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ABSTRACT

Constructive approaches to visualization authoring have been shown
to offer advantages such as providing options for flexible outputs,
scaffolding and ideation of new data mappings, personalized explo-
ration of data, as well as supporting data understanding and literacy.
However, visualization authoring tools based on a constructive ap-
proach do not scale well to larger datasets. As construction often
involves manipulating small pieces of data and visuals, it requires a
significant amount of time, effort, and repetitive steps. We present
ReConstructor, an authoring tool in which a visualization is con-
structed by instantiating its structural and functional components
through four interaction elements (objects, modifiers, activators, and
tools). This design offers a new balance between preserving the
benefits of a constructive process and incorporating a new approach
to scalability issues. It allows designers to propagate individual
mapping steps to all the elements of a visualization.

Index Terms: Human-centered computing— Visualization—
Visualization systems and tools; Human-centered computing—
Human computer interaction (HCI)—Interactive systems and tools

1 INTRODUCTION

Visualization authoring tools give people varying degrees of control
over how their data is visually represented even when they do not
have enough time, resources, or skills to make custom visualizations
programmatically. There are a growing number of these tools and,
correspondingly, a growing number of approaches to designing them.
Popular tools, such as Excel [9]] and Tableau Desktop [27], are
primarily based on chart templates, automated mappings, and
recommendation systems. These features are key for achieving a
speedy authoring process and are beneficial for accessibility and
ease of use. However, they can also impose barriers. Even for those
with formal training in visualization, some types of automated
approaches (such as templates) can be a hurdle to flexibility, get in
the way of ideation processes, and may even take over the design
lead. Recent research suggests that a constructive approach to
visualization [[12] has the potential to avoid some of these problems.

Constructive visualization promotes the idea of creating visual
representations of data by assembling building blocks that are
mapped to specific aspects of a dataset. This authoring strategy
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has been shown to empower people in their use of visualization
without the need of formal training or other specialized skills
(e.g., programming). Studies suggest that digital constructive
visualization tools can also promote a mindful design process in
which people are encouraged to actively reflect on their design
decisions [[15}|16].

Despite these advantages, the authoring process of existing construc-
tive tools—both tangible [|11}|13|] and digital [[17]—does not scale
well to larger datasets. Even for moderately simple visualizations,
construction requires a significant amount of time, effort, and repeti-
tive interactions [[1529]]. The problem is exacerbated as the amount
of data to be represented (i.e., total records and attributes) grows.
Conventional visualization tools avoid the scalability issues of
their constructive counterparts by automating certain steps of
the visualization process. While automation may reduce the
effort required from the designer, it tends to also interfere with
personal agency. Automation can make the authoring process less
incremental as the tasks delegated to the tool are often executed
quickly and over large portions of data (e.g., entire attributes rather
than individual values). This, in turn, reduces the transparency of
the design process, as the tool’s actions can be hard to follow, which
can interfere with comprehension.

We join the growing body of work that investigates how to expand
visualization authoring options. In particular, we present ReCon-
structor, a new point of exploration within the design space of digital
constructive visualization tools. In ReConstructor, visualizations are
constructed by instantiating their structural and functional compo-
nents through the use of four interaction elements (objects, modifiers,
activators, and tools). This design allows people create visualiza-
tions via a user-driven constructive approach that also eases the
difficulty of working with larger datasets. That is, ReConstruc-
tor supports a more scalable authoring process while keeping the
agency of this process on the user’s side.

More specifically, our work contributes: (1) a construction strategy
for the design of scalable visualization tools based on four reusable
interaction elements: objects, modifiers, activators and tools; (2) an
explanation of how these interaction elements can be incorporated in
the design of visualization authoring tools; and (3) the design and im-
plementation of ReConstructor, a tool that supports the construction
of visualizations through these elements.

2 RELATED WORK

In this section, we discuss how the concept of construction has been
used in the design of computer interfaces and, in particular, of recent
visualization authoring tools.

2.1 Constructive Theories

Educational and learning theories such as Piaget’s constructivism 2,
22|, Papert’s constructionism [21], and Froebel’s gifts [28] suggest
that one way that humans discover the world is by manipulating
simple objects and that we can construct knowledge and meaning
from these experiences. These theories focus on personal experience,



“where the learner is consciously engaged in constructing a public
entity” [21} p. 1], as the gateway to understanding and reflection.
Computational tools that implement constructive principles
generally support processes based on an incremental, bottom-up
strategy. This is related to the concept of emergence, by which a
complex entity arises as the result of interactions among smaller
or simpler entities [1]. Consequently, a constructive process is
beneficial to show how a complex structure is built from the ground
up, as the result of many small steps or sub-processes.

Constructive theories have been widely explored in environments
that support the development of computational thinking skills such
as Scratch [88}14,23\24]] and Mindstorms [20]] and, more recently,
Google’s Blockly library [10]. In these tools, construction takes
place with building blocks that animate interactive visuals.

2.2 Construction in InfoVis

Constructive Visualization [[12], a paradigm for visualization author-
ing grounded in Papert’s, Piaget’s and Froebel’s theories, imports
from them the idea of using physical rokens (e.g., Lego blocks)
that can be mapped to data and manipulated to compose tangible
representations. iVOLVER [[17] implements constructive principles
in a digital visual programming environment. Both Huron et al.’s
tangible tokens ( [[11}|13]]) and iVOLVER’s marks support work with
atomic data elements (e.g., individual values as opposed to entire
data attributes). This leads to a bottom-up construction strategy in
which the final design emerges as the result of several small-scale
decisions and manipulations of the visualization elements.
Constructing visual representations of data from their atomic build-
ing blocks is in line with Bertin’s semiotic views [4}/5]. To convey
messages visually, Bertin’s marks—graphical primitives such as
points or lines—are configured in particular ways by mapping data
attributes to their visual properties [6l/7].

ReConstructor’s constructive approach also makes use of building
blocks to provide access to a visualization’s component (e.g., marks
and visual properties) and to represent the operations that take place
in different types of visual encodings (e.g., sorting, spacing).

3 ENABLING CONSTRUCTION

For a visualization to be constructed, the first step is to deconstruct
it into its modular components. We take this step to make use of the
incremental nature of constructive visualization [12f]. To support the
construction of a given visualization, the design of ReConstructor-
requires to identify the objects involved (e.g., visual marks, axes),
their attributes (e.g., visual properties, labels), and their associated
functionality (i.e., the processes associated to these objects such as
sorting or distributing). We also have to pay attention to how these
components interact. Having the visualization’s objects, attributes,
and functionality as modular components enables a constructive
approach to visualization authoring.

3.1 Interaction Elements

ReConstructor’s design is based on four fundamental interaction
elements: objects, modifiers, activators, and tools. When combined,
these elements enable reconstruction of a visualization from its
modular components.

An object has a graphical representation, which supports visibil-
ity [[18/19] and allows for direct manipulation [26]]. They have
various visible attributes (e.g., fill and stroke colors) and are by
default inert—they do not cause any effect or interact with each
other.

A modifier can take action on an object, such as applying the value
of the object’s attribute. It has the ability to change an object. For
example, a i1l modifier can change the fill color of an object and

a stroke modifier changes the color of the stroke that a pen tool

produces. Modifiers can be of two types:

- Transient modifiers change an object’s attribute when placed on the
object. Because the change in the object is visually conveyed, these
modifiers are not graphically represented on the canvas. Transient
modifiers include the stroke and fill color modifiers, as well as
the shape modifier that turns strokes into regular shapes.

- Persistent modifiers do not immediately change an attribute when
placed on an object. Instead, they remain visible, attached to the
object they modify. That is, they “objectify” [30] attributes (e.g.,
width or height). Dropping a data dimension from a dataset onto
the visual representation of a persistent modifier establishes a
mapping between the corresponding data dimension and attribute.
Persistent modifiers can add properties that are not inherent to
strokes. For example, the 1abel modifier adds text to an object.

An activator carries a process that can be dynamically added to
an object. That is, activators bring inert objects to life by turning
them into fools. For example, a push activator carries the process of
pushing other objects around. Adding a push activator to a squiggly
stroke would give it the ability to push other objects when dragged.
This activating strategy is relates to Activelnk [25[, where ink
annotations can be activated to operate on visual representations.

A tool is an object that has been activated. A tool can have one
or more activators associated with it. For example, adding an ink
activator to a push-activated stroke results in a pen that draws while
pushing other objects out of the way. Activators and persistent
modifiers can also be removed from tools. For example, when a
push activator is removed from an object it no longer pushes other
objects. Removing one activator does not affect the functionality
added by other activators (if any).

3.2 An lllustrative Example

To illustrate how we can use activators and modifiers to turn a
passive object into an active tool, we describe the construction of
a “pen” (Fig.[I). In this case, we do not use any data. Instead,
we simply illustrate the interaction aspects of our constructive
approach through construction of a drawing tool. Here modifiers
and activators have graphical representations that suggest their type
and function and are added to objects via drag-and-drop gestures.

We first add to a user-drawn line (1) an ink activator (2), which in
this scenario carries a draw function. The added activator appears
as a directly manipulable graphical element that is attached to the
activated stroke (3). The ink activator of our example gives objects
the ability to draw on the canvas when moved, converting the acti-
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Figure 1: Constructing a “pen” tool from a user-drawn stroke (1) by attaching an
ink activator (2). The pen’s (3, 4) ink is configured via color modifiers (5-9).
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Figure 3: A tabular dataset about trees, deconstructed into attributes (A) and
records (B). This dataset can have a compressed representation (C), or an ex-
panded representation showing its attributes (D) and records (E).

vated line into a “pen”. In this example, a pen generates scribbles
on the canvas with the same width and color of the activated line
(4). We then use a stroke modifier (5) to change the activated line’s
stroke color to blue (6). Consequently, new movements of the pen
produce blue scribbles (7). Subsequent modifications of the object’s
stroke color will also change the color of the pen’s ink (e.g., to
orange—8). Dragging the brush icon out of our pen tool deactivates it
(9). This step does not affect the line’s current visual appearance or
the scribbles previously drawn with it. Once deactivated, the stroke
no longer draws when moved (10).

4 RECONSTRUCTOR

‘We now explain how objects, modifiers, activators and tools integrate
in ReConstructor to support visualization creation.

4.1 The Interactive Environment

In ReConstructor, visualizations are constructed within a canvas
where people draw and move strokes via touch, pen or mouse. These
strokes are the objects of our domain. We use modifiers to change
objects’ visual appearance. Activators add functionality to objects,
which enables the construction of tools to operate on other objects
(e.g., a tool to spatially arrange a set of rectangles). As encour-
aged by the idea of Instrumental Interaction [3|], ReConstructor pays
attention to visibility and enables direct manipulation [26]] of its in-
teraction elements. Thus, both activators and modifiers are available
as icons in a palette and are attached to (or removed from) objects
via drag-and-drop—as in the illustrative example. When added to an
object, activators are represented graphically, with an icon that sug-
gests their function [18]]. The same applies for persistent modifiers.
Transient modifiers produce an immediate change on an object’s
visual appearance.

4.2 Working with Data

ReConstructor currently supports tabular datasets. We deconstruct
tabular datasets into their structural components: data dimensions
(i.e. columns) and records (i.e. rows). A data dimension is a collec-
tion of all the values of a given column and is named after the column
(Fig. EIA). A record is a set of attribute-value pairs (e.g., the record
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{name: ‘Ponderosa Pine’, avg.height: 478, avg.girth: 14}
shown in Fig. @B) In ReConstructor, a dataset is represented on the
canvas either in compressed (Fig.[3]C) or expanded form (Fig. [B|D).
‘When expanded, the dataset provides access to representations of
its data dimensions (Fig. @D) and records (Fig. @E). These repre-
sentations are draggable objects whose icon and color suggest the
underlying data type: blue half-quotes for categorical attributes and
green pound sign for quantitative ones. ReConstructor organizes the
dataset’s components in an ordered sequence. For example, the first
value of the Name dimension is Name[0] and the first record of the
dataset is Rows[@]. This order is relevant for some activators such
as the tuple and replicate activators, as explained later.

5 CONSTRUCTING A BAR CHART

We now use a running example of constructing a sorted bar chart
made of tree shapes to show the use of our interaction elements.

A bar chart typically consists of two or more bars which: a) have
a height that represents an aspect of the data, b) are aligned to a
common base, ¢) are optionally spaced for readability, and d) ideally,
are labeled according to the data they present.

Step 1: Creating a visual mark with visual properties. Marks
can be created from any object drawn on the canvas. These objects
have inherent attributes such as width, height, and stroke and
fill colors. Fig. |Z|( 1-3) shows how to construct a visual mark from
a hand-drawn stroke using the fill transient modifier to set the fill
color property of the tree to green. Other transient modifiers such as
stroke color and shape beautification can be applied similarly.

Step 2: Mapping data dimensions to visual properties. We now
show the label associated to the data record our tree mark represents,
as well as map its height value to the mark’s height attribute. Fig. 2]
(4-9) shows the steps involved in establishing these data mappings.
We first add two persistent modifiers to the mark: label (4) and
height (5). Because no data is mapped to either modifier, there is
no effect on the mark itself but icons representing these modifiers
are attached underneath the mark (5, 6). These icons can be used
to map different data dimensions to visual properties. To establish
a data mapping, we drag a data dimension from the dataset and
drop it onto the icon of a persistent modifier. When mapping the
Name attribute to the label modifier of the mark (7), the name of the
first record in the dataset (Name[@]) is attached to the tree (8). We
then map the Avg.Height data dimension to the height modifier
(8). This changes the height of the mark using the value of the first
record in the dataset (Avg.Height[0]).

Step 3: Replicating the defined mappings. At this stage, we have
created a single mark that represents the first record of our dataset.
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Figure 2: Constructing a bar chart using marks in the shape of trees. After drawing the outline of a tree (1), dropping the transient fill color modifier (2) changes the
fill color of the mark (3). Adding a label (4) and a height (5) modifier attach persistent representations of these modifiers underneath the mark (6), without any effect
on the mark itself. Mapping the name attribute to the 1abel modifier (7) adds the name of the first tree in the dataset at the top of the mark (8). Mapping the avg.height
attribute to the height modifier (8) sets the height of the mark to the average height of the first tree in the dataset (9). Adding a replicate activator to the tree and creates
an interactive handle (10) that can be dragged right to create new visual mark that replicate the mappings of the original mark.



Ponderosa Pine Ponderosa Pine

lue Spruce lue Spruce

Flowering Pear Flowering Pear

White Oak @

DISTRIBUTE
HORIZONTALLY

White Oak

Ponderosa Pine

Blue Spruce

NAWE Flowering Pear

(U
&

e Flowring Plum
TREES
(5 o) E White Oak

o T w8

“ TepTEE T { f ] T
u&;""?‘éﬁv

NG

Figure 4: Distributing and sorting the marks of a chart. Drawing a horizontal stroke on top of the trees and adding a distribute activator to that stroke (1) turns the
stroke into a tool. This tool shows two handles (2) that can be dragged outward (3) to distribute and increase the horizontal space between marks. Adding a sort activator
(4) to the tool and mapping the avg. height data attribute to it (5) sorts the marks based on their avg. height value, in ascending order (6).

Fig. E] (9-11) shows how we use a replicate activator to avoid
having to manually define mappings for each record of the dataset.
We first add the replicate activator to the mark (9). This adds
a handler to the right of the mark’s visual properties (10, yellow
encircled arrow). This step turns the newly activated object into an
interactive tool that can replicate itself. A numeric value on top of
the yellow handler indicates the number of additional data records
that can be replicated. We then drag the handler from left to right to
create new marks (11). The more we drag, the more visual marks
are created. Each newly created mark replicates the mappings of the
original one using subsequent data records (e.g., the first replicated
mark uses the values Name[1] and Avg.Height[1]). As new marks
are replicated the number of available records to replicate shown on
top of the handler decreases. When this value is zero the handler is
grayed out and cannot be dragged further.

Step 4: Distributing and sorting the trees. Now that we have
constructed a bar chart, we want to rearrange the trees to evenly
add some space between them, and to sort them in ascending order.
We achieve these actions by creating another interactive tool, as
shown in Fig.{4] We draw a horizontal stroke on top of the trees and
add a distribute activator to it (1). Upon adding the distribute
activator, two interactive handles appear at the start and end points
of the space spanned by the marks intersected by the stroke (2).
Activating the stroke turns it into a distributing fool. Moving its
handles (3) increases (or decreases) the horizontal space between
the trees. The last step is to sort the trees in ascending order. We add
a sort activator (4) to the horizontal stroke and drag the Avg.Height
data dimension of the dataset onto it (5). This sorts the trees in
ascending order by default (6). Tapping the sort activator’s icon
changes the sorting direction (to descending) if needed.

6 DISCUSSION

‘We chose to explore a variation of a digital constructive approach
to creating visualizations. A constructive approach requires
components from which the visualization can be built. Previous
constructive approaches [12}, [17] have decomposed the data
into individual data entities which can be represented as tokens.
Construction can then proceed with these tokens. While this has
shown to empower people and promote data and visualization
understanding [[13||15/[29]], people also object to the tedium of
moving individual tokens [29].

In ReConstructor we consider leveraging the tabular data structure
in our deconstruction. This approach to deconstruction, allows the
user to make use of this structure through our replicator activator to
pull related data entities unto the canvas. This helps alleviate some
of tedium of placing the single data items, and points to a possible
direction for combining the advantages of constructive visualization
with a more scalable interactive approach.

6.1 Flexibility and Sequencing

One of the key points of construction is the potential to achieve sim-
ilar outcomes by combining atomic elements in multiple ways. In
contrast to tangible tools, this is particularly true for digital construc-
tion, as software-supported processes can be notoriously mutable.
Our ongoing observations show that people expect a more relaxed
workflow regarding the order of operations they executed in ReCon-
structor. This is in line with studies that have shown that, when the
freedom is available, humans do not follow particular sequences dur-
ing design but rather opt for personal variations that change with the
problem at hand [19]. Developing ReConstructor, however, made
evident that full flexibility can be hard to achieve in a software solu-
tion. It appears that some order is required to achieve a construction.
In ReConstructorwe make use of the order used to store the tabular
data.

6.2 Granularity, Scalability and Agency

ReConstructor operates on data dimensions—rather than individual
values like other constructive tools. In combination with our replica-
tion strategy, working at this coarser granularity level provides some
scalability. We also circumvent scalability issues by enabling people
to create tools to operate on the tokens they use. One can construct,
for example, a “sorting tool” to sort the marks of a visualization
according to a specific data dimension. This is a unique aspect of
ReConstructorthat places more responsibility (hence, agency) in
the hands of the designer. It also differs from most conventional
visualization tools in that although certain operations can be speeded
up, they are not fully delegated to the tool but rather constructed by
the designer.

7 CONCLUSION

ReConstructor provides a new variation on constructive visualization
that supports the creation of visualizations based on four reusable
interaction elements—objects, modifiers, activators and tools. In
creating a visualization with ReConstructor visual marks are con-
structed by attaching modifiers to hand-drawn canvas objects. Per-
sistent modifiers provide mechanisms for establishing data bindings,
achieving data-driven modifications of an object’s visual appearance.
Activators can also be added to the visual marks to enable the con-
struction of zools that can operate on the visualization’s components.
In combination, these four interaction elements enable the creation
of visualizations through a constructive authoring process.
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