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ABSTRACT
We introduce Flexible Trees, a sketch-based layout adjustment tech-
nique. Although numerous tree layout algorithms exist, these al-
gorithms are usually bound to fit within standard shapes such as
rectangles, circles and triangles. In order to provide the possibility of
interactively customizing a tree layout, we offer a free-form sketch-
based interaction through which one can re-define the boundary
constraints for the tree layouts by combining ray-line intersection
and line segment intersection. Flexible Trees offer topology preserv-
ing adjustments; can be used with a variety of tree layouts; and offer
a simple way of authoring tree layouts for infographic purposes.

CCS Concepts
•Human-centered computing→ Information visualization; Ges-
tural input; Dendrograms; Cladograms;

Keywords
Visualization; trees; sketching; interaction; authoring; infographics.

1. INTRODUCTION
We present Flexible Trees, a sketch-based technique for deform-

ing tree layouts. Flexible Trees offer a new approach to creating
emphasis and focus+context, and a simple way of creating aestheti-
cally pleasing customized hierarchical data visualizations.

Hierarchical data are ubiquitous (e.g., family trees and file system
directory trees), and hierarchical data visualizations have a long
history. Tree layouts are certainly the most standard family of hier-
archical data representations. They usually represent data entities
as the nodes of a tree, and the relationships between these data enti-
ties as links, adjacency, or nesting [14] (see [13] for an overview).
While these tree layouts provide a variety of representations, they
are generally designed to fit into formal shapes such as rectangles,
circles, and triangles; and they emphasize the root of the tree.

Constraining tree visualizations to pre-defined shapes makes these
layouts ill-suited to narrative visualizations [15] and storytelling [9] –
where flexibility, authoring capabilities, and aesthetics are important.
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Figure 1: Tree layouts created using Flexible Trees, with the
shapes of a city skyline, an eye, and Twitter’s logo.

For example, one may want to illustrate a blog article with an
aesthetically pleasing tree visualization that visually relates to the
article; or may want to emphasize particular parts of the data, e.g.,
a sub-tree or a node. To empower non-experts in visualization,
we designed a sketch-based interaction to deform tree layouts (see
Figure 1) so that one can freeform layouts sketch directly instead of
using buttons, menus and dragging operations.

We first discuss the literature related to Flexible Trees. Then we
describe the Flexible Trees algorithm. Finally, we discuss the possi-
bilities for authoring tree visualizations for infographic purposes.

2. RELATED WORK
Our work with Flexible Trees relates to research in the areas of

tree layouts, sketch based interaction, and data story telling.

2.1 General background about trees
Tree layouts for visualizing hierarchical data can be implicit

or explicit [14]. A treemap [7], where each child node is nested
inside its parent, is an implicit layout which specifies each node size
according to the underlying data, and the size of a node depends on
the size of its children. Implicit layouts are not amenable to freeform
deformation as it would interfere with the data representation.

In contrast, explicit layouts such as Reingold and Tilford’s trees [11]
encode data relationship in the tree structure, which can be main-
tained when distorting the tree. However, such tree layouts are au-
tomatically computed and are not interactively adjustable. Flexible
Trees offer layout adjustment and personalization through sketching.

2.2 Sketch-based Interaction
Hand-drawn sketching is known to be effective in promoting

innovation, creativity, and thinking [3, 6]. Studies have investigated
how people manipulate representations, e.g., observing how people
spatially arrange nodes and links [18]. These studies showed that
pre-defined layouts are not in accordance with layouts people draw.

Researchers have considered sketch-based interaction [17] for
visualization [9,20] as pre-defined visualizations can limit people in
expressing their thinking about data [19]. Also, NapkinVis [4] and
SketchVis [2] investigate sketching simple visualizations. However,
we found no work about sketching tree layouts.

http://dx.doi.org/10.1145/2909132.2909274
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Figure 2: Finding intersection points a) of the rays with the
window borders, and b) on the stroke, for a Radial Cladogram.

2.3 Data Story Telling
The visualization community is recognizing the importance of

narrative visualization [15], and of telling data stories [9]. Through-
out human history people have drawn trees to convey messages
about hierarchical data. These hand-crafted trees differ widely: they
usually have irregular layouts, make extensive use of metaphors
and personalized styles, and contextualize data to convey a message.
These historical trees relate strongly to modern infographics (see
Lima’s book [10] for a history of tree visualizations).

These growing movements towards both sketch-based interaction
and narrative visualization have many benefits that have not yet been
applied to the popular tree layouts.

3. FLEXIBLE TREES
Flexible Trees are a way of deforming tree layouts via sketching.

We describe how to interpret sketched strokes; then we detail how to
deform implicit tree layouts using ray casting and line intersections.

3.1 Sketch Interpretation
Let a sequence of n sketch points pi = (xi,yi) be a stroke S =

{p1, p2, . . . , pn}. Sketched strokes have noisy and unevenly dis-
tributed sketch points. We filter the sketch points using four-point
interpolatory subdivision [5] (DLG subdivision), which applies sub-
division masks on the coarse points ci to find the fine points fi:

f2i = ci, f2i+1 =−
1
16

ci−1 +
9
16

ci +
9

16
ci+1−

1
16

ci+2 (Eq. 1)

which satisfies C1 continuity at the limit. To filter the input strokes,
we go in the reverse direction i.e. start from fine points to find the
coarse points. We first apply the reverse DLG subdivision filter [1]:

ci = 1
64 f2i−4 +0 f2i−3− 1

8 f2i−2 +
1
4 f2i−1 +

23
32 f2i

+ 1
4 f2i+1− 1

8 f2i+2 +0 f2i+3 +
1

64 f2i+4
(Eq. 2)

three times on the fine points fi to find coarse points ci. This
filter discards high-frequency information and noise. Resulting
coarse points are then subdivided three times using DLG subdivision
(see Eq. 1) to create the filtered stroke. To filter open curves, we use
the insights from J-splines [12] to derive boundary filters:

f0 = c0, f1 =
7

16
c0 +

10
16

c1−
1
16

c2 (Eq. 3)

to find the beginning fine points F = { f0, f1} from the beginning
coarse points C = {c0,c1,c2}. We then adjust the indexes to find
the ending fine points. The rest of the fine points are found from Eq.
1. Next, we derive corresponding reverse subdivision filters:

c0 = f0, c1 =
7

16
f0− f1 +

26
16

f2 +0 f3−
1
16

f4 (Eq. 4)

to find the beginning coarse points C = {c0,c1} from the beginning
fine points F = { f0, f1, f2, f3, f4}. We adjust the indexes to find the
ending coarse points and Eq. 2 gives the rest of the coarse points.

Finally, the control points are simply the coarse points. With this
approach, one can manipulate the stroke by moving control points
directly on the stroke – which is not the case with B-Splines.

3.2 Layout Deformation: Radial Cladogram
We first illustrate Flexible Trees with the Radial Cladogram (see

Figure 2). This explicit tree layout arranges the nodes of a tree in a
circle centered around the root node: 1) the leaf nodes are evenly
spaced on the circumference of the circle; 2) the internal area of
the circle is sliced into d concentric rings; 3) each parent node is
positioned on the inner ring corresponding to its depth such that
it bisects the angular distance between its children; 4) finally, the
edge originating at a child is drawn towards the root; when this
edge intersects the concentric ring of its parent it forms a join and
completes the edge line of the ring. Figure 2(a) shows a Radial
Cladogram and a sketched stroke S that sets the layout boundary.

We first find the closest intersection point between the rays shot
from the tree’s center to the borders of the window. Rays are shot
at uniform angular intervals, with one ray being shot for each leaf
node. A ray R(t) = p+ td is defined by a point p = (px, py) and a
unit direction d = (cosα,sinα); t ≥ 0 is a scalar indicating time.
Let w and h be the width and height of the window. For each ray,
we compute the intersection times with each border, with tle f t =

− px
cosα

, tright =
w−px
cosα

, tbottom = − py
sinα

, and ttop =
h−py
sinα

. Given
t∗ = min(tle f t , tright , tbottom, ttop), we find the closest intersection
point p∗ = (px + t∗ cosα, py + t∗ sinα) for each ray.

Next, we find all intersection points between the line segments
running from root to p∗s and the line segments of S as follows. Let
p∗1 = (a1,b1) and p∗2 = (a2,b2) be the two extremities of the line
segment running from the root to p∗, and p1 = (x1,y1), p2 = (x2,y2)

a line segment of S. Then we use the slopes m∗ = b2−b1
a2−a1

and m =
y2−y1
x2−x1

to find the coordinates of the intersection point (x,y):

x = m∗a1−b1+y1−mx1
m∗−m

y = mm∗a1−mb1−mm∗x1+m∗y1
m∗−m

(Eq. 5)

If S intersects multiple times with the ray, we choose the intersection
closest to the root. The last step is to adjust the radius of the Radial
Cladogram if a ray intersects the stroke. We calculate the distance
between the intersection point and the root node and use it as the leaf
node’s new radius. Finally, we update the position of all ancestors
of this leaf node (except the root) using the average radius of the
leaf nodes in the corresponding subtrees, as shown in Figure 2(b).

3.3 Other Layout Deformations
We have detailed the Flexible Trees algorithm for the Radial

Cladogram (a node-link radial layout). We now describe how to
adapt the algorithm to a rectilinear node-link layout (Cladogram), a
rectilinear space-filling layout (Icicle Plot) and a radial space filling
layout (Sunburst). Figure 3 shows these layouts being deformed.

The Cladogram, or dendogram, is the rectilinear version of the
Radial Cladogram. All leaves are drawn uniformly on the bottom of
the tree, regardless of their distance from the root, or depth, d. Then
the space between root and leaves is equally sliced according to d at
that point. Parents are aligned to be at the center of their children,
and the edge lines are drawn from parents to their children with a
90◦ angle turn at the same horizontal position of the children.

Implementation: As this layout only allows changes to the area
below the root node, we need only find the intersections between S
and the vertical line segments V from the root to the bottom border.
One vertical line v ∈ V is shot for each leaf vertex. We find the
closest intersection point p∗ for v and update the layout to be bound
at p∗ similarly to updating the radius of the Radial Cladogram tree.

The Icicle Plot [8] is a rectilinear space-filling layout. It only rep-
resents nodes – as filled rectangles; edges are implied by adjacency.
All nodes have the same height and are drawn at their exact depth.
Parent nodes are sized according to their number of children.



SunburstCladogram Icicle Plot

Figure 3: Adapting a Cladogram, an Icicle plot, and a Sunburst layout.

Implementation: The approach is similar to the one for the Clado-
gram. However, because nodes are arranged at their exact depth, the
intersection between S and v is not necessarily a leaf node. Thus,
we first uniformly divide the vertical distance between the root and
the intersection point; then we locate each node based on its depth.

The Sunburst [16] is the radial version of the Icicle Plot.
Implementation: The approach uses the ray casting and line seg-

ment intersection algorithms of the Radial Cladogram; and arranges
the nodes at the level proportional to their depth as in the Icicle Plot.
These levels are represented by annuli between co-centered rings
around the root. After finding an intersection point p∗, we uniformly
divide the radial distance between the root and p∗ to find the inner
and outer radius of the annuli using the depth of the node.

4. DISCUSSION AND FUTURE WORK
We discuss applications of sketch-based layout and show the

applicability of Flexible Trees to the authoring of infographics.

4.1 Layout Deformation via Sketching
Our sketch interpretation method can interpret freeform shapes.

However, our layout deformation algorithm uses the closest stroke
intersection after ray casting. We plan to investigate more complex
shapes such as concave shapes by adapting the curvature of links
and moving nodes, e.g., using physics.

Our algorithm produces fine results for node-link layouts. How-
ever, deformed space-filling layouts are more difficult to understand.
We plan to explore new strategies for such layouts in future work.

Finally, we implemented the algorithm for four implicit layouts
but adapting adjacency and nested layouts is a challenge. For exam-
ple, drawing an arbitrary shape and fitting a treemap into it raises
problems regarding maintaining the relative sizes of the nodes.

4.2 Flexible Trees for Focus+Context
Flexible Trees can create focus+context views. Using a sketched

curve to expand part of the layout is similar to what can be achieved
with a fisheye magnifying glass, but it acts differently. Figure 4
shows a sketched focus+context view of a Radial Cladogram: the
leaf nodes of the condensed tree (a) are difficult to distinguish
visually; but a simple hand-sketched stroke can open up the subtrees
sitting next to that curve (b). It makes the nodes readable locally.

4.3 Flexible Trees for Infographics
Flexible Trees are extremely suitable to generating infographics.

By drawing different shapes one can add more information about
the tree itself (e.g., provide the context of the data) and about its
data (e.g., provide information about the tree nodes and links). In
this section, we provide examples of infographics that we created by
modifying the original outputs of the algorithm in an SVG editor.

Figure 5 shows a tree in the shape of a cup that represents a subset
of the SCAA Flavor Wheel dataset. The shape does not add data
but it contextualizes the tree by conveying the topic. The coffee cup
shape hints at a beverage and the brown colour is typical for coffee.

Figure 7 shows data from WorldLifeExpectancy. This pie chart
shows the top causes of death for the United States, Germany and

a) b)

Figure 4: Focus+Context effect using free-form strokes on a
dense Radial Cladogram layout.
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Figure 5: Infographic based on a tree that represents coffee
aromas in a coffee cup shape.
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Figure 6: Pie chart showing the birth rates of Germany, the
United States, and India. Inside the pie slices the trees repre-
sent the most common death causes for each country.
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Figure 7: Infographics using small multiples of deformed trees in the shape of Germany, the United States, and India. The trees and
the coloured areas represent the most common causes of death and their percentage.

India. The shape adds quantitative data: slice angles represent birth
rates for each country. In addition to conveying the information
contained in the trees, this infographics puts this information in
perspective by also comparing the areas of the trees in the pie chart.

Figure 6 shows data from WorldLifeExpectancy. Color distri-
bution and slice angles represent the impact of each cause of death
on total percentage of deaths. The shape adds information to the
tree: it conveys the country that the data is related to. Filling parts
of the countries also conveys quantities like a pie chart does.

Flexible Trees benefit infographics as they make it possible to
include context (e.g., coffee cup), qualitative data (e.g., country
shapes), and quantitative data (e.g., birth rates in a pie chart layout).

5. CONCLUSIONS
Flexible Trees is a topology-preserving distortion technique for

adapting the layout of trees according to hand-sketched strokes.
This initial exploration of sketch-based layout paves the way for

further research. That includes exploring hand-sketching algorithms
for implicit and nested tree layouts; and beyond trees, applying the
method to e.g., graph drawing. Generalizing this approach has the
potential to reach a large number of people, as it makes it possible
to easily and rapidly create layouts of customized shapes. Our
discussion of the applicability to infographics generalizes to other
visualization types such as graph visualizations, and contributes to
filling the gap between Infovis research and infographic design.
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