphasis effects using, e.g., blur [KMH02, Hau06],
transparency [Hau06], halos [OJS∗11], motion [BW02,HR07], and
flicker [WLMB∗14]. This continued emergence of new emphasis
effects has moved visualization research beyond existing empha-
sis frameworks. Given the usefulness of previous frameworks, it
is important to develop a new, more complete framework for em-

phasis in information visualization, i.e., a unifying description of
emphasis that captures the breadth of the new and existing empha-
sis effects. To address this challenge, we explore emphasis effects
in five steps:

A review of existing emphasis frameworks
In this review, we introduce visual prominence as a means of
dividing the data points within a visualization into subsets. This
emerges from our analysis of previous frameworks. We use these
emphasis subsets constructed on visual prominence to describe
emphasis effects in visualizations and conceptually unify the di-
verse emphasis effects in the literature.

A survey of classes of emphasis effects in visualization
In this discussion, we extract general features of emphasis ef-
fects. For example, we elaborate on the often overlooked role of
time in emphasis effects. We also introduce the concepts of: 1)
intrinsic emphasis effects – changes in the prominence of data
points resulting from the initial visual mapping process when
creating a visualization (e.g., coloring water and land differently
on a map), and 2) extrinsic emphasis effects – changes in the
prominence of data points resulting from applying visual effects
on top of existing visualizations (e.g., applying a lens to a map).

An approach to generating emphasis effects
We show how visual prominence subsets and related general fea-
tures of emphasis effects are a conceptual basis for generating
emphasis effects for visualizations.

A formal framework: FIVE
We provide a Framework for Information Visualization Empha-
sis (FIVE) that captures all previous emphasis frameworks, and
expands on this work. FIVE is consistent with describing and
generating emphasis effects using visual prominence subsets and
our extracted general features of emphasis effects.
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Opportunities for using FIVE
Using FIVE and its related concepts, we provide an initial ex-
ploration of new opportunities and future directions in emphasis
research. This outlook highlights many research challenges, and
this STAR can support researchers as they undertake this work.

As we examine emphasis through each of the above steps, we
focus on visual variables as a way to explore emphasis techniques
because visual variables are integral to information visualization.
In addition, we focus on the mechanics of emphasis using visual
variables, rather than the details of how visual variables create em-
phasis for the viewer. Through focusing on the mechanics, we show
how FIVE can use set-based mathematics to incorporate and ex-
tend previous function-based frameworks, providing new ways to
decide both what to emphasize and how to achieve this emphasis.
In addition, FIVE offers a basis for studying the details of how em-
phasis is connected to perception (see section 7.4). For example,
some techniques (e.g., visual links [GR15, SWS∗11]) point to how
emphasis can arise not just from varying visual variables, but also
by leveraging Gestalt concepts (e.g., connectedness in the case of
visual links).

Frameworks that describe families of techniques have proven
useful, e.g., [Fur86, LA94, CM01], in particular when they are de-
scriptive, comparative, and generative [BL04, BL00]. Therefore,
one of our goals when we set out to analyze the emphasis litera-
ture was to create a unifying emphasis framework that would be
descriptive, comparative, and generative. FIVE is a new mathemat-
ical description of emphasis that exhibits these properties. FIVE
incorporates several conceptual elements:

1. A set-based notation to describe visual prominence.
2. Time as a key part of describing emphasis effects (e.g., time vari-

ant and invariant methods).
3. The data duplication present in some emphasis effects.
4. The variable degree of continuity in emphasis effects.
5. The co-existence of intrinsic and extrinsic emphasis effects.

FIVE opens up new ways of thinking about emphasis while also
being compatible with previous frameworks.

2. Reviewing Previous Frameworks

To understand emphasis effects, we first examine existing frame-
works that describe emphasis effects in information visualization.
We include three types of papers in this review:

1. Papers that define and review concepts related to emphasis as
opposed to papers that introduce a single emphasis effect. Papers
in this category are [CKB09,Fur86,Fur06,Hau06,Kea98,SA82].

2. Papers that provide a taxonomy of emphasis related effects,
i.e., [KMH02, PCS95]. Note that we include the taxonomy
in [KMH02] for completeness, although it is brief.

3. Papers that provide mathematical frameworks that describe em-
phasis effects. This category includes [CM01, LA94].

All these frameworks provide ways to systematically create em-
phasis effects and describe relationships between various emphasis
effects. There are other papers that provide significant overviews
of emphasis techniques [LH10, LM10, Rob11, TGK∗14]; however,
these have different contributions. Liang and Huang [LH10] take

a very focused look at one aspect of emphasis (i.e., highlighting),
and provide a list of how objects have been highlighted in visualiza-
tions. Lam and Munzner [LM10] discuss empirical considerations
when deciding on the number of views and the relationships be-
tween these views for a particular interface. Robinson [Rob11] con-
siders a large range of visual variables as starting points for creat-
ing highlighting effects and proposes design criteria to qualitatively
compare these highlighting effects. However, Robinson [Rob11]
focuses on highlighting related elements across multiple views in
the context of geovisualization, a particular emphasis use case. Fi-
nally, Tominski et al. [TGK∗14] have a partially overlapping survey
in that they look at existing lenses, which have often been used for
emphasis. However, they focus on using the perspective of Magic
Lenses [BSP∗94] to discuss different types of variations such as
changes in representation. Therefore, though these additional pa-
pers contribute to the emphasis literature, we confine our review
of previous emphasis frameworks to [CM01,CKB09,Fur86,Fur06,
Hau06, Kea98, KMH02, LA94, PCS95, SA82].

2.1. Introducing A Set-Based Emphasis Language

Each of the previous frameworks covers a broad range of em-
phasis effects. However, as a collection, the frameworks are dis-
parate in their descriptions of emphasis. Therefore, to enable our
survey of these frameworks, we first establish a simple set-based
language. While the generative aspects of the previous frame-
works all rely on functions, the discussions in the papers fre-
quently use set-based terminology. Hauser uses the word “sub-
set” over fifteen times [Hau06] to describe emphasis effects. Fur-
nas uses the word seven and twenty-six times in his two pa-
pers on fisheye views, [Fur86] and [Fur06]. In both of his pa-
pers [Fur86,Fur06], Furnas focused on how to establish which sub-
set of a dataset to represent through use of a Degree Of Interest
(DOI) function. Other previous frameworks also provide ways of
emphasizing subsets of a dataset using function-based mathemat-
ics e.g., [CM01,Kea98,LA94,Hau06]. This prevalence of set-based
ideas was one of our first clues to investigate a set-based frame-
work. In this paper, we embrace the already established vocabulary
of sets to describe emphasis effects.

While there are many means by which one can emphasize some
data points in a visualization, the visual commonality between var-
ious emphasis effects is that some data points are made visually
more prominent than other data points. For example, magnification,
highlighting, and motion create emphasis on certain data points by
making these data points more prominent than others (e.g., big-
ger, brighter, and moving). In particular, the data points in a visu-
alization that has emphasis form groups or sets of differing visual
prominence.

We define the foreground set of data points, F , as the data points
that are most prominent in a visualization. The background set, B,
is the set of data points that are least prominent in a visualization.
Depending on the nature of the visualization and emphasis effect,
there can be data points of intermediate prominence between F and
B, and these data points form the midground set of data points, M.
These sets of data points need not be mutually exclusive since a
visualization can represent some data points multiple times. As an
example of this, consider the overview+detail interface in Figure 1.

c© 2016 The Author(s)
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F
M

B

Figure 1: F, M, and B characterize an overview+detail interface
for a map (from www.unfoldingmaps.org). Here, F, M and
B partially overlap as some data points are visible in more than one
view. The most prominent visualized data points are in F, the least
prominent ones in B, and the ones with intermediate prominence
are in M.

In Figure 1, some data points visible in F are also visible in M,
and some data points visible in M are also visible in B. The data
points common to multiple subsets (e.g., F and M) have multiple
prominences. If there was no overlap between the three represented
subsets of data (F , M and B), there would be no information in
common between the three views. Therefore, F , M and B can be,
but need not be, mutually exclusive.

We use this set-based terminology of F , M, and B to ana-
lyze visualizations from previous emphasis frameworks accord-
ing to differences in data point prominence. The other factors
we use for comparing previous frameworks are: 1) visual vari-
ables, and 2) the use of data suppression. Manipulating visual vari-
ables [Ber83,CM84,Mac86] can be used to create emphasis effects.
Data suppression, i.e., choosing to not show certain data points in
a visualization, can also create emphasis effects since data points
that are not represented have no visual prominence and are con-
sequently less prominent than the represented data. Therefore, we
analyze the previous framework papers using the perspective of sets
(F , M, and B), visual variables and data suppression. We summa-
rize our analysis of previous frameworks and highlight the cover-
age of each framework in Figure 2. Figure 2 shows that 1) previous
frameworks mostly focus on the visual variables size and position,
and 2) only a few visual variables are discussed while some visual
variables are never mentioned (e.g., motion and orientation). We
group previous framework papers into three categories:

Magnification Papers that describe magnification emphasis ef-
fects, i.e., [CM01, LA94, Kea98, PCS95, SA82].

Beyond Magnification Papers that describe non-magnification
emphasis effects, i.e., [CKB09, KMH02, Hau06].

Data Suppression Papers that focus on the creation of emphasis
effects through data suppression, i.e., [Fur86, Fur06].
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Figure 2: Analysis of existing emphasis framework papers accord-
ing to early and recent visual variables, chronologically ordered
and grouped by similarities (using Bertifier [PDF14]) in terms of
which visual variables the papers consider for creating emphasis
effects. We demonstrate in this paper how FIVE can encompass
any of these visual variables. Figure Legend: * early visual vari-
ables [CM84, Ber83, Mac86]; ** recent visual variables [War12].
Note that we interpret what Spence and Apperley referred to as
pulsed illumination [SA82] as flicker.

2.2. Magnification

The literature is full of work concerned with creating emphasis us-
ing magnification and distortion techniques. Therefore, instead of
detailing all the specific techniques, we focus on the frameworks
that encompass these techniques. Magnification and distortion
techniques (e.g., polyfocal projections [KS78], Spence and Apper-
ley’s BiFocal Displays [SA82], Furnas’ work [Fur86], or the Elastic
Presentation Framework [CM01]) have generally been created to
provide people with views (usually magnified) that assist in some
data-oriented task in a visualization. This has led to many mag-
nification techniques, such as constrained lenses [CCF95, KR96,
SG07], Sigma Lenses [PA08] (which combine constrained lenses

c© 2016 The Author(s)
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with Magic Lenses [BSP∗94]), Melange [EHRF08] (which makes
use of compressing regions), and JellyLens [PPCP12] (which fits
the lens to data regions). All of these techniques create expanded
focal regions by compressing other regions, generating distortion.
This strategy has been applied to many datasets and visualiza-
tions, such as trees [LRP95,MGT∗03], graphs [GKN05,TAvHS06],
tabular visualizations [RC94], calendars [BCCR04], text docu-
ments [RM93], flow visualizations [DHGK06], collaborative visu-
alizations [VLS02], and lens-based approaches – see [TGK∗14] for
a review of interactive lenses in visualization.

Magnification is the result of varying the visual variables size
and position in an interrelated manner to create an emphasis effect.
F is the most magnified data subset, B is the least magnified sub-
set, and M is the set of subsets of varying magnification between
the magnifications of F and B. Magnification does not necessar-
ily decrease monotonically as a function of increasing distances
from F as is exemplified by polyfocal displays (e.g., see Fig. 5a
in [LA94]). Figure 3 shows a magnification-based emphasis effect
in the style of the Elastic Presentation Framework (EPF) [CM01].
Despite their visual similarities, researchers can approach magni-
fication techniques from a variety of algorithmic perspectives. We
briefly summarize the perspective from each framework that fo-
cuses on magnification: [LA94, PCS95, Kea98, CM01].

In 1994, Leung and Apperley [LA94] created a taxonomy for
distortion-oriented presentation techniques. This taxonomy is for
two-dimensional distorted images that are produced by applying a
transformation function to an undistorted image. The transforma-
tion functions enlarge focal information compared to contextual in-
formation, but do not remove the context entirely (as would occur in
a simple zoomed view). Instead, both the enlarged focal region and
the reduced contextual region appear concurrently. The taxonomy
is based on descriptions of the magnification functions for various
distortion techniques.

Plaisant et al. [PCS95] provided presentational and operational
taxonomies for browsing images. They focused on presenting an
image at different magnifications, e.g., using an overview+detail
display or zooming. This presentational taxonomy is divided into
the static and dynamic aspects of presenting images. The dynamic
aspects relate to ways of altering the magnification of the image,
e.g., fixed zoom increments or continuous zooming. The static as-
pects of the taxonomy relate to spatial and temporal relations be-
tween the magnification levels provided to the viewer, e.g., the
number of views and their coordination in an overview+detail in-
terface. Fisheye views in this taxonomy are the result of using what
Leung and Apperley [LA94] refer to as distortion-oriented tech-
niques.

Keahey [Kea98] discussed the “generalized detail-in-context
problem”. He applied nonlinear magnification fields [KR97] to two
dimensional data representations and discussed how designers can
use the resulting increased space dedicated to magnified regions.

In 2001, Carpendale and Montagnese [CM01] introduced the
EPF as a means of applying magnification to two-dimensional data
representations. The EPF considers placing the data representation
on a pliable sheet that can be deformed in three-dimensional space
with respect to the viewpoint. This approach encompassed all pre-
vious magnification approaches and frameworks except those based

F

M

B

M

Figure 3: F, M, and B regions in a lens-based magnification visu-
alization of a map. The lens uses a Gaussian drop-off function in
the style of the EPF [CM01]. The visualization uses a deformation
of two visual variable (size and position) to make the data points
in F more prominent than the ones in M and B. For this example,
B is spatially between M regions, and corresponds to the inflection
point in the Gaussian drop-off function. This example highlights
how magnification need not decrease monotonically as a function
of spatial distance from F. That is to say, there is not a strict spatial
constraint on the relationship between F, M, and B.

on Spence and Apperley’s 1982 work [SA82] and some variations
covered in Furnas’ 1986 paper [Fur86]. EPF focused on the inclu-
sion of multiple focal regions of varying shapes, and the drop-off
functions used to create the transition, M, between the focal re-
gions F , and the context B. Carpendale and Montagnese also incor-
porated lighting, shading, depth, and grid-based textures, to create
more readable variations in magnification. Therefore, there are a
variety of ways to create magnification emphasis effects, but all of
them exhibit F , M, B.

2.3. Beyond Magnification

A few papers describe emphasis effects beyond magnification, i.e.,
emphasis effects using visual variables other than size and position
(see Figure 2).

Kosara et al.’s taxonomy [KMH02] focuses on ways to make
the data points comprising F more prominent compared to those
of M and B instead of considering the relationships between F , M,
and B. Their brief taxonomy divides emphasis techniques into three
categories. Spatial methods make use of magnification to create
emphasis effects and fall into the previous section. For dimensional
methods and cue methods, F corresponds to what Kosara et al. call
the “focus" region, and B is the “context." For a specific emphasis
effect, M may or may not be empty. Figure 4 uses our set-based
terminology to describe Kosara et al.’s blur function, which they
introduce alongside their taxonomy.

Hauser [Hau06] proposed that focus+context is the unequal uti-
lization of graphical resources between the focus and the context,
by using space, opacity, color, frequency (i.e., image crispness),

c© 2016 The Author(s)
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F M B

Figure 4: Using our terminology to show how F, M, and B can
be used to describe the blur function discussed in [KMH02]. The
underlying graph is a facsimile that we have created to emulate
Kosara et al.’s function [KMH02]. Here, r ∈ [0,1] is the relevance
value of a given data point. A data point is irrelevant if r = 0 and
maximally relevant if r = 1. The blur value b is a function of r,
and b depends on the threshold t, the step height h, the maximum
blur diameter bmax, and the gradient g. In terms of sets, F consists
of the data points with a relevance r > t; the most prominent data
points in the visualization. B consists of the data point(s) with r =
0, the least prominent data points. M consists of the data points
with a prominence between the most prominent ones and the least
prominent ones, with decreasing prominence as r decreases.

and rendering style. In this generalization of focus+context, Hauser
suggests using a normalized DOI function that takes on a value of
1 for the focus and 0 for the context, with intermediate values in
between. F corresponds to the data points with a DOI value of 1. B
corresponds to displayed data points with the lowest DOI value – 0
if the entire dataset is shown. M is all of the displayed data points
with a DOI value between that of B and 1. Hauser’s generalization
only uses of a subset of the possible visual variables to make F
more prominent compared to M and B. There are additional ways
to alter prominence, e.g., other visual variables, as Figure 2 shows.

Cockburn et al. reviewed overview+detail, zooming, fo-
cus+context, and cue-based techniques [CKB09]. The first three
types of techniques are based predominantly on magnification.
Cue-based techniques use differences in rendering styles (e.g.,
highlighting, blur, and visual proxies) instead of size to make some
data points more prominent than others. This variation in render-
ing style provides a means by which the prominence of some data
points can be altered. The most prominent data points are part of
F , relative to other data points in the visualization, in M and B. To
use blur as an example, when some data points are rendered crisply
and others are blurry, the crisp data points are more readable than
the blurry data points and the crisp data points form F . The most
blurry data points form B, and depending on how the blur is varied
across the visualization, M contains data points with intermediate
blurriness, between that of F and B.
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Figure 5: This image is a facsimile that we have created to emulate
Furnas’ [Fur86] fisheye view of a calendar. F consists of the most
prominent data point – Monday, December 16. B consists of the
least prominent data points, and M consists of the data points with
prominence between that of F and B.

2.4. Data Suppression

In his seminal work on fisheye views [Fur86, Fur06], Furnas fo-
cused on which data points to represent rather than how to rep-
resent the chosen data points, and thus his work is more about
data suppression. Furnas considers DOI functions as a way of
deciding which data points a visualization should represent, i.e.
DOI functions enable judicious choices about what data points
to suppress. Data suppression relates to filtering, one of the ear-
liest and most common emphasis effects in information visualiza-
tion [Shn94, WS92].

Furnas explored the notion of fisheye views from the perspective
of cognitive psychology. He came to the conclusion that an indi-
vidual’s recollections occur via the creation of emphasized subsets
where individuals tend to recall items that are either of great a pri-
ori importance or of particular current relevance to them [Fur86].
Figure 5 shows Furnas’ example of a fisheye calendar [Fur86] de-
scribed using F , M, and B. Furnas defines the fisheye-DOI subset
to be the set of points with a DOI greater than some cut-off value
given the current focal point. The most general form of the fisheye-
DOI is Equation 1 (in [Fur82] as cited by [Fur06]).

DOIFE(x|.) = F(API(x),D(.,x)) (1)

Here, the DOI of a point x (given the current focal point ‘.’)
is a function of the a priori importance of x, API(x), and the
distance between the focal point and x, D(.,x). Furnas explains
distorted views, zoom viewing, and multiple window views, i.e.,
view+overview or view+closeup, in terms of the fisheye-DOI sub-
set [Fur06]. In particular, Furnas contends that such techniques
show the same information, i.e., the fisheye-DOI subset, but in dif-
ferent manners. In this context, the fisheye-DOI subset is equivalent
to F

⋃
M
⋃

B and the different ways of representing the fisheye-DOI
subset correspond to different ways of altering prominence to cre-
ate F , M, and B.
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Figure 6: This image is a facsimile that we have created to emu-
late the one-dimensional trapezoidal DOI function of Doleisch et
al. [DHGK06]. The z values represent some attribute of the data
points. Assuming that the visualization shows all of the data points,
the z value of a data point determines whether it is part of the focus
(DOI = 1) and therefore in F; part of the context (DOI = 0) and in
B; or somewhere in between (0 < DOI < 1) and therefore in M.

According to Hauser [Hau06], a DOI function is a function that
returns a DOI value in [0,1] for each data point, i, in a dataset.
DOI(i) = 1 if i is part of the focus, DOI(i) = 0 if i is part of the con-
text, and 0<DOI(i)< 1 if i is in between the focus and the context.
As an example of this, Figure 6 shows the trapezoidal DOI function
that Doleisch et al. describe [DHGK06]. DOI functions have also
been combined within a single view and using fuzzy logic to create
DOI functions describing features and sets of features [MKO∗08].

In Furnas’ work, the DOI function was not an end in itself. The
DOI function was meant to be used with some threshold DOI value
as a data filter to yield an appropriate fisheye-DOI subset [Fur06],
i.e., a meaningful subset to be represented. Figure 7 is an annotated
version of Furnas’ example of viewing a list using a DOI func-
tion. This example makes it clear that deforming a representation
is only one way to create an emphasis effect. Other ways to create
emphasis effects include using visual cues and data suppression.
The commonality between these possibilities is that they can all be
described using F , M, and B.

In Figure 7, an original ordered list of letters (a) is viewed
through different fisheye views (e–i) according to a DOI function
(d) that is the sum of an A Priori Importance (API) function (b) and
a distance (Dist) function (c).

In Figure 7(a), all the data points (elements of the list) are visible,
and all data points have equal prominence as no data point is em-
phasized. In this case, all data points belong to F , with M = B = /0.

Figure 7(e) is the subset of Figure 7(a) that shows only the el-
ements of the list that have a fisheye-DOI value greater than a
threshold; this threshold is indicated by the thin vertical line in
Figure 7(d). In this first subset, the fisheye list is created using
data suppression, i.e., elements in the list whose fisheye-DOI is
lower than the threshold are suppressed from the visualization. Be-
cause all represented elements have the same prominence (in terms
of font size), all visible elements belong to F . Since the visual-
ization represents no elements with another level of prominence,
M = B = /0.

Figure 7(f) represents the same elements of the list as Fig-
ure 7(e), thus the same data suppression. However, in this case, the
geometry is distorted, bringing all data points of F together. Again,
M = B = /0.

Figure 7(g) re-introduces information about the fact that data
points in F are spatially distant. In this case, the elements in B
are the letters between B and L and the letters between N and Y,
which are represented using elision markers “...”. In (f), we still
have M = /0.

Figure 7(h) differs from Figure 7(e,f,g) in that all data points are
visible, but their sizes are distorted according to their DOI values.
F consists of the biggest letters (simply, the letter M in this case).
B consists of the smallest letters (letters D and V). M consists of all
the remaining letters.

Figure 7(i) consists of the same F , M and B as in Figure 7(h), but
in Figure 7(i) the data points are moved together. Note that most of
the subsequent work based on Furnas’ fisheye views has focused on
presentations similar to that of 7(i), which distort data points rather
than simply suppressing data.

2.5. Previous Frameworks Summary

All of the reviewed emphasis frameworks have proven useful in
information visualization research, with each being the inspiration
for more than one subsequent emphasis technique. However, while
some of the frameworks describe overlapping types of emphasis,
none successfully describe all current emphasis variations. For ex-
ample, while EPF [CM01] describes most magnification or dis-
tortion approaches, it does not encompass Spence and Apperley’s
original work [SA82]. Similarly, Hauser’s approach, based on Fur-
nas’ DOI function, includes a large part of the spatial and cue based
approaches, but does not cover some of the possibilities in EPF.
Despite the algorithmic and visual diversity of the emphasis effects
found in previous frameworks, visual prominence and subsets (F ,
M and B) are a common language for describing these effects as
Figure 7 accentuates.

3. Describing Classes of Emphasis Effects

We now expand on our analysis of previous frameworks by describ-
ing F , M and B for classes of emphasis effects. To reasonably cover
the extensive emphasis literature, we select pertinent examples to
illustrate that visual prominence provides a conceptual bridge be-
tween emphasis effects. For example, it is a common descriptive
language for the visually distinct emphasis effects of zooming and
highlighting.

Before proceeding, we introduce time variation as a new descrip-
tor of emphasis. For example, time variation is a key difference be-
tween zooming and highlighting. Zooming and motion-based ani-
mations are emphasis effects that are based on time variation in the
appearance of the visualization, e.g., items get bigger or smaller
depending on the current level of zoom. In contrast, traditional
highlighting is a static emphasis effect since the appearances of
both the highlighted and non-highlighted data points do not change
with time – interactively changing the highlighting results in a new
emphasis effect. Therefore, we introduce the terms time invariant
emphasis effect for an emphasis effect that does not use temporal
variations in visual representations to achieve emphasis, and time
variant emphasis effect to refer to emphasis effects that do leverage
temporal variations in visual representations to achieve emphasis.
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Figure 7: This image is a facsimile that we have created to emulate Furnas’ selection vs. distortion discussion for a fisheye view of a
list [Fur06], annotated with F, M, and B. (a) is the original ordered list. (b) is an A Priori Importance (API) function over the list. (c) is
a distance (Dist) function from the focus. (d) shows API +Dist, i.e. the sum of the A Priori Importance function and the Distance to focus
function. (e,f,g,h,i) are possible Fisheye-DOI subsets representations that can be built based on the additive fisheye-DOI function in (d).

3.1. Time Invariant Emphasis Effects

An emphasis effect can be the result of using one or more visual
variables to alter the visual prominence of data points. A time in-
variant emphasis effect does not change with time. That is to say, it
does not make use of such features as fade-in, fly-in, wipe and other
forms of temporally based transitions. Examples of time invariant
emphasis effects include: highlighting, blur, overview+detail and
lens-based techniques, though one could incorporate temporal vari-
ation into these effects.

Highlighting: Highlighting, or coloring, a data point in a visu-
alization emphasizes that data point. Coloring usually makes use
of the visual variable hue and is often used in brushing and linking
scenarios [BMMS91]. For example, in a scatterplot matrix visual-
ization, brushing several points in a scatterplot will change their
hue in that scatterplot and the linked scatterplots to emphasize the
connection between brushed points [BC87].

Figure 8(a) illustrates highlighting one data point in a scatterplot.
The red dot becomes the most visually prominent data point in the
visualization. In Figure 8(a), color is the strongest indicator of the
visual prominence of the data points. Therefore, F is the set of col-
ored dots, and B is the set of black dots. M is an empty set, M = /0,
since the highlighting in Figure 8(a) is binary.

Blurring: Photographers have created depth of field effects
based on blur for a long time. In photos involving depth of field
effects, only part of the image is in focus while the rest of the
image is out of focus and blurred. In the geographic visualiza-
tion community, researchers have exploited blur to communicate
uncertainty [Mac92]. Kosara et al. [KMH02] proposed a semantic
version of depth of field as a means of emphasizing a subset of

a dataset. Figure 8(b) illustrates this approach where one dot in a
scatterplot is shown crisply while the others are blurred. Here, the
crispness/blur is the major contributor to the differences in the vi-
sual prominence of data points in agreement with the result of depth
of field effects in photography. F is the data point that is not blurred
and B is the data points contained in the blurred portion of the vi-
sualization. If there are varying degrees of blurriness, then B will
be the most blurred data in the visualization, M will be the series of
subsets of data that are increasingly less blurry, and F will be the
least blurry subset of data. Given that the blurring in Figure 8(b) is
binary, Figure 8(b) only involves F and B. Figure 8(c–f) show ex-
amples of emphasis effects that can be created in a similar fashion
by manipulating other visual variables.

Overview+Detail: Overview+Detail is an emphasis effect where
the visual variables size and position are manipulated in order to
create several views of a dataset such that different views have dif-
ferent magnification values. Figure 1 shows the overview+detail
technique for a map. The differences in the magnification values of
the views causes data points in different views to have differing vi-
sual prominence. In Figure 1, F is the set of data points in the view
with the highest magnification. B corresponds to the data points
in the view with the lowest magnification. M constitutes the data
points in the view with intermediate magnification. In Figure 1, the
subsets F , M, and B overlap, i.e., they are not mutually exclusive.
If there was no overlap between the three subsets, there would be
no information in common between the three views.

Lens-based views: Similar to overview+detail, lens-based
views, e.g., focus in context, make use of size and position to vary
the magnification of data points, which in turn causes the data
points to have varying visual prominence. Figure 3 is one exam-
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(a) (c) (d) (e)(b) (f )

Figure 8: An emphasis effect created in a scatterplot by using (a) highlighting in red, (b) blurring, (c) size/area, (d) depth, (e) transparency
/ value, and (f) shape. In all cases, only one data point is emphasized, e.g., in (a) F is the only data point coloured red, B is the set of black
data points, and M = /0.

ple of such focus-in-context lens-based views as applied to a map.
As with overview+detail, F corresponds to the region of highest
and uniform magnification, i.e., the focus. B is the least magnified
portion of the image. Finally, M is the regions of the image with
magnifications between that of F and B. The regions comprising
F , M, and B need not be continuous (e.g., see Figure 3). For the
visualization in Figure 3, M can be further subdivided according to
the differences in the magnification values, i.e., visual prominence,
of data points within the drop-off region.

3.2. Time Variant Emphasis Effects

In contrast to time invariant emphasis effect, time variant emphasis
effects involve time variations. For example, animations that em-
phasize the appearance or disappearance of items are time vari-
ant emphasis effects. For some emphasis effects, the data points
that exhibit time varying behavior, e.g., flickering, are most visu-
ally prominent, i.e., F . For others effects, time is used to segregate
views in which data points have differing visual prominence, e.g.,
zooming. Here we describe some classes of time variant emphasis
effects.

Zooming: Zooming is an emphasis effect where views are sepa-
rated temporally instead of spatially [CKB09]. Because of the tem-
poral separation, human memory plays a role in the creation of em-
phasis effects based on zooming. For example, Figure 9 illustrates
zooming in on the city of Calgary using Google Maps. In this ex-
ample, an emphasis effect is created by varying magnification over
time and perhaps by adjusting the labeling of the map. If one con-
siders only the magnification component of the emphasis effect, B
is the data subset in the most zoomed out view; F the data subset in
the most zoomed in view; M is comprised of the intervening zoom
states between F and B. Similar to overview+detail, F , M, and B
overlap, i.e., they are not mutually exclusive.

Assuming spatial zooming, the emphasis effect involves viewing
subsets of the dataset with increasing magnification, i.e., varying
the visual variables size and position with time. One could imagine
an abrupt change from B to F without the use of any intervening
views, i.e., M = /0. Such a sudden change does not produce the
smooth, gradually changing image that a viewer may expect while
zooming. The degree to which a zoom appears to be discrete or
continuous depends on the number of intervening views between F
and B, i.e., the number of prominence subgroups comprising M.

Motion: Motion is a powerful emphasis effect where moving
objects are emphasized relative to stationary ones. Bartram et al.
found that using motion to emphasize icons resulted in fewer un-
detected icons compared to using color [BWC03]. Similarly, Ware
and Bobrow [WB04] found that using motion to emphasize sub-
graphs within a graph was more effective than a static highlighting
method. Motion is an emphasis effect that varies the visual promi-
nence of data points by varying the positions of data points with
respect to time.

For example, consider an interactive node-link representation of
a graph where selecting one node causes nearby nodes to oscillate
while the other nodes remain stationary. The set of nodes that oscil-
late are the most visually prominent nodes, i.e., they form F . The
set of nodes that remain stationary are the least visually prominent
nodes during the effect, i.e., they constitute B. Because of the bi-
nary nature of motion in this example, there is no set of data points
with intermediate visual prominence between that of the oscillating
and stationary nodes, i.e., M is an empty set.

Flickering and Pulsing: Flickering is the cyclic variation of an
object’s transparency over time. Pulsing is the cyclic variation of an
object’s size over time. Consider flickering or pulsing data points
in a scatterplot. The most visually prominent data points, i.e., F ,
are those that are flickering or pulsing. The data points that are not
changing their appearance with time are less visually prominent,
and consequently form B. Once again, M is empty for both flick-
ering and pulsing. Note that motion, flickering, and pulsing can
simply be described in an unifying way: in all cases, the emphasis
effect is created by changing the value of a visual variable (position,
transparency, size) over time.

3.3. Emphasis Effect Descriptors

In the previous subsections, we described important classes of em-
phasis effects in the common language of visual prominence, and
broke down examples from these classes into F , M and B. Through
this process, three additional descriptors of emphasis effects be-
came apparent: 1) time variant vs. time invariant, 2) degree of con-
tinuity, and 3) multiple representations of data points. In this sub-
section, we summarize these descriptors, and relate them to F , M
and B.

Time Variant vs. Time Invariant: Emphasis effects may or
may not leverage time to vary the visual prominence of data points
to create F , M, and B (as described in Sec. 3.1 and 3.2. above).
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FMB

t

Figure 9: Zooming in on Calgary, Canada using Google Maps. Map data: Google. The time arrow indicates that the viewer is zooming in
as time progresses. The views show how the viewer is transitioning from B to M and then from M to F. Even though the views are temporally
dispersed, they all contribute to the emphasis effect that the viewer experiences.

Degree of Continuity: In terms of visual prominence, the con-
tinuity of the transition between F and B, as captured by M, can
vary. For example, M can be empty for binary style emphasis ef-
fects, e.g., traditional highlighting. M may correspond to a subset
of data points that have a common visual prominence, from the per-
spective of the emphasis effect, as in the overview+detail example
shown in Figure 1. Alternatively, M can contain multiple subsets of
data points that differ in terms of their visual prominence (e.g., the
lens drop-off region in Figure 3), but are nevertheless bounded by
the visual prominence of data points in F and B. More continuous
transitions between F and B involve increasing numbers of visual
prominence subsets comprising M.

Multiple Representations of Data Points: F , M and B are not
necessarily mutually exclusive, though they are mutually exclusive
for most emphasis effects. Zooming and overview+detail are exam-
ples of emphasis effects where data points are represented multi-
ple times in different views, and consequently have multiple visual
prominences.

These emphasis effect descriptors and the sets F , M, and B pro-
vide a basis for comparing emphasis effects. As an example of
this, consider a three-level discrete zooming interface (e.g., Fig-
ure 9), and a three-level static overview+detail view (e.g., Fig-
ure 1), both using the same representation of a map. By consid-
ering three-level versions of each visualization, we are ensuring
that the degree of continuity is the same for both, i.e., the num-
ber of visual prominence subsets between F and B is the same for
both. Both techniques also involve multiple representations of data
points. However, they differ in that zooming is time variant while
overview+detail is time invariant. For zooming, the multiple repre-
sentations of a particular data point are spread out over time while
they are spatially separated in overview+detail.

Zooming and overview+detail could use identical or different
levels of magnification for F , M, and B. If the two techniques have
differing magnification levels for any of F , M, or B, then the relative
changes in visual prominence can differ for the two techniques. If
the techniques have the same magnification levels for F , M, and B,
then one can consider whether or not the two techniques involve
the same or different F , M, and B subsets. Normally, zoom in-
terfaces have F , M, and B occupy the entire screen. In contrast,
overview+detail interfaces generally divide the screen into differ-

ent regions that are allocated to F , M, and B. Because magnifi-
cation is inherently tied to screen space, the views for each tech-
nique cannot have the same magnification and show the same data
while simultaneously occupying different amounts of screen space.
Thus, the data points that comprise F , M, and B must differ for
the two techniques. Therefore, zooming and overview+detail are
closely related, but zooming is not just a time separated version of
overview+detail. This example shows how F , M, and B as well as
temporal variation can be used to both describe and conceptually
compare emphasis effects.

4. Intrinsic vs Extrinsic Emphasis Effects

Previous frameworks have typically not considered the emphasis
that is implicit in the original visual mapping chosen for a visu-
alization. However, as we discuss in this section, differences in
prominence due to the original visual mapping are not always neg-
ligible, and can even interfere with emphasis effects. To take this
into consideration, we introduce the concepts of: 1) intrinsic em-
phasis effects – the baseline prominence differences between data
points resulting from the initial visual mapping process when cre-
ating a visualization, and 2) extrinsic emphasis effects – changes in
the prominence of data points resulting from applying visual effects
on top of existing visualizations. Figure 10 (a) illustrates the con-
cepts of intrinsic and extrinsic emphasis effects as a data point in a
scatter plot undergoes highlighting. The original visualization at the
top left of Figure 10 has a position-based intrinsic emphasis effect
while the visualization on the right now has a highlighting, i.e., an
extrinsic emphasis effect. In this case, the initial intrinsic emphasis
effect is both weak and distinct from the extrinsic emphasis effect.

4.1. Intrinsic Emphasis Effects

Mapping data dimensions to visual variables [Ber83, CM84,
Mac86] results in data points having varying visual properties (e.g.,
color, size and position). This means that the visual mapping pro-
cess alone will create initial differences in the visual prominence of
data points. Therefore, a visual representation of a dataset involves
an intrinsic emphasis effect before any subsequent alterations to vi-
sual variables are applied (e.g., magnification or highlighting dur-
ing brushing and linking).
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For example, consider the intrinsic prominence differences be-
tween visual features on a map. Cartographers generally represent
longitude and latitude, or some projection thereof, using position.
Water is represented as blue regions while land masses are colored
to indicate countries or terrain. The cartographer (or a designer cre-
ating a visualization) will rely on their considerable skills, their
experience and the intent of the map when make these choices. The
cartographer’s choices determine the intrinsic emphasis effect in
the map.

4.2. Extrinsic Emphasis Effects

Extrinsic emphasis effects are additional visual variations applied
on top of an existing visualization (which has its own intrinsic em-
phasis effect) to create further variations in prominence.

Consider altering one or more visual variables of a given visual
representation in order to create an extrinsic emphasis effect on
top of the intrinsic emphasis effect. Assuming that the changes in
visual prominence stemming from an extrinsic emphasis effect are
sufficiently strong (e.g., color highlighting), one can consider that
the intrinsic emphasis effect is negligible in comparison. In this
case, one can focus solely on how the visual prominence of the
data points is affected by the changes in the visual variables used
to create the extrinsic emphasis effect.

For example, consider the map shown in Figure 3. A lens-based
distortion has been applied to an image, i.e., the distortion is an
extrinsic emphasis effect applied on top of the existing intrinsic
emphasis effect present in the map. If one focuses on magnification
and not the details of the map, then the most visually prominent
region in the image is the central flat region of the lens, and so
this region is F . B is the least magnified region. M consists of the
regions of intermediate magnification.

In this example, the intrinsic and extrinsic emphasis effects are
easily distinguished, i.e., we can easily see F , B and M for the lens
while also still interpreting the map. Previous frameworks have as-
sumed that the intrinsic emphasis effect is negligible compared to
the extrinsic emphasis effect; however, this may not always be the
case, as we discuss in the next subsection.

4.3. Conflicting Intrinsic and Extrinsic Emphasis Effects

We describe two examples where intrinsic and extrinsic empha-
sis effects are in conflict and we discuss the implications of such
conflicts. The first example uses a simple scatterplot visualization
and shows how the intrinsic emphasis effect constrains the available
choices for creating efficient extrinsic emphasis effects. The second
example uses a more complex study [CDF14] and shows how con-
sidering intrinsic and extrinsic emphasis effects can explain study
results.

We start with a simple example illustrated in Figure 10: high-
lighting a point in a scatterplot. In Figure 10(a), data points are
mapped to x and y to create the initial visualization. In Figure 10(b),
data points are mapped to x, y and color to create the initial visual-
ization.

(b)

(a)

Initial Visualization
Intrinsic emphasis e�ect

Modi�ed Visualization
Intrinsic emphasis e�ect

+ red highlighting 
   extrinsic emphasis e�ect

Figure 10: Potential conflicts between extrinsic and intrinsic em-
phasis effects. (a) shows a scatterplot where only the visual vari-
able position is used to encode data point properties. In (b) hue is
used in addition to position to encode additional information. The
extrinsic emphasis effect that consists of highlighting the point in
the center in red makes this point much more prominent in (a) while
it fails at making this point much more prominent in (b). This is be-
cause the intrinsic emphasis effect in (b), using the visual variable
hue, conflicts with the extrinsic emphasis effect, which also makes
use of hue.

The success of an extrinsic emphasis effect is dependent on the
already existing intrinsic emphasis effect in a visualization. For the
two initial visualizations in Figure 10, consider highlighting a sin-
gle point. In Figure 10, the extrinsic emphasis effect consists of
highlighting a data point by changing the data point’s color to red,
using the visual variable hue. In Figure 10(a), this extrinsic empha-
sis effect is successful as it makes the emphasized data point much
more prominent than other data points. In this case, F , M and B
are easily identifiable: the red dot is the most prominent data point,
the black dots are the least prominent data points, and M = /0. In
contrast, in Figure 10(b), this extrinsic emphasis effect is not as
successful. The intrinsic and extrinsic emphasis effects are in con-
flict because both make use of the same visual variable (hue). As a
result, F,M,B are not straightforward; in particular, we cannot as-
sume that F is the data point to which the extrinsic emphasis effect
has been applied.
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As a more advanced example of competition between extrinsic
and intrinsic emphasis effects, we explain the results of Chevalier
et al.’s study [CDF14]. This study compares the effects of stag-
gered and non-staggered animations on a tracking task during the
re-arrangement of dots on a 2D plane. In the non-staggered condi-
tion, dots move synchronously. In the staggered condition, an in-
cremental delay in start times across the moving elements is intro-
duced. Figure 11 illustrates this experiment.

Trials for both conditions consist of three phases. In Phase 1,
dots appear on a 2D plane, and some dots are highlighted, e.g.,
the red dot. In Phase 2, this highlighting disappears. In Phase 3,
an animation (either staggered or non-staggered) takes place where
the dots rearrange to a new configuration. Both types of animation
use slow-in/slow-out effects for the motion of the dots, and all dots
move the same distance. At the end of Phase 3, participants have to
identify the originally highlighted dots.

The intrinsic emphasis effect in each trial arises from the initial
positions of the points on the 2D plane (i.e., from the visual variable
position). Phase 1 consists of applying an extrinsic emphasis effect
using the visual variable hue on top of the intrinsic emphasis effect.
For this extrinsic emphasis effect, F and B are the sets of colored
and black dots, respectively. In Phase 2, this extrinsic emphasis ef-
fect is removed, and participants must try to mentally maintain the
original hue-based F and B, which may conflict with the position-
based intrinsic emphasis effect for the set of data points. The dots
then begin to move to their new locations, with either a staggered
or a non-staggered animation. Finally, at the end of the animation,
the dots have new positions on the 2D plane, which result in a new
intrinsic emphasis effect.

Given that the points in Chevalier et al.’s study are in a 2D Carte-
sian environment, we can express the speed of the points, v, as

v =

√(
dx
dt

)2
+
(

dy
dt

)2
. In the non-staggered condition, the dots

have the same speed at each point in time, i.e., v is constant across
the points, and v varies with time according to the chosen slow-
in/slow-out effect. However, the dots are moving in different direc-
tions, so dx

dt and dy
dt vary across the points. These differences in the

x and y speeds create a new time-variant extrinsic emphasis effect
based on motion. There is no guarantee that this extrinsic emphasis
effect will align with the original position-based intrinsic emphasis
effect or the previous hue-based extrinsic emphasis effect. There-
fore, there are possibly several different F subsets that the viewer
sees during the experiment, and the viewer is supposed to be able
to pick out the points that comprised F for the color-based extrin-
sic emphasis effect. From the perspective of competing emphasis
effects, the dot tracking task is nontrivial.

In the staggered condition, dots start moving at different points
in time, so v is not the same for all of the dots at each point in time.
This means that there is an even greater diversity in the movement
of the dots during the staggered animations compared to the non-
staggered animations. This greater diversity could lead to stronger
motion-based emphasis effects, which would only be helpful in
tracking and differentiating the original hue-based F when these
staggered animations make the original F subset visually promi-
nent relative to other data points in the visualization. The stronger
emphasis effects of staggered animations would be detrimental if

they increased the visual prominence of other dots relative to those
in the original hue-based F as they would just increase the difficulty
of the dot tracking task. This can explain Chevalier et al.’s observa-
tions that staggering was only marginally beneficial in some cases
and detrimental at times compared to their non-staggered anima-
tion technique. The complexity of emphasis effects at play during
the staggered animations is greater than during non-staggered an-
imation, so there are more opportunities for viewers to encounter
problems with tracking the dots.

A staggered animation for a set of dots moving between two con-
figurations would result in particular F , M and B subsets, i.e., a
particular emphasis effect. This animation would only be benefi-
cial for tracking the subset of the dots on a 2D plane that the an-
imation makes visually prominent. Given that Chevalier et al. op-
timized some of their staggered animations for the dots that were
highlighted in Phase 1, we can expect that those particular stag-
gered animations are only beneficial for tracking the dots for which
the animations were optimized. This aligns with Chevalier et al.’s
finding that their staggered animations only reduced task complex-
ity for their arbitrarily chosen targets, i.e., dots highlighted in Phase
1 of a trial.

Visual prominence subsets (F , M and B) provide a new perspec-
tive on Chevalier et al.’s experiment - that of competing intrinsic
and extrinsic emphasis effects. Based on this, we have provided an
explanation of the previously-unexplained results of Chevalier et
al.’s study – that is, why staggered animation was not found partic-
ularly useful for their tracking task. Given that position and speed
are intimately related (the latter is the time derivative of the former),
Chevalier et al.’s animation-based emphasis effects are intertwined
with the position-based intrinsic emphasis effects amongst the dots.
However, hue does not necessarily couple to either position or mo-
tion. Therefore, it should come as no surprise that it is difficult to
recall and follow the F of one extrinsic emphasis effect when there
are other powerful emphasis effects at play that are coupled to each
other. While the community has previously implicitly assumed that
extrinsic and intrinsic emphasis effects are separable, this analysis
shows how interactions between extrinsic and intrinsic emphasis
effects are important. Our analysis of Chevalier et al.’s work also
highlights that the concepts of F , M, B, intrinsic emphasis effects,
and extrinsic emphasis effects are tools that researchers can use to
analyzing existing visualization literature.

5. Generating a Visualization with Emphasis

We have shown how the data points in a visualization can be di-
vided according to visual prominence to create subsets (F , M and
B) and that these subsets serve as a basis for describing and com-
paring emphasis effects. We have also introduced a set of related
concepts: time variant vs. time invariant emphasis effects, degree of
continuity, multiple representations of data points, and intrinsic vs.
extrinsic emphasis effects. In this section, we leverage these con-
cepts to provide a three-step process for generating visualizations
with extrinsic emphasis effects:

1. Determine an initial representation of the data.
2. Determine the contents of the sets F , M and B
3. Select a means by which to vary the prominence of data points

and differentiate F , M and B in the representation of the data.
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Figure 11: An illustration with two dots of Chevalier et al.’s staggered vs. non-staggered animation experiment [CDF14]. The dashed lines
indicating the trajectories of the dots and the arrows indicating if a dot is moving in a particular frame were not visible in the experiment.
Note that Phase 1 and 2 are the same for both animation types.

Step 1 yields a visualization with an intrinsic emphasis effect.
Taken together, steps 2 and 3 create an extrinsic emphasis effect.
For each step, we illustrate the advantages of using the concepts
that we have introduced in the previous sections.

5.1. Determine an Initial Representation of the Data

By differentiating between intrinsic and extrinsic emphasis effects,
it is clear that the initial representation of a dataset contains an em-
phasis effect before any subsequent explicit emphasis effect, e.g.,
a lens-based effect, is applied. Determining an initial representa-
tion for any dataset is a standard task in information visualization
where a visualization designer maps data dimensions to visual vari-
ables. An appropriate initial representation depends on the nature
of the data, the tasks that are to be performed, and the charac-
teristics of the people using the data. As an example of the com-
plexity that an initial visualization can involve, consider visualiza-
tions of streaming data. Visualizations of streaming data can in-
volve a variety of visual changes depending on: 1) how data points
are mapped to visual variables, and 2) whether or not data points
can appear/disappear in the visualization (see Cottam et al.’s tax-
onomy [CLW12]). However, the choices made here, e.g., the visual
variables used for the visual mapping process, will constrain subse-
quent extrinsic emphasis effects and subsequent manipulations of
the visualization.

5.2. Determine the Content of F , M and B

As a visualization designer populates F , M and B, the designer is
choosing what the extrinsic emphasis effect will emphasize. Using
these sets as a basis for constructing extrinsic emphasis effects has
the advantage that either set operations, functions (which are de-
fined in terms of sets), or some combination thereof can be used to
specify what should be emphasized in a visualization.

DOI functions are typically the basis of focus-and-context em-
phasis effects. A designer could use DOI functions in conjunction
with thresholds to populate F , M and B in our framework. There

is a long history of using functions to create magnification ef-
fects [CM01,Kea98,LA94] (see Figure 3). Furnas’ work with DOI
functions provides classic examples of using functions in conjunc-
tion with thresholds to create subsets, specifically the fisheye-DOI
subset [Fur86, Fur06] (see Figure 7).

Alternatively, F , M, and B could be populated by applying
set operations to pre-existing sets. These pre-existing sets could
be intrinsic to the dataset as with set-typed data. Alsallakh et
al. discuss set-type data in a recent survey of visualizations for
sets [AMA∗14].

When defining F , M and B, a key consideration is the degree
of continuity between F and B. If a designer wants F to be very
prominent relative to the other data points in the visualization, then
they may opt to have M empty, i.e., there is no intermediate promi-
nence between F and B. This is the case for the emphasis effects in
Figure 8. Alternatively, a designer may want a more gradual transi-
tion between F and B, in which case the cardinality of M will have
to increase and the designer will have to define an increasing num-
ber of subsets of data points to comprise M. A designer does not
have to explicitly define the subsets of M. For example, consider
how the lens-based visualizations of the EPF [CM01] use func-
tions to magnify data points (as illustrated in Figure 3) and how
Keahey’s work [Kea98] uses fields to magnify data points. These
techniques specify the magnification of each data point, and im-
plicitly F , M, and B form based on magnification even though the
techniques themselves do not explicitly create the F , M, and B sub-
sets. Implicit definitions of F , M, and B may not provide the same
level of control as explicit definitions.

A second important point is how F , M and B overlap. If the de-
signer wants to provide a person with multiple views on a dataset,
then overlap in these views can be useful to, for example, show con-
nections between the views. As such, the designer will have to rep-
resent some data points multiple times in the visualization, and so
F , M and B will overlap. The designer needs to decide which data
points will be common between F , M and B either explicitly (e.g.,
using a data point as reference point and making it common to F , M
and B), or implicitly (e.g., as with zooming and overview+detail).
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5.3. Varying Prominence to differentiate F , M and B

As a designer chooses how to representationally vary F , M, and B,
the designer is deciding how the viewer will experience the data
points in F as being more visually prominent than those in M and
B. We highlight some of the new options for extrinsic emphasis
effects, i.e., some alternative ways to make the data points in F
more prominent than those M and B. A designer will have to con-
sider many context-dependent factors when creating an extrinsic
emphasis effect for a visualization (e.g., what visual variables the
visualization already uses and the nature of the intrinsic emphasis
effect). Consequently, we do not attempt to cover all cases but in-
stead provide some recommendations about varying prominence to
differentiate F , M and B.

The increased visual prominence of F relative to B is related to
the extent to which the representations of F and B differ in terms
of the visual variable the designer chooses for creating the extrinsic
emphasis effect. For example, when using size, the difference in
the visual prominence of the data points in F and B depends on the
magnitude of the size difference between the respective data points
in F and B. Just-noticeable differences [SJ10] could be used to pro-
vide indications about what are the minimum changes needed in a
visual variable in order for a change in that visual variable to be no-
ticeable to a viewer. Note that the visual encoding process in step 1
(creating an intrinsic emphasis effect) limits which visual variables
remain available for differentiating F , M, and B (when creating an
extrinsic emphasis effect), as we discussed in Section 4.3.

Some visual variables and combinations of visual variables re-
main underexplored for creating emphasis effects (e.g., texture and
orientation as shown in Figure 2) even though even though these
visual variables strongly affect perception. Exploring the full set of
visual variables and their time variation (e.g., varying either ori-
entation or texture with time) may open up new and exciting em-
phasis effects. If some visual variables are less overtly noticeable
but still interpretable upon inspection, further work could develop
“attention-based emphasis”. That is to say, emphasis effects that are
unobtrusive unless someone is specifically considering a particular
visual variable; this would leverage the principle that sensitivity
to perceptual features is heightened with attention [Nei76, War12].
Also, when a visualization does not already use all visual variables,
a designer can leverage the non-utilized visual variables to rein-
force an extrinsic emphasis effect.

Lastly, different visual variables may be more or less effective
at creating extrinsic emphasis effects depending on what other vi-
sual variables are in use. For example, motion is a powerful means
of creating emphasis effects; however, in visualizations where po-
sition has meaning, large-scale motion effects could lead to erro-
neous interpretations of the dataset. A designer needs to be aware
of potential interactions between visual variables when creating ex-
trinsic emphasis effects, and assessing such interactions should be
part of the community’s research agenda.

6. FIVE: Framework for Information Visualization Emphasis

In the previous sections, we analyzed previous emphasis frame-
works and a wide variety of emphasis effects. We showed how the
visual prominence subsets F , M, and B are a basis for describ-
ing, comparing and generating emphasis effects. In this section,
we provide a mathematical framework that captures F , M, and
B. Previous frameworks have provided mathematical formalisms
(e.g., [CM01, Fur86, Hau06, LA94]). Mathematical formalism are
powerful because they aid researchers and designers as they ana-
lyze, describe, compare, generate and implement emphasis effects.
Our analysis of emphasis effects has revealed five general features
of emphasis effects, which we now summarize.

General Features of Emphasis Effects:

GF1 A wide variety of visualizations can be described in terms of
subsets of data points of differing visual prominence (i.e., F , M,
and B).

GF2 There are time variant and time invariant emphasis effects.
GF3 Some emphasis effects represent data points multiple times,

i.e., there can be overlap between F , M and B.
GF4 Emphasis effects have varying degrees of continuity between

F and B, i.e., varying numbers of intermediate levels of visual
prominences comprising M.

GF5 There are both intrinsic and extrinsic emphasis effects, which
can interact with one another.

We now introduce an emphasis framework that captures these
general features and the prominence subsets F , M and B.

6.1. The FIVE Mathematics

Let p be the prominence of the visual representation of a data point
such that a high value of p coincides with a more prominent data
point and a low value indicates a less prominent data point. Let p be
null for a data point that is not represented. An emphasis effect is
the result of either representing a dataset such that data points have
varying p (e.g., highlighting dots in a scatterplot), or representing
only a subset of a dataset (e.g., zooming in on a particular city in a
map).

In order to formally demonstrate this, we first define the absence
of emphasis. Let D be the set of data points in a dataset. Let Pd be
the set of p values associated with d ∈D for a given representation
of D. d ∈D can have multiple p values because some techniques in-
volve representing data points multiple times, e.g., overview+detail
or zooming. By allowing data points to have multiple p values and
representations, we are laying a foundation for supporting GF3.

A representation does not involve an emphasis effect when there
are no differences in the Pd sets associated with the data points in
D, i.e., ∀a ∈ D∧∀b ∈ D : Pa = Pb. As soon as data properties are
mapped to visual variables, then ∀a ∈ D∧∀b ∈ D : Pa = Pb is not
satisfied. A representation that satisfies ∀a ∈ D∧∀b ∈ D : Pa = Pb
may not be useful, and may be difficult to construct. However, at
the very least, this condition can be satisfied for a dataset containing
a single data point because |D|= 1⇒ a = b.
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As DiBiase et al. [DMKR92] have pointed out, a viewer takes
time to survey a data representation even if the representation is
static, and animation can emphasize different aspects of a dataset.
Therefore, we define an emphasis effect with respect to an interval
of time. A representation involves an emphasis effect when a repre-
sentation of a dataset has the property that ∃a∈D∧∃b∈D|Pa 6= Pb
for some time interval [tE , tE +∆tE ], with tE being the time at which
the emphasis effect is created and ∆tE the duration of the emphasis
effect. By defining emphasis effects over intervals of time, we are
supporting the consideration of both time variant and time invariant
emphasis effects, i.e., supporting GF2.

There are two ways of satisfying ∃a∈D∧∃b∈D|Pa 6= Pb. Let R
and N be the sets of data points that are represented and not repre-
sented, respectively, during the time interval [tE , tE +∆tE ]. The two
ways of creating emphasis are:

1. Only a subset of the dataset is represented.
R ⊂ D⇒ N 6= /0. Indeed, in this case, ∃a ∈ D|Pa = /0 and ∃b ∈
D|Pb 6= /0, thus Pa 6= Pb.

2. The represented data points have varying p.
There exist subsets of R where data points have differing p val-
ues, i.e., ∃a ∈ R∧∃b ∈ R|Pa 6= Pb.

These two conditions express the necessary conditions for em-
phasis, but they are not meant to indicate a strict dichotomy be-
tween suppression-based emphasis effects (i.e., Condition 1) and
emphasis arising from varying prominence (i.e., Condition 2).
Many emphasis techniques in visualizations use a combination of
suppression and variable data point representation. To further ex-
plain the second means of creating emphasis effects, we define the
terms foreground, background, and midground to specify subsets of
R based on p. These subsets are closely related to the inner zone, ac-
tive rim, and outer zone of lenses [TGK∗14]. However, we have not
used this terminology in our paper in favor of using the terminology
from previous emphasis frameworks, e.g., drop-off regions. We are
now formally defining F (the foreground), M (the midground) and
B (the background), i.e., supporting GF1.

The foreground F is the subset of R corresponding to the data
points with the highest p values for the time interval [tE , tE +∆tE ].
The background B is the subset of R corresponding to the data
points with the lowest p values for this time interval. The transi-
tion between the foreground and the background may be sharp or
gradual, and occurs via midground subsets where data points have
intermediate p values. There is no a priori reason that the fore-
ground, midground, and background must be constrained to occur
at the same moment in time so long as they occur within the time
interval [tE , tE +∆tE ]. The foreground, midground and background
can be temporally separated e.g., with zooming.

Foreground
Let pF represent the highest p value for all of the data points in
R i.e., pF = max(

⋃
d∈R

Pd). In turn, F is the set of data points that

have this p value, i.e., F = {d ∈ R|pF ∈ Pd}.

Background
Let pB represent the lowest p value for all of the data points in R
excluding pF i.e., pB = min(

⋃
d∈R

Pd\{pF}). Then, B is the set of

data points that have this p value, i.e., B = {d ∈ R|pB ∈ Pd}.

Midground
The midground M is comprised of data points that have
p between pF and pB. These prominences are PM =⋃
d∈R

Pd\{pF , pB}. M can be subdivided into the subsets of data

points associated with each p value in PM . That is to say, for
pi ∈ PM , Mi = {d ∈ R|pi ∈ Pd}. M is then given by M =

⋃
Mi.

Given pMi > pMi+1 , then pM1 > pM2 > .. . > pMn−1 > pMn for
the time interval [tE , tE +∆tE ]. By not constraining the number
of different subsets comprising M, we are allowing for a vari-
able degree of continuity between F and B (such as using a DOI
function to populate the sets), and are supporting GF4.

Overall, all subsets of R can be ordered with respect to their p
values. Namely, pF > pM1 > pM2 > . . . > pMn−1 > pMn > pB. The
number of subsets comprising M determines the degree to which
the transition between F and B has the appearance of being dis-
crete or continuous for the viewer. Intrinsic and extrinsic emphasis
effects both stem from differences in data point prominence. By
focusing on data point prominence and not the designer intentions,
this mathematical description of F , M and B applies to intrinsic and
extrinsic emphasis effects, i.e., supporting GF5. When one wants
to focus on extrinsic emphasis effects, one simply ignores the con-
tributions of the intrinsic emphasis effect to data point prominence.

6.2. Properties of FIVE

We now elaborate on the characteristics of FIVE arising from its
formal construction.

Nonempty subsets. By definition, R 6= /0⇒ F 6= /0, as F consti-
tutes the subset of the data with the highest p values, which cannot
be the null set if a representation of the data exists. All other subsets
can be null. However, B 6= /0 as soon there are two or more subsets
of R such that data points within these subsets have differing p val-
ues for the time interval [tE , tE +∆tE ].

Overlapping subsets. F,M1,M2, . . . ,Mn,B need not be mutually
exclusive and can be overlapping. This occurs in the case of multi-
ple views (e.g., overview+detail and zooming), or when some data
points are represented multiple times in a visualization (e.g., when
data points are duplicated according to their multiple set member-
ships [RD10]). In this situation, a data point may have multiple p
values associated with it.

Changes in visual variables over time. Perceptual properties of
data points (e.g., their visual variables) can change with time to pro-
duce emphasis effects such as flickering [WLMB∗14]. Let V be a
visual variable, such as position, and V (t) be the temporal progres-
sion of this visual variable for a given data point. Static emphasis
effects such as static highlighting, have the property that V (t) sat-
isfies Equation 2. Emphasis effects where visual variables change
with time, such as flickering, have at least one visual variable V
such that V (t) does not satisfy Equation 2 for one of the subsets
F , M, and B. Depending on the nature of dV

dt , it may be possible
to create an emphasis effect that results solely from the variation
of V over time. For example, motion can act as an emphasis effect
when ∀d ∈ F : dV

dt 6= 0 while ∀d ∈M
⋃

B : dV
dt = 0. Previous work

has shown that motion produces a powerful pop-out effect in visual
representations, e.g., [WB04, BWC03, HR07].
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dV
dt

= 0 f or t ∈ (tE , tE +∆tE) (2)

Temporal separation. Given that an emphasis effect occurs dur-
ing a time interval [tE , tE +∆tE ], we can consider emphasis based
on animations. A particularly common type of animation-based
emphasis effect is zooming. Zooming is based on temporally sep-
arating different views of a dataset [CKB09] where, according to
Furnas [Fur06], the aggregate of the views is a fisheye degree of
interest subset. We now have the mathematical foundations to pro-
vide a new mathematical description of zooming.

6.3. An Example of Using the Mathematics of FIVE: Zooming

To illustrate using the mathematics of FIVE, we consider the exam-
ple of zooming. For this explanation, we assume that we are moving
from B to F through M. If we assume that the intrinsic emphasis ef-
fect is weak in comparison to the extrinsic emphasis effect arising
from zooming, then the prominence of data points is proportional
to their magnification.

Let md , mB and mF represent the magnification factors used to
represent a data point d, data points in B, and data points in F ,
respectively. In order to define zooming, we first define a magnifi-
cation boxcar function to describe the time evolution of the mag-
nification factor for a given zoom state. In Equation 3, H(t) is the
Heaviside step function. Now let tA→B be the moment in time when
transitioning between subsets A and B involved in zooming, e.g., B
and Mn. Zooming can then be mathematically described according
to Equation 4.

boxcar(m, tstart , tend , t) = m∗ [H(t− tstart)−H(t− tend)] (3)

∀d ∈ B,md = boxcar(mB, tE , tB→Mn , t)

|tB→Mn ∈ (tE , tE +∆tE)

∀d ∈Mn,md = box(mMn , tB→Mn , tMn→Mn−1 , t)

|tMn→Mn−1 ∈ (tB→Mn , tE +∆tE)∧mB < mMn < mMn−1

...

∀d ∈M1,md = box(mM1 , tM2→M1 , tM1→F , t)

|tM1→F ∈ (tM2→M1 , tE +∆tE)∧mM2 < mM1 < mF

∀d ∈ F,md = box(mF , tM1→F , tE +∆tE , t) (4)

Figure 12 illustrates the set of equations in Equation 4 for a three
level zoom-in, i.e., a zoom transitioning from B to F through M1.
First B is represented with a magnification factor of mB. As B is
replaced by M1, the magnification factor of the elements in B drops
from mB to 0, and the magnification factor of the elements in M1 in-
creases from 0 to mM1 . A similar process occurs when transitioning
from M1 to F . Note that if d ∈ B∩M1 ∩F , we could alternatively
describe the magnification of d using a step function that begins at
mB, transitions to mM1 , and finally transitions to mF .

tE
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Figure 12: An illustration of the set of zooming equations in Equa-
tion 4 for a three-level zoom-in. The orange line is the magnifica-
tion factor for B, the purple line the magnification factor for M1,
and the green line the magnification factor for F. Lines are offset
with respect to 0 for clarity purposes only.

This explication of zooming shows that the framework can of-
fer a new mathematical lens for considering well-known existing
emphasis effects. Historically, there have been many different ap-
proaches to magnification-based effects, each with their pros and
cons. For example, a designer can achieve magnification-based em-
phasis effects for a 2D visualization by:

1. Applying transformation functions such that some regions of the
visualization are magnified and other demagnified, but all of the
visualization remains visible in the interface [LA94]

2. Distorting the visualization according to nonlinear magnification
fields [KR97] and using the resultant magnification to vary data
presentation within the visualization [Kea98],

3. Manipulating the visualization as a pliable sheet in 3D and then
back-projecting into 2D [CM01], and

4. Using a DOI function to determine a data point’s size in a visu-
alization [Fur86, Hau06].

A possibility with our new mathematical formulation of zooming
is that other visual variables could be varied according to the math-
ematics already described to help viewers focus on specific data
points during the zooming, e.g., highlighting that varies as zooming
occurs based on Equations 3 and 4. In general, the different levels
of p involved in creating an emphasis effect, e.g., F and B, need not
be available for viewing at the same point in time, but can be spread
over the range [tE , tE +∆tE ]. In this situation, human memory will
be important because the emphasis effect is created through the ag-
gregation of the views over the time period [tE , tE +∆tE ].

7. Opportunities for Using FIVE & Future Research
Directions

Based on our analysis of the literature, we introduced the promi-
nence of data points within visualizations as a way of unifying
diverse emphasis effects both algorithmically and visually. Based
on prominence, we developed five general features of emphasis ef-
fects GF1 to GF5 that we explicitly enumerated in Section 6. These
general features and the idea of data point prominence provide a
basis for describing, comparing and generating emphasis effects.
We then formalized these concepts within FIVE, a mathematical
framework, similar to how previous frameworks have provided for-
mal mathematical descriptions, e.g., [Fur86]. FIVE is descriptive,
comparative and generative. Therefore, FIVE conceptually satisfies
Beaudouin-Lafon’s criteria for a design framework [BL04, BL00].
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We now consider future prospects and opportunities for study-
ing emphasis effects in information visualization - opportunities
opened up by the concepts and descriptions in FIVE.

7.1. New Ways to Decide What to Emphasize

In Section 5, we discussed how one can use set operations, func-
tions, or a combination of the two to define the subsets of data
points that will have varying visually prominence in a visualiza-
tion (i.e., F , M and B). Because functions are by definition a spe-
cial case of set relationships, a set-based perspective on empha-
sis effects is mathematically more general. Sets and subsets are
also the language that the community uses to describe emphasis
effects [Fur86, Fur06, Hau06]. Although DOI functions are power-
ful on their own, sets provide a new perspective on emphasis. Also,
this new set-based perspective can be used in harmony with the
DOI functions to extend their possibilities.

Synergistic combinations of set operations and functions for
defining F , M and B could provide visualization designers with
greater freedom for defining what an extrinsic emphasis effect
should emphasize compared to using functions alone. For example,
F , M and B could be the result of someone working with a dataset,
e.g., brushing queries or previous selections. In a collaborative con-
text, multiple people working in a visualization can result in multi-
ple focus sets (e.g., [IES∗11, IBH∗09, IFP∗12]). Each collaborator
has his or her own notion of F,M,B, thus each collaborator could
have his or her own set of sets {F,M,B}. The different sets-of-sets
could be independently represented with different visual variables,
or set operations could be used to create new sets. For example, F
in a shared visualization could be determined by using the union of
all {F}; or M could consist of the intersection of all {F,M}. More
complex combinations of set operations could be used to compare
information that is used between different collaborators.

7.2. New Ways to Decide How to Emphasize

In Sections 2 and Section 5, we showed that historically the scope
of how we create emphasis effects has remained relatively narrow,
as is highlighted in Figure 2. The FIVE framework sheds light on
unexplored opportunities for novel emphasis effects based on vi-
sual variables, e.g., the time variation of texture. Given its focus
on the idea of prominence, FIVE captures these new opportunities,
while also pointing to even broader opportunities for creating em-
phasis effects beyond visual variables.

Even though the literature focuses on visual variables and we
have structured our discussion as such, prominence is not solely the
consequence of mapping data points to visual variables and manip-
ulating these visual variables. Previous work has proposed sound
variables (audio equivalents of visual variables) as a basis for au-
dibly encoding data [Kry94]. These sound variables (e.g., timbre,
pitch, and volume) could serve as a basis for creating emphasis ef-
fects in audio formats. Alternatively, frequency and amplitude of
vibration could convey emphasis in haptic systems. Researchers
have started to investigate non-visual modalities such as physical-
ity, haptics, and audio in visualization, e.g., [JD13, JDF13, JDI∗15,
Moe08, RW10, MB06, HH12]. However, as of yet, no research has
formally investigated emphasis effects based on these modalities.

By looking at emphasis effects from the perspective of prominence,
FIVE provides the Infovis community with a way of considering
non-visual modalities. That is to say, F , M, B could vary in promi-
nence through non-visual effects.

For example, Huron et al. [HVF13] applied a sound-based ex-
trinsic emphasis effect to a visualization of SVN commits based on
visual sedimentation [HVF13]. In visual sedimentation, tokens fall
from the top of the screen into containers. Tokens shrink over time
until they are small enough to be aggregated into the area of their
corresponding container. Designing an extrinsic emphasis effect for
a visualization based on visual sedimentation is difficult because
the visualization already uses powerful visual variables (motion,
size and position). Huron et al. used sound to emphasize new to-
kens entering their visualization such that the extrinsic emphasis
effect (for new tokens) was distinct from the intrinsic emphasis ef-
fect of the base visualization. This sound-based emphasis cannot
be described using previous emphasis frameworks, but fits within
FIVE.

Non-visual emphasis effects will become increasingly important
as researchers continue to augment their visualizations with other
modalities, and FIVE’s focus on prominence will support this re-
search.

7.3. New Methods for Implementing Emphasis Effects

Beyond helping designers explore the what and how of emphasis
effects, F , M and B provide an alternative approach through which
designers can consider the technical aspects surrounding the gener-
ation of emphasis effects.

One could use F , M and B to allocate computational or storage
resources when handling large datasets in order to increase data
retrieval efficiency. For example, if a viewer is likely to explore F in
greater detail, it may be reasonable to store all of the data attributes
corresponding to F locally while storing fewer of the attributes for
M and even fewer for B. Therefore, visualization designers can use
the prominence subset view of emphasis effects (i.e., F , M and B)
and related concepts (e.g., intrinsic vs. extrinsic emphasis effects)
to consider how to realize a desired effect.

Alternatively one can define F , M and B using the functions from
other frameworks. Moreover, one is not limited to using the same
function to define all three of F , M and B. One could, for instance,
use a DOI to define F , and a drop-off function like those in the
Elastic Presentation Framework [CM01] to define M and B. This
opens a whole new array of possibilities for implementing empha-
sis effects.

7.4. New Empirical Studies of Emphasis

Designers may wish to experimentally evaluate how a specific em-
phasis effect is experienced by a viewer. The FIVE provides sup-
port for such empirical studies.

With FIVE and its connection to data point prominence within a
visualization, researchers can use empirical measures to determine
the relative prominence of data points. As an example of such em-
pirical measures, consider fixation times, t f ix, in eye-tracker exper-
iments. Visual fixation, as measured using eye-trackers, has been
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used to understand people’s visual attention in a variety of fields,
e.g., [AL15,DAE15,MPSG15]. If a researcher is only interested in
the bottom-up descriptions of prominence in the context of a partic-
ular visualization and task, we can assume that p ∝ t f ix. By using a
metric such as fixation time as a proxy to measure the prominence
of data points, one can then analyze both intrinsic and extrinsic em-
phasis effects.

Analyzing Intrinsic Emphasis Effects: As an example of em-
pirically analyzing the intrinsic emphasis effect of an existing visu-
alization using t f ix, consider presenting a scatter plot to a viewer. A
researcher could measure t f ix for each data point in the visualiza-
tion in an eye-tracker experiment. The researcher could then assign
data points to the sets F , M, and B according to their respective t f ix
values using p ∝ t f ix. For example, the dots with the maximum t f ix
value would be in F , those with the minimum t f ix value would be
in B, and the dots with intermediate t f ix values would be in M.

Now consider a visualization where hue is used to discriminate
certain data points, for example a colored map where rivers, land,
and mountains have different hues. Running the same eye-tracker
experiment with people who have red-green color vision deficiency
(CVD) would determine F , M, and B for CVD individuals. A re-
searcher could then compare the sets for normal vision and CVD in-
dividuals, and assess the extent to which the visualization is CVD-
compliant.

Analyzing Extrinsic Emphasis Effects: A researcher can also
use visual prominence and FIVE to compare extrinsic emphasis ef-
fects using empirical measures, e.g., using eye-tracker t f ix measure-
ments. Consider designing extrinsic emphasis effects to emphasize
some data point, d. Using the same eye-tracker procedure as we
described for intrinsic emphasis effects, a researcher can then de-
termine F , M, and B in the presence of different extrinsic emphasis
effects. For example, the extrinsic emphasis effect in Figure 8(b)
is based on blur with F and B being the crisp and blurred dots, re-
spectively. Since color is not used in Figure 8(b), we can expect
that both normal vision and CVD individuals would experience the
same extrinsic emphasis effect. In contrast, with the hue-based ex-
trinsic emphasis effect in Figure 8(a), we can expect differences
in how normal vision and CVD individuals would experience this
emphasis effect.

In some cases, the researcher may find that some of these extrin-
sic emphasis effects do not significantly alter F , M, and B, i.e., they
do not effectively increase the visual prominence of d. However,
other extrinsic emphasis effects may be so effective that F contains
only d, the data point that the extrinsic emphasis effect is meant
to emphasize. For the latter situation, the researcher can then com-
pare such extrinsic emphasis effects by calculating the difference
between t f ix for d and t f ix for the other data points for each extrin-
sic emphasis effect. Assuming that p ∝ t f ix, the extrinsic emphasis
effect with greatest fixation time difference would be the strongest
emphasis effect. Therefore, FIVE enables: 1) the empirical analysis
of intrinsic emphasis effects, 2) the empirical comparison of intrin-
sic and extrinsic emphasis effects, and 3) a basis for empirically
determining the relative strengths of emphasis effects.

Eye-tracker experiments are becoming increasing popular in in-
formation visualization research. There has already been some

work using eye-trackers to compare emphasis techniques. Stein-
berger et al. [SWS∗11] have used fixation times and gaze paths to
qualitatively compare extrinsic emphasis techniques (color-based
highlighting and visual links). Griffin and Robinson [GR15] have
used eye-tracker experiments to compare how different extrinsic
emphasis effects (color-based highlighting and visual links) enable
individuals to find related data across multiple coordinated views.
Specifically, they considered the time required for participants in
their study to visually find two associated highlighted regions on
a map and a coordinated statistical plot (i.e., scatter plot or paral-
lel coordinate plot). They then used these search times to statis-
tically compare highlighting techniques (color-based highlighting
and visual links). Depending on the situation, the time taken for a
participant to look at a particular data point could serve as an alter-
native proxy for prominence. The aim of our proposed procedure is
to show that researchers can use FIVE to conduct empirical stud-
ies, and we fully expect that researchers will use the framework to
empirically probe emphasis effects in other ways.

Bridging Emphasis and Perception: Emphasis is more than the
use of visual variables on a page or a screen. Emphasis occurs as
people consider, use and explore visualizations. By enabling em-
pirical studies on emphasis effects, FIVE can be a key enabler as
research moves towards understanding the perceptual and cognitive
origins of emphasis techniques in information visualization. The
cartography community appreciates that maps and cartographic
visualizations are intimately connected with cognitive processes,
perception and thinking, e.g., [Woo94, Pet94]. In the visualization
community, Healey and Enns [HE12] have discussed the connec-
tions between visualization and perceptual theories of visual atten-
tion and memory. Automaticity and visual awareness are other im-
portant facets of visual perception [EHH∗11]. Human perception is
complex, with entire books dedicated to exploring of the intersec-
tion between visualization and human perception (e.g., [War12]).
Nevertheless, emphasis techniques have their origins in, for ex-
ample, saliency, preattentive processing [Tre85], attention, visual
search, Gestalt concepts, and top-down cognitive processes. In fact,
some researchers are already starting to consider human percep-
tion when designing [WLMB∗14] and comparing [Rob11] empha-
sis techniques. However, we as a community still lack explicit un-
derstanding of how emphasis effects relate to perceptual and cog-
nitive mechanisms. By enabling empirical studies, FIVE empow-
ers researchers to tackle these questions. We believe that profound
insights into emphasis techniques will come as the community un-
dertakes this challenging line of research.

7.5. Future Work

The idea of visual prominence and FIVE point to new research pos-
sibilities and how much research remains to be done in order to im-
prove the general understanding of emphasis effects. We see four
important research directions for the community moving forward.

1. Creating emphasis effects using underexplored visual variables
and time variation.

2. Exploring alternative ways to vary data point prominence to cre-
ate emphasis effects, e.g., annotations and non-visual modalities.

3. Providing a richer space of how to define and implement empha-
sis effects,
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4. Conducting empirical studies of visual prominence in visualiza-
tions and extrinsic emphasis effects, and relating emphasis tech-
niques to perceptual and cognitive mechanisms.

We are confident that tackling these challenges will both broaden
the community’s understanding of emphasis and lead to novel tech-
niques.

8. Conclusions

Inspired by the usefulness of previous frameworks and the growing
variety of novel emphasis effects that are not described by these
frameworks, we reviewed previous frameworks and classes of em-
phasis effects with the intention of providing a unifying descrip-
tion of emphasis in information visualization. Through this review,
we extracted visual prominence as a common theme across all em-
phasis effects, based on the fact that visualizations have some data
points that are more prominent than other data points.

Visual prominence provides an approach for describing, com-
paring and generating emphasis effects. From the previous frame-
works and techniques, we derived five general features of emphasis
effects: 1) that they can be described in terms of three subsets F , M
and B; 2) that time is a principle factor, and that both time variant
and invariant methods need to be included; 3) that emphasis ef-
fects may, as deemed appropriate, incorporate duplication; 4) that
the degree of continuity in emphasis is an important freedom; and
5) that there is an interplay between intrinsic and extrinsic empha-
sis effects. In FIVE, we have provided a mathematical framework
that aligns and formalizes these general features. FIVE provides
a mathematical foundation for describing, comparing and generat-
ing emphasis effects in ways that encompass and extend previous
frameworks. FIVE is operational in several ways:

1. The mathematics in FIVE can be used to algorithmically create
emphasis effects, and are compatible with existing approaches to
creating emphasis effects while also enabling new ones.

2. FIVE provides a new perspective on both the importance of em-
phasis and the ways by which emphasis techniques can be cre-
ated (e.g., underexplored visual variables, and non-visual modal-
ities).

3. FIVE also lays the groundwork for subsequent empirical studies
comparing and evaluating emphasis techniques.

There are still many open questions and opportunities for future
work. FIVE and the concepts described here will help researchers
as they undertake this work. We are confident that some of the most
exciting emphasis effects have yet to be discovered.
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