Interactions Lab University of Calgary



A Buffer Framework for Supporting Responsive Interaction in Information Visualization Interfaces

Tobias Isenberg André Miede Sheelagh Carpendale

#### Main Message

The **buffer framework** provides faster and more responsive interaction for **large displays** with many objects and multiple users.

# **Overview**

- Introduction & Motivation
- Buffer Concept
- Realization
- Applications
- Implementation & Results
- Summary & Future Work

#### **Introduction and Motivation**



application courtesy of Uta Hinrichs [Hinrichs et al., 2005]

# **Complexities and Limitations**

- number of objects
- complexity of interaction between objects and controlling structures
- complexity of interaction between several controlling structures
- simultaneous user-interactions

complexity in run-time and development

#### Buffer Concept: Borrowing from Computer Graphics

 buffers as means to store data in computer graphics (e.g., z-buffer, G-buffers)



- property sampling on regular grid
- fast lookup of discrete values
- interpolation for smooth animations

#### Buffer Concept: Borrowing from Physics

- composition of multiple effects
- treat buffers as physical (force) fields
- example: composition of intensity buffers
   → treat as fields



- simple buffer adding
- simpler "interface physics"

#### Buffer Concept: Borrowing from Swarm Intelligence

- single swarm entities
- Iocal awareness
- Iocal processing



- divide-and-conquer strategy
- Iocal aspect of entities & local character of buffers

## **Realization of the Framework**

- visualization objects carry information
- buffer stack for several properties of interface



buffer contents controls object behavior

#### **Examples for Buffer Control**

#### color

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 |





size



resolution of buffers & display independent

#### **Examples for Buffer Control**



### **Realization of the Framework**

- interface components organize objects
- interface logic: interface components

   visualization objects



### **Final Framework Layout**



Global buffer stack

# Applications

- support of responsive interfaces on large displays
- extension of systems to support many more objects
- seamless integration of input support





# **Applications**



#### **Implementation and Hardware**

- OpenGL + Trolltech Qt
- hardware support for rendering tasks

SMART DViT: two concurrent inputs

#### Table Setup 1: 1280 x 2048 ≈ 2.6 Mp



#### Table Setup 2: 2800 x 2100 ≈ 5.9 Mp



#### Results

| 1280x2048<br>2.6 Mp | ca. 100<br>objects @<br>25-30 fps | 1000<br>objects @<br>25-30 fps             |
|---------------------|-----------------------------------|--------------------------------------------|
| 2800x2100<br>5.9 Mp | ca. 100<br>objects @<br>5-10 fps  | 200/400/1500<br>objects @<br>30/20/7.5 fps |

.

# Summary

- framework for responsive interaction
- speed gains through storing data in buffers
- sampled, discrete values fast to look up
- Iocal awareness and local processing
- application logic in autonomous objects





### **Future Work**

continue development of prototype and its comparison with previous applications



explore new application domains that take full advantage of the buffer framework

#### Main Message

The **buffer framework** provides faster and more responsive interaction for **large displays** with many objects and multiple users.

# Thanks for your attention!

Thanks to our funding agencies and sponsors:





Canada Foundation for Innovation Fondation canadienne pour l'innovation



